SO close

August 21, 2014

Bipedal Diplodocus USNM 10865 - modified from Gilmore 1932 pl 6 - v2

I have often argued that given their long hindlimbs, massive tail-bases, and posteriorly-located centers of mass, diplodocids were basically bipeds whose forelimbs happened to reach the ground. I decided to see what that might look like.

Okay, now obviously I know that there are no trackways showing sauropods actually getting around like this. It’s just a thought experiment. But given how close the center of mass of Diplodocus is to the acetabulum, I’ll bet that this pose was achievable in life. If diplodocids had just pushed the CM a few cm farther back, they might have dispensed with forelimbs entirely, or done something different with them, like re-evolved grasping hands.

Image modified from Gilmore (1932: plate 6). Here’s a horizontal-necked bipedal Diplodocus and the original pose:

Bipedal Diplodocus USNM 10865 - modified from Gilmore 1932 pl 6

Diplodocus USNM 10865 - Gilmore 1932 pl 6 - cleaned up

UPDATE the next day: I had forgotten that Niroot had already done a bipedal Apatosaurus, and a much more convincing one than mine. Go see it.

Reference

  • Gilmore, C. W. 1932. On a newly mounted skeleton of Diplodocus in the United States National Museum. Proceedings of the United States National Museum 81, 1-21.

Dear  AAAS,

This is an open letter concerning the recent launch of the new open access journal, Science Advances. In addition to the welcome diversification in journal choices for authors looking for open access venues, there are many positive aspects of Science Advances: its broad STEM scope, its interest in cross-disciplinary research, and the offering of fee waivers. While we welcome the commitment of the Association to open access, we are also deeply concerned with the specific approach. Herein, we outline a number of suggestions that are in line with both the current direction that scholarly publishing is taking and the needs expressed by the open access community, which this journal aims to serve.

The first of these issues concerns the licensing terms of the journal articles. The default choice of a non-commercial licence (CC BY-NC) places unnecessary restrictions on reuse and does not meet the standards set out by the Budapest Open Access Initiative. Many large funders, including Research Councils UK and the Wellcome Trust, do not recognise this as an open license. The adoption of CC BY-NC as the default license means that many researchers will be unable to submit to Science Advances if they are to conform to their funder mandates unless they pay for the upgrade to CC BY. There is little evidence that non-commercial restrictions provide a benefit to the progress of scholarly research, yet they have significant negative impact, limiting the ability to reuse material for educational purposes and advocacy. For example, NC-encumbered materials cannot be used on Wikipedia. The non-commercial clause is known to generate ambiguities and uncertainties (see for example, NC Licenses Considered Harmful) to the detriment of scholarly communication. Additionally, there is little robust evidence to suggest that adopting a CC-BY license will lead to income loss for your Association, and the $1,000 surcharge is difficult to justify or defend. The value of the CC BY license is outlined in detail by the Open Access Scholarly Publishers Association.

We raise an additional issue with the $1,500 surcharge for articles more than 10 pages in length. In an online-only format, page length is an arbitrary unit that results from the article being read in PDF format. Can the AAAS explain what the additional costs associated with the increased length are that would warrant a 50% increase in APC for an unspecified number of additional digital pages? Other leading open access journals, such as PeerJ, the BMC series, and PLOS ONE, offer publication of articles with unlimited page lengths. The extra costs create constraints that may adversely incentivize authors to exclude important details of their study, preventing replication and hindering transparency, all of which are contrary to the aims of scholarly publication. Therefore it seems counterproductive to impose this additional charge; it discriminates against researchers’ best effort to communicate their findings with as much detail as necessary.

We feel that the proposed APCs and licencing scheme are detrimental to the AAAS and the global academic community. As such, we recommend that Science Advances:

  • Offers CC BY as standard for no additional cost, in line with leading open access publishers, so authors are able to comply with respective funding mandates;

  • Provides a transparent calculation of its APCs based on the publishing practices of the AAAS and explains how additional value created by the journal will measure against the significantly high prices paid by the authors;

  • Removes the surcharges associated with increased page number;

  • Releases all data files under CC0 (with CC BY optional), which has emerged as the community standard for data and is used by leading databases such as Figshare and DataDryad.

