Mike gets a shot of a sauropod sacrum in the AMNH basement.

…with sauropod bones!

Lots of basements have them. Some basements have had them for decades, and other basements have been newly constructed to house them. So you can take advantage of that retro chic while taking your basement into the 21st century!

What the heck am I talking about?

Matt ponders the mysteries of evolution in the AMNH basement.

One of the nifty features of WordPress is that you can track the search terms that people are using to find your blog. After Mike put up his “Suboptimal location of Mamenchisaurus” post, we noticed that one of the top search terms bringing people to SV-POW! was ‘basement’. Yeah, that’s right, ‘basement’. In fact, ‘basement’ is the 5th highest search term of all time that has brought people to SV-POW! And that’s not unusual–in fact, of the top 5 search terms bringing people here, only one is sauropod-related (Brachiosaurus, at number 2).

As of this posting, here are the Top 10 non-sauropod search terms of all time that have led people to SV-POW!, listed by rank, and including the number of hits in parentheses:

1. rabbit (18,235)

3. leopard seal (12,797) — this explains why “Sorting out Cetiosaurus nomenclature”, which even Mike admits is the most boring topic we’ve ever covered here, is the 11th most popular post of all time on this blog!

4. flamingo (10,974)

5. basement (9743)

12. twinkie (3434)

14. flamingos (3102) — double dipping for the “Necks lie” post!

20. pig skull (2099)

21. savannah monitor (2078)

22. varanus exanthematicus (1936) — double dipping for “Four complete, articulated, extant sauropod skeletons–yes, really!”

24. shish kebab (1660) — double dipping for “Sauropods were corn-on-the-cob, not shish kebabs”.

Mike and Darren discover a new dwarf sauropod in the basement at Oxford.

We’re apparently getting a lot of hits from people who want to remodel their basements. I’m all for that (the remodeling, and the extra hits), so I’m embracing it. You want basements, we got ‘em. We’ll drown you in pictures of sauropod vertebrae in basements. Did I say basement? Basement, basement, basement!

(Why am I pushing basement and not rabbit, flamingo, or leopard seal? Partly because basement used to be our number 1 search term and I want to see its fortunes rise again. Partly because those other things are at least biological, and it cracks me up to have a common architectural term bringing people to the blog. And partly because I want to upstage John and his freezers.)

Basement Renovation Instructions

This short guide will help you with your project.

Is your basement in a museum?

If YES, then:

1. Fill it with sauropod vertebrae.

2. Call us.

If NO, then:

1. Fill it with anything you like except sauropod vertebrae.

2. Support your local museum.

Don’t forget: basement!

Five conversations

April 22, 2014

2007-01-07 Big Bend 142 small

5. Brian Kraatz, 2004

In the spring of 2004, I was killing time over in Tony Barnosky’s lab at Berekeley, talking to Brian Kraatz about something–mammals, probably. Brian told me that I should consider going to the International Congress of Zoology that was happening in Beijing that fall. He’d actually told me about it several times, but I kept forgetting about it. It seemed remote from my concerns. Finally, though, the day before the abstracts were due, I thought, “Why not?” I could get travel money from the department and it would get me over there to see a lot of Asian dinosaurs in person.

I was also intrigued because presenters could submit either abstracts or short papers, and I had an idea for a short paper. I had been thinking a lot about how pneumaticity got started in dinosaurs and how much we could infer about that, so that evening I stayed up until about 3 AM banging out what would become Wedel (2006), pretty much as it was published, except for the figure, which was added later.

That got me to Beijing, where I spent a lot of time talking with Paul Barrett, who saw my talk and later invited me to contribute a talk to an SVP symposium on prosauropods, which grew into Wedel (2007) and became a chapter of my dissertation. And that got me an invite from Adam Yates and Matt Bonnan to join them in writing up the first really solid evidence of pneumaticity in prosauropods (Yates et al. 2012).

RESET

When I wandered over to the Barnosky lab to kill time that day,  Brian wasn’t in. Instead I got to talking with Alan Shabel about food webs in East African riparian ecosystems. The habitats and faunas he was talking about put me in mind of the Morrison Formation of the American West. I wondered if the quantitative ecological analysis that Alan was working on would yield any insights into how Late Jurassic ecosystems worked. And that fired a few neutrons at the Van Valen papers I’d been reading for Kevin Padian’s paleobiology seminar, and precipitated a chain reaction. The paper that came out of that, “Sauropod dinosaurs as Van Valen’s energy maximizers”, was published in Paleobiology in 2007. That’s how I got into quantifying energy flow through dinosaur-dominated ecosystems.