We hope that you will consider the points raised above, keeping in mind how best to serve the scientific community, and use Science Advances to add the AAAS to the group of progressive and innovative open access scholarly publishers. We hope AAAS will collaborate with the academic community to facilitate the dissemination of scientific knowledge through a journal committed to fully embracing the principles of Open Access.

We kindly request that you allow your response(s) to be made public along with this letter, and look forward to hearing your response soon.

Signatories (please note that we do not formally represent the institutions listed):

  1. Jonathan P. Tennant, PhD student, Imperial College London (jonathan.tennant10@imperial.ac.uk, @protohedgehog)
  2. Timothée Poisot, University of Canterbury (timothee.poisot@canterbury.ac.nz, @tpoi)
  3. Joseph R. Hancock, Montana State University-Bozeman (joseph.hancock1@msu.montana.edu, @Joe_R_Hancock)
  4. M Fabiana Kubke, University of Auckland, New Zealand (f.kubke@auckland.ac.nz, @kubke)
  5. François Michonneau, University of Florida (fmichon@flmnh.ufl.edu, @FrancoisInvert)
  6. Michael P. Taylor, University of Bristol (dino@miketaylor.org.uk, @MikeTaylor)
  7. Graham Steel, Open Science, Scotland (steelgraham7@gmail.com, @McDawg)
  8. Jérémy Anquetin, Section d’Archéologie et Paléontologie, Switzerland (j.anquetin@gmail.com, @FossilTurtles)
  9. Emily Coyte, University of Bristol (emily.coyte@bristol.ac.uk, @emilycoyte)
  10. Benjamin Schwessinger, UC Davis (bschwessinger@ucdavis.edu, @schwessinger)
  11. Erin C. McKiernan, independent scientist (emck31@gmail.com, @emckiernan13)
  12. Tom Pollard, PhD student, University College London (tom.pollard.11@ucl.ac.uk, @tompollard)
  13. Aimee Eckert, MRes student, Imperial College London (aee13@imperial.ac.uk, @aimee_e27)
  14. Liz Allen, ScienceOpen, San Francisco (liz.allen@scienceopen.com, @LizAllenSO)
  15. Dalmeet Singh Chawla, Imperial College London (dalmeets@gmail.com, @DalmeetS)
  16. Elizabeth Silva, San Francisco (elizabeth.silva@me.com, @lizatucsf)
  17. Nicholas Gardner, Marshall University (nick.gardner@gmail.com, @RomerianReptile)
  18. Nathan Cantley, Medical Student, Queens University Belfast (ncantley01@qub.ac.uk, @NathanWPCantley)
  19. John Dupuis, Librarian, York University, Toronto (jdupuis@yorku.ca, @dupuisj)
  20. Christina Pikas, Doctoral Candidate, University of Maryland (cpikas@gmail.com, @cpikas)
  21. Amy Buckland, Librarian, McGill University, Montreal (amy.buckland@mcgill.ca, @jambina)
  22. Lenny Teytelman, www.zappylab.com, Berkeley, CA (lenny@zappylab.com), @lteytelman)
  23. Peter Murray-Rust, University of Cambridge, UK (peter.murray.rust@googlemail.com), @petermurrayrust)
  24. Zen Faulkes, The University of Texas-Pan American, zfaulkes@utpa.edu, @DoctorZen)