I was presenting some of that work at an ecology conference in 2008 when I got invited to join a team of biologists going to the Galapagos. I was particularly interested in the role of extant dinosaurs (i.e., birds) in ecosystems dominated by bradymetabolic reptiles. Some of the data from that trip and one subsequent  expedition went into my 2013 paper on the rise of dinosaurs during the Triassic. But most importantly, it got me working in the Galapagos, which I had wanted to do ever since I was a kid.

Oakland Zoo Tortoise - resting

4. Mike Taylor, 2000

My first paper came out in the first issue of the Journal of Vertebrate Paleontology in 2000. It was the one in which Rich Cifelli and Kent Sanders and I designated OMNH 53062, a string of four sauropod vertebrae from southeast Oklahoma, as the type specimen of a new dinosaur, Sauroposeidon proteles. I had been collecting business cards and mailing addresses from people at SVP since 1997, and I had a list of about 100 people that I thought would appreciate a reprint of the paper. So when the reprints arrived from the publisher, I printed out a bunch of form letters, made an assembly line of reprints, letters, and envelopes on the big table in the OMNH vert paleo library, and killed an afternoon getting everything assembled and ready to ship out.

Also about this time I received a polite email from some English guy named Mike Taylor, asking for a reprint. I wrote back and said that I’d be happy to send him one. I don’t know what he wrote back next, but it was sufficiently interesting that it kicked off a conversation that has now been going on for 14  years. When Vicki and I went to England on spring break in 2004, we stayed with Mike and Fiona in London. I went back over for SVPCA in London in 2005, and after 2009, I started going to SVPCA every year instead of SVP. That’s how I got to know Dave Hone. I got acquainted with Darren separately–we were sending each other reprints in 2001, I think, and talking sporadically about brachiosaurs. I think that Mike and Darren also met separately, and possibly if I hadn’t been around, they still would have ended up working together. But my papers with Mike–which account for seven of the nine I’ve published since my dissertation–wouldn’t have happened, or would have come out very differently. And you wouldn’t be reading this blog.

Darren & Mike with Dippy

RESET

I first met Mike Taylor at the SVP meeting in Bristol in 2009. He had done that paper on that weird vertebra with Darren a couple of years before. We got together over a few pints and discovered that we had a lot of interests in common–Star Wars, Tolkien, C.S. Lewis–but c’mon, who can’t you say that about in this geek-infested business? He’s a nice guy, and we’re friends, but we’re not what you’d call close.

I spent most of my time at that meeting catching up with Matt Bonnan. We’d been friends since the late 90s, and we’d written the paper on the probable brachiosaurid metacarpal in 2004, but we hadn’t collaborated much. Well, we were both out of grad school and into stable jobs, and we really put our heads together that meeting. Two streams of papers came out of that: first, the sauropod biomechanics papers, which merged his limb development stuff with my pneumaticity stuff, and secondly, all of our work on quantifying serial variation using geometric morphometrics.

Although the first set of papers has attracted more attention–certainly more media attention–it’s the second set that give me more satisfaction. I’ve always been interested in serial homology, I just didn’t have a novel approach. But with Matt’s help I was able to combine morphometrics and phylogenetics to produce developmental phylogenies of serially repeated structures. That by itself is pretty cool, but when you bring it into the extant realm you can put the gene expression patterns right into the analysis. The stuff we’re doing with axial development in chickens right now–man, I don’t know if I’ll ever find the time to write another paper about extinct dinosaurs, when there’s so much fun to be had with the living ones.

Matt with chicken

3. Brooks Britt, 1997

In the summer of 1997, I was on a multi-thousand-mile quest to determine whether OMNH 53062 was a new dinosaur, or just a big example of something already known. Vicki and I had been to D.C. that spring, partly as our first vacation as a married couple, and partly so that I could see the Astrodon/Pleurocoelus material at the Smithsonian. That summer, I mapped out an epic tour of museums in the West. With our friend Tyson Davis, Vicki and I went to Dinosaur National Monument, the Utah Museum of Natural History in Salt Lake, the BYU Earth Sciences Museum in Provo, and the Museum of Western Colorado in Grand Junction.