  25. Robert J. Gay, The University of Arizona/Mission Heights Preparatory High School, AZ, USA (paleorob@gmail.com, @paleorob)
  26. Peter T.B. Brett, University of Surrey, UK (peter@peter-b.co.uk, @PeterTBBrett)
  27. Anders Eklund, Linköping University, Sweden (andek034@gmail.com, @wandedob)
  28. Johannes Björk, Institute of Marine Sciences, Barcelona, Spain (bjork.johannes@gmail.com, @AwfulDodger)
  29. William Gunn, Mendeley, London, UK, william.gunn@mendeley.com, @mrgunn)
  30. Nitika Pant Pai, McGill University, Montreal, Canada (nitika.pai@mcgill.ca) @nikkiannike
  31. Philippe Desjardins-Proulx, Ph.D. student (philippe.d.proulx@gmail.com, @phdpqc).
  32. Joshua M. Nicholson, PhD candidate Virginia Tech, VA and founder The Winnower, VA (jnicholson@thewinnower.com, @thewinnower)
  33. Scott Edmunds, GigaScience, BGI Hong Kong (scott@gigasciencejournal.com, @SCEdmunds)
  34. Steven Ray Wilson, University of Oslo (stevenw@kjemi.uio.no, @stevenRayOslo)
  35. Stuart Buck, Vice President of Research Integrity, Laura and John Arnold Foundation (sbuck@arnoldfoundation.org, @stuartbuck1)
  36. B. Arman Aksoy, Ph.D. student, Memorial Sloan Kettering Cancer Center (arman@cbio.mskcc.org, @armish)
  37. Nazeefa Fatima, University of Huddersfield, UK (nazeefafatima@msn.com, @NazeefaFatima)
  38. Ross Mounce, University of Bath, UK (rcpm20@bath.ac.uk, @rmounce)
  39. Heather Piwowar, Impactstory, (heather@impactstory.org), @researchremix
  40. Avinash Thirumalai, Ph.D student, East Tennessee State University (thirumalai@goldmail.etsu.edu)
  41. Jason Priem, Impactstory (jason@impactstory.org), @jasonpriem
  42. Clayton Aldern, University of Oxford, UK (clayton.aldern@gmail.com, @compatibilism)
  43. Marcus D. Hanwell, Technical Leader, Kitware, Inc., (mhanwell@kitware.com, @mhanwell)
  44. Kristen L. Marhaver, NSF Postdoctoral Fellow, Carmabi Foundation (kristenmarhaver@gmail.com, @CoralSci)
  45. David Michael Roberts, ARC Research Associate, University of Adelaide (david.roberts@adelaide.edu.au)
  46. Brian Hole, Ubiquity Press, UK (brian.hole@ubiquitypress.com, @ubiquitypress)
  47. Alexander Grossmann, University of Applied Sciences Leipzig, Germany and co-founder of ScienceOpen, Berlin/Boston (alexander.grossmann@htwk-leipzig.de, @SciPubLab)
  48. David L.Vaux, Assistant Director, The Walter and Eliza Hall Institute, Australia (vaux@wehi.edu.au)
  49. John Murtagh, Repository Manager, London School of Hygiene and Tropical Medicine @LSHTMlibrary
  50. Alecia Carter, University of Cambridge, UK (ac854@cam.ac.uk, @alecia_carter)
  51. Alex O. Holcombe, University of Sydney (alex.holcombe@sydney.edu.au, @ceptional)
  52. Ignacio Torres Aleman, Cajal Institute, Madrid. Spain. (torres@cajal.csic.es)
  53. Sarah Molloy, Research Support Manager, Queen Mary University of London (s.h.molloy@qmul.ac.uk, @moragm23)
  54. John Lamp, Deakin University, Australia (john.lamp@deakin.edu.au, @johnwlamp)
  55. Matthew Todd, The University of Sydney and Open Source Malaria, matthew.todd@sydney.edu.au)
  56. Anusha Seneviratne, Imperial College London (anushans@hotmail.com, @anushans)
  57. Guido Guidotti, Harvard University (guidotti@fas.harvard.edu)
  58. Joseph McArthur, Assistant Director, Right to Research Coalition(Joe@RighttoResearch.org, @mcarthur_joe)
  59. Carlos H. Grohmann, University of São Paulo, Brazil (guano@usp.br)
  60. Jan de Leeuw, University of California Los Angeles, (deleeuw@stat.ucla.edu)
  61. Jung H. Choi, Associate Professor, Georgia Institute of Technology (jung.choi@biology.gatech.edu)
  62. Ernesto Priego, Centre for Information Science, City University London, UK (Ernesto.Priego.1@city.ac.uk)
  63. Brian Pasley, University of California, Berkeley (bpasley@berkeley.edu)
  64. Stacy Konkiel, Impactstory.org (stacy@impactstory.org), @skonkiel)
  65. Elizabeth HB Hellen, Rutgers University (hellen@dls.rutgers.edu)
  66. Raphael Levy, University of Liverpool (rapha@liverpool.ac.uk)
  67. Paul Coxon, University of Cambridge (prc39@cam.ac.uk)
  68. Nitika Pant Pai, McGill University, Montreal, Canada (nitika.pai@mcgill.ca)
  69. David Carroll, Queen’s University Belfast  (carroll.davide@gmail.com, @davidecarroll)
  70. Jacinto Dávila, Universidad de Los Andes (jacinto.davila@gmail.com, @jacintodavila)
  71. Marco Arieli Herrera-Valdez, Universidad Nacional Autónoma de México (mahv13@gmail.com, @brujonildo)
  72. Juan Pablo Alperin, Simon Fraser University, Canada (juan@alperin.ca)
  73. Jan P. de Ruiter, Bielefeld University (jan.deruiter@uni-bielefeld.de, @JPdeRuiter)
  74. Xianwen Chen, Norwegian University of Life Sciences (xianwen.chen@nmbu.no, @xianwen_chen)
  75. Jeanette Hatherill, Librarian, University of Ottawa, Canada (jeanette.hatherill@uottawa.ca, @jeanetteanneh)
  76. Katharine Mullen, University of California Los Angeles (katharine.mullen@stat.ucla.edu)
  77. Pedro Bekinschtein, University of Buenos Aires, Argentina (pbekinschtein@fmed.uba.ar; @pedrobek)
  78. Quentin Groom, Botanic Garden Meise, Belgium (quentin.groom@br.fgov.be, @cabbageleek)
  79. Karen Meijer-Kline, Librarian, Simon Fraser University, Canada (kmeijerk@sfu.ca, @kmeijerkline)
  80. Pietro Gatti-Lafranconi, Department of Biochemistry, University of Cambridge, UK (pg356@cam.ac.uk, @p_gl)
  81. Jeffrey Hollister, USEPA, Narragansett, RI (hollister.jeff@epa.gov, @jhollist)
  82. Lachlan Coin, University of Queensland and founder of Academic Karma (l.coin@academickarma.org @AcademicKarma )
  83. MooYoung Choi, Department of Physics and Astronomy, Seoul National University, Korea (mychoi@snu.ac.kr)
  84. Oscar Patterson-Lomba, Harvard School of Public Health (opatters@hsph.harvard.edu)
  85. Rowena Ball, The Australian National University, Canberra, Australia (Rowena.Ball@anu.edu.au)
  86. Daniel Swan, Oxford Gene Technology, UK (Daniel.Swan@ogt.com @DrDanielSwan)
  87. Stephen Curry, Imperial College London, UK (s.curry@imperial.ac.uk, @Stephen_Curry)
  88. Abigail Noyce, Boston University (anoyce@bu.edu, @abbynoyce)
  89. Jordan Ward, UCSF, San Francisco, CA, USA (jordan.ward@ucsf.edu, @Jordan_D_Ward)
  90. Ben Meghreblian, criticalscience.com, London, UK (benmeg@benmeg.com, @benmeg)
  91. Ethan P. White, Utah State University, Logan, UT, USA (ethan.white@usu.edu, @ethanwhite)
  92. Sean R. Mulcahy, University of California, Berkeley, CA, USA (mulcahy@berkeley.edu, @srmulcahy)
  93. Sibele Fausto, University of São Paulo, Brazil (sifausto@usp.br @sibelefausto)
  94. Lorena A. Barba, George Washington University (labarba@gwu.edu @LorenaABarba)
  95. Ed Trollope, Director, Things We Don’t Know CIC (contact@thingswedontknow.com, @TWeDK)
  96. Stephen Beckett, Ph.D. student, University of Exeter (S.J.Beckett@exeter.ac.uk, @BeckettStephen)
  97. Andrew D. Steen, Department of Earth & Planetary Sciences, University of Tennessee, Knoxville (asteen1@utk.edu, @drdrewsteen)
  98. Mari Sarv, Estonian Literary Museum (mari@folklore.ee, @kaskekanke)
  99. Noam Ross, Ph.D. Candidate, Ecology, University of California-Davis (nmross@ucdavis.edu, @noamross)
  100. Erika Amir, Geologist, Massachusetts, USA (erika.amir@gmail.com, @geoflier)
  101. Martin Paul Eve, University of Lincoln (meve@lincoln.ac.uk, @martin_eve)
  102. Franco Cecchi, University of Florence (francocecchi337@gmail.com)
  103. Jason B. Colditz, University of Pittsburgh (colditzjb@gmail.com, @colditzjb)
  104. Philip Spear, postdoc, Northwestern University (philspear@northwestern.edu)
  105. Mythili Menon, University of Southern California (mythilim@usc.edu, @mythmenon)
  106. Matthew Clapham, University of California Santa Cruz (mclapham@ucsc.edu,@meclapham)
  107. Karl W. Broman, University of Wisconsin–Madison (kbroman@biostat.wisc.edu, @kwbroman)
  108. Graham Triggs, Symplectic (graham@symplectic.co.uk, @grahamtriggs)
  109. Tom Crick, Cardiff Metropolitan University (tcrick@cardiffmet.ac.uk, @DrTomCrick)
  110. Diano F. Marrone, Wilfrid Laurier University (dmarrone@wlu.ca)
  111. Joseph Kraus, Librarian, University of Denver (joseph.kraus@du.edu, @OAJoe)
  112. Steven Buyske, Rutgers University (buyske@stat.rutgers.edu)
  113. Gavin Simpson, University of Regina (gavin.simpson@uregina.ca)
  114. Colleen Morgan, University of York (colleen.morgan@york.ac.uk @clmorgan)
  115. Kara Woo, National Center for Ecological Analysis and Synthesis, UC Santa Barbara (woo@nceas.ucsb.edu, @kara_woo)
  116. Mathew Wedel, Western University of Health Sciences (mathew.wedel@gmail.com)

 

Today for the first time I saw Saegusa and Ikeda’s (2014) new monograph describing the Japanese titanosauriform Tambatitanis amicitiae. I’ve not yet had a chance to read the paper — well, it’s 65 pages long — but it certainly looks like they’ve done a nice, comprehensive job on a convincing new taxon represented by good material: teeth, braincase, dentary, atlas, and as-yet unprepared fragmentary cervical, fragmentary dorsals, sacral spines, some nice caudals, some ribs and chevrons, and pubis and ilium.

What catches the eye immediately is the bizarre forward-curved neural spines of the anterior caudals:

Saegusa and Ikeda (2104: fig. 8): Tambatitanis amicitiae gen. et sp. nov., holotype (MNHAH D-1029280). A, Cd2–Cd11 in right lateral view. B, Cdx1–Cdx2 in right lateral view.

Saegusa and Ikeda (2104: fig. 8): Tambatitanis amicitiae gen. et sp. nov., holotype (MNHAH D-1029280). A, Cd2–Cd11 in right lateral view. B, Cdx1–Cdx2 in right lateral view.

Here’s the third caudal in detail. (The first is fragmentary, and the second has some minor reconstruction near the tip of the spine which sceptical readers might think is covering up a misconstruction):

Saegusa and Ikeda (2014: fig. 11): Tambatitanis amicitiae gen. et sp. nov., holotype (MNHAH D-1029280). A–F, stereopairs of Cd3. A, right lateral view. B, left lateral view of the neural spine. C, anterior view. D, posterior view. E, dorsal view. F, ventral view. G, CT slices through the neural spine of Cd3, part corresponding to the matrix that filling the internal chamber is removed from the image. Greek letters in B and D indicate the position of CT slices shown in G. Scale bar = 10cm.

Saegusa and Ikeda (2014: fig. 11): Tambatitanis amicitiae gen. et sp. nov., holotype (MNHAH D-1029280). A–F, stereopairs of Cd3. A, right lateral view. B, left lateral view of the neural spine. C, anterior view. D, posterior view. E, dorsal view. F, ventral view. G, CT slices through the neural spine of Cd3, part corresponding to the matrix that filling the internal chamber is removed from the image. Greek letters in B and D indicate the position of CT slices shown in G. Scale bar = 10cm.

And here is the right-lateral view in close-up:

Saegusa and Ikeda (2014: fig. 11): Tambatitanis amicitiae gen. et sp. nov., holotype (MNHAH D-1029280) in right lateral view.

Saegusa and Ikeda (2014: fig. 11): Tambatitanis amicitiae gen. et sp. nov., holotype (MNHAH D-1029280) in right lateral view.

A phylogenetic analysis based on that of D’Emic (2012) recovers the new taxon in a polytomy with the Euhelopus clade that’s going to need a new name pretty soon, since it keeps growing and can’t be called Euhelopodidae for historical reasons: [that should probably be called Euhelopodidae: see discussion in comments]:

Saegusa and Ikeda (2014: fig. 23): Phylogenetic relationships of the titanosauriform sauropod Tambatitanis amicitiae gen. et sp. nov. from the Lower Cretaceous Sasayama Group of Tamba, Hyogo, Japan produced using the matrix of D'Emic (2012) with the addition of Tambatitanis. The final matrix, including 29 taxa and 119 characters, was analyzed in PAUP* 4.0b10. Left side, strict consensus of 81 most parsimonious trees (length = 207; CI = 0.609; RI = 0.8010; RC = 0.489), figures below nodes are decay indices. Right side, 50% majority rule consensus, figures above and below nodes represents the percentage of MPTs in which the node was recovered (only those relationships recovered in over 50% of the MPTs are shown).

Saegusa and Ikeda (2014: fig. 23): Phylogenetic relationships of the titanosauriform sauropod Tambatitanis amicitiae gen. et sp. nov. from the Lower Cretaceous Sasayama Group of Tamba, Hyogo, Japan produced using the matrix of D’Emic (2012) with the addition of Tambatitanis. The final matrix, including 29 taxa and 119 characters, was analyzed in PAUP* 4.0b10. Left side, strict consensus of 81 most parsimonious trees (length = 207; CI = 0.609; RI = 0.8010; RC = 0.489), figures below nodes are decay indices. Right side, 50% majority rule consensus, figures above and below nodes represents the percentage of MPTs in which the node was recovered (only those relationships recovered in over 50% of the MPTs are shown).

Nice to see that new sauropods just keep on rolling out of the ground faster than we can blog about them!

References

  • D’Emic, Michael D. 2012. The early evolution of titanosauriform sauropod dinosaurs. Zoological Journal of the Linnean Society 166:624-671.
  • Saegusa, Haruo, and Tadahiro Ikeda. 2014. A new titanosauriform sauropod (Dinosauria: Saurischia) from the Lower Cretaceous of Hyogo, Japan. Zootaxa 3848(1):1-66. doi:10.11646/zootaxa.3848.1.1

I am just about out of patience with academic departments putting up endless idiot arguments about open access.

Bottom line: we pay you good money out of the public purse to do highly desirable job where you get to work on what you love — jobs that have tens or dozens of candidates for every post. That job is: make new knowledge for the world. Not just for you and a few of your mates: for the world. If you’re not prepared to do that, then get the heck out of the job, and vacate a position for someone who will actually do what we pay them for.

Sheesh. I try to be understanding, I really do. But all this “Oh, oh, it’s not like it used to be in the old days” whining has worn me down. No, it’s not like it was in the old days, when you got paid to play, with nothing expected in return. Earn your damned keep, or get out of the road.

(And, yes, this is a toned down version of the comment I originally composed in my head.)

[Originally posted as a comment at The Guardian.]

Short post today. Go and read this paper: Academic urban legends (Rekdal 2014). It’s open access, and an easy and fascinating read. It unfolds a tale of good intentions gone wrong, a chain of failure, illustrating an important single crucial point of academic behaviour: read what you cite.

References

Rekdal, Ole Bjørn. 2014. Academic urban legends. Social Studies of Science 44(4):638-654. doi: 10.1177/0306312714535679

 

Regulars will remember that nearly two years ago, I reviewed a paper for the Royal Society’s journal Biology Letters, recommended acceptance with only trivial changes (as did both other reviewers) and was astonished to see that it was rejected outright. There was an invitation to resubmit, with wording that made it clear that the resubmission would be treated as a brand new manuscript; but when the “resubmission” was made, it was accepted almost immediately without being sent to reviewers at all — proving that it was in fact a minor revision.

What’s worse, the published version gives the dates “Received August 21, 2012.
Accepted September 13, 2012″, for a submission-to-acceptance time of just 23 days. But my review was done before August 21. This is a clear falsifying of the true time taken to process the manuscript, a misrepresentation unworthy of the Royal Society, and which provoked Matt and me to declare that we would no longer provide peer-review for the Society until they fix this.

By the way, we should be clear that the Royal Society is not the only publisher that does this. For example, one commenter had had the same experience with Molecular Ecology. Misreporting the submission/revision cycle like this works to publishers’ benefit in two ways: it makes them look faster than they really are, and makes the rejection rate look higher (which a lot of people still use as a proxy for prestige).

To the Society’s credit, they were quick to get in touch, and I had what at time seemed like a fruitful conversation with Dr Stuart Taylor, their Commercial Director. The result was that they made some changes:

  • Editors now have the additional decision option of ‘revise’. This provides a middle way between ‘reject and resubmit’ and ‘accept with minor revisions’. [It's hard to believe this didn't exist before, but I guess it's so.]
  • The Society now publicises ‘first decision’ times rather than ‘first acceptance’ times on their website.

As I noted at the time, while this is definitely progress, it doesn’t (yet) fix the problem.

A few days ago, I checked whether things have improved by looking at a recent article, and was disappointed to see that they had not. I posted two tweets:

Again, I want to acknowledge that the Royal Society is taking this seriously: less than a week later I heard from Phil Hurst at the Society:

I was rather surprised to read your recent tweets about us not fixing this bug. I thought it was resolved to your satisfaction.

I replied:

Because newly published articles still only have two dates (submitted and accepted) it’s impossible to tell whether the “submitted” date is that of the original submission (which would be honest) or that of the revision, styled “a new submission” even though it’s not, that follows a “reject and resubmit” verdict.

Also: if the journals are still issuing “reject and resubmit” and then accepting the supposed new submissions without sending them out for peer-review (I can’t tell whether this is the case) then that is also wrong.

Sorry to be so hard to satisfy :-) I hope you will see and agree that it comes from a desire to have the world’s oldest scientific society also be one that leads the way in transparency and honesty.

And Phil’s response (which I quote with his kind permission):

I feel the changes we have made provide transparency.

Now that the Editors have the ‘revise’ option, this revision time is now incorporated in the published acceptance times. If on the other hand the ‘reject and resubmit’ option is selected, the paper has clearly been rejected and the author may or may not re-submit. Clearly if a paper had been rejected from another journal and then submitted to us, we would not include the time spent at that journal, so I feel our position is logical.

We only advertise the average ‘receipt to first decision’ time. As stated previously, we feel this is more meaningful as it gives prospective authors an indication of the time, irrespective of decision.

After all that recapitulation, I am finally in a position to lay out what the problems are, as I perceive them, in how things currently stand.

  1. Even in recently published articles, only two dates are given: “Received May 13, 2014. Accepted July 8, 2014″. It’s impossible to tell whether the first of those dates is that of the original submission, or the “new submission” that is really a minor revision following a reject-and-resubmit verdict.
  2. It’s also impossible to tell what “receipt to first decision” time is in the journal’s statistics. Is “receipt” the date of the revision?
  3. We don’t know what the journals’ rejection rates mean. Do they include the rejections of articles that are in fact published a couple of weeks later?

So we have editorials like this one from 2012 that trumpet a rejection rate of 78% (as though wasting the time of 78% of their authors is something to be proud of), but we have no idea what that number represents. Maybe they reject all articles initially, then accept 44% of them immediately on resubmission, and call that a 22% acceptance rate. We just can’t tell.

All of this uncertainly comes from the same root cause: the use of “reject and resubmit” to mean “accept with minor revisions”.

What can the Royal Society do to fix this? Here is one approach:

  1. Each article should report three dates instead of two. The date of initial submission, the date of resubmission, and the date of acceptance. Omitting the date of initial submission is actively misleading.
  2. For each of the statistics they report, add prose that is completely clean on what is being measured. In particular, be clear about what “receipt” means.

But a much better and simpler and more honest approach is just to stop issuing “reject and resubmit” verdicts for minor revisions. All the problems just go away then.

“Minor revisions” should mean “we expect the editor to be able to make a final decision based on the changes you make”.

“Major revisions” should mean “we expect to send the revised manuscript back out to the reviewers, so they can judge whether you’ve made the necessary changes”.

And “reject and resubmit” should mean “this paper is rejected. If you want to completely retool it and resubmit, feel free”. It is completely inappropriate to accept a resubmitted paper without sending it out to peer review: doing so unambiguously gives the lie to the claim in the decision letter that “The resubmission will be treated as a new manuscript”.

Come on, Royal Society. You’ve been publishing science since 1665. Three hundred and forty-nine years should be long enough to figure out what “reject” means. You’re better than this.

And once the Royal Society gets this fixed, it will become much easily to persuade other publishers who’ve been indulging in this shady practice to mend their ways, too.

Recently, I published an old manuscript of mine as a PeerJ Preprint.

I wrote this paper in 2003-4, and it was rejected without review when I submitted it back then. (For, I think, specious reasons, but that’s a whole nother discussion. Forget I mentioned it.)

I haven’t touched the manuscript since then (except to single-space it for submission as a preprint). It’s ten years old. That’s a problem because it’s an analysis of a database of dinosaur diversity, and as everyone knows, the rate of recognising new dinosaurs has gone through the roof. That’s the reason I never made any attempt to update and resubmit it: dinosaur diversity is a fast-moving target, and each time through the submit-reject cycle takes long enough for the data to be outdated.

So much for the history. Now the question: how should I cite this paper? Specifically, what date should I give it? If I cite it as from 2004, it will give the misleading impression that the paper has been available for ten years; but if I cite it as from 2014, it will imply that it’s been worked on at some point in the last ten years. Both approaches seem misleading to me.

At the moment, I am citing it as “Taylor (2014 for 2004)”, which seems to more or less capture what’s meant, but I don’t know whether it’s an established convention. Is there an established convention?

Releated: where in mv publications list should it appear? At present I am sorting it under 2014, since that’s when it came out; but should it be under  2004, when it was written? I guess publication date is the one to go far — after all, it’s not unusual even now for papers to spend a year or more in press, and it’s the later (publication) date that’s cited.

Help me out. How should this be done?

References

Follow

Get every new post delivered to your Inbox.

Join 379 other followers