The main reason we went to Grand Junction was because at the time, the MWC had some of the BYU Brachiosaurus material from Dry Mesa Quarry on exhibit. Rich Cifelli and I weren’t sure what OMNH 53062 was yet, but we thought it looked an awful lot like Brachiosaurus. Brooks Britt was the curator there at the time, and he took us down to the basement and showed us some of the sauropod material from the Lower Cretaceous Dalton Wells Quarry. Brooks was particularly excited to show us the pneumatic features in the vertebrae. I told him about the big vertebrae from Oklahoma that I was working on, and he said, “You should get those vertebrae CT scanned, to get a look at the pneumatic spaces inside.” I smiled and nodded and thought to myself, “Dude, you are completely crazy. I am an undergrad on an independent study. No way do I have the juice to get giant dinosaur bones CT scanned.” But I didn’t forget about what he’d said. When we got back to Oklahoma, I mentioned it to Rich–and then I forgot about it.

Ridem dino

Happily for me, Rich did not forget about it. A few months later, he was at a university function with the director of OU’s University Hospital, and he mentioned the idea of CT scanning the dinosaur bones. The hospital director was all for it–the CT machines frequently had down time on Saturdays, and the hospital would trade time on the machines for publicity when we published our results. That December, I was in Rich’s office for one of our weekly meetings when he said, “Hey, are you still interested in CT scanning the vertebrae? Because if you want to, we can make it happen.” I don’t remember what I said, but I assume it was some variant of “Hell yeah!”

We took the first jacket up to the hospital in January, 1998. We got decent results. The vertebrae were so big and dense that the scans were plagued by beam-hardening artifacts, but we could see that internal structure was honeycombed by dozens or hundreds of thin-walled cavities. The problem was, we had no idea what that meant–a few physical cross-sections of sauropod vertebrae had been published over the years, most notably by Heber Longman in 1933 and Werner Janensch in 1947–but to my knowledge no CT scans of sauropod vertebrae had ever been published, and you could probably count on your fingers the number of published CT scans of fossils of any kind. Brooks had a bunch in his 1993 dissertation, but that was unpublished, and I wouldn’t get a copy for several more months. So we had no baseline.

Utah 2008 05 Kent in reading room

But we did have Kent Sanders, a radiologist at the hospital who was hot on this stuff and helped us read the films. And we had a museum full of dinosaur bones and access to a CT scanner on the weekends. So that’s how I spent most of the Saturdays in 1998–drive to the museum, fill the trunk of the car with dinosaur bones, drive up to Oklahoma City and spend the day scanning with Kent. I wasn’t supposed to do my MS thesis on pneumaticity, but when the primary project I had been working on didn’t look like it was going to pan out, I realized that I had enough CT scans of sauropod vertebrae that with a little selective hole-filling I could describe the evolution of vertebral pneumaticity in sauropods. So that became my Master’s thesis.

RESET

That conversation with Brooks Britt in the summer of 1997 was a turning point for me. Until then I’d been interested in OMNH 53062 for what it could tell us about the animal that it had once been part of. But when Brooks started telling me about the taphonomy of the Dalton Wells Quarry, I realized that the Oklahoma vertebrae were telling another story, too: the story of what had happened to that animal. So that’s the angle we played up in the paper–how did these vertebrae get separated from the rest of the critter? Mesozoic murder mystery!

Then the next summer I was out with Rich’s crew in Montana, working in the Cloverly Formation. I actually spent most of my time with Des Maxwell and his group at the Wolf Creek quarry, which was a sauropod bonebed. I did a poster on that quarry for SVP in 2000, and I wrote my MS thesis on the taphonomy of the quarry.

While all of this was going on, I was spending more and more time talking with Brooks Britt. He had done his dissertation on pneumaticity in fossil archosaurs, but he had all kinds of interesting things going on related to taphonomy, including modification of dinosaur bones by termities, and evidence of fungal hyphae in dinosaur bones. Brooks had done his Bachelor’s and Master’s work at BYU before going to Calgary for his dissertation. He encouraged me to think about going to BYU for my PhD work. The more I thought about it, the more sense it made–I freaking love Utah, and the chance to go live and work there was too good to pass up. I started out as one of Ken Stadtman’s grad students, but when Brooks got the job at BYU in 2002, he agreed to come on as my co-advisor. I’m mainly interested in what you can infer about terrestrial ecosystems from tracks left on bones, so that’s what I did my dissertation on. Most of the chapters were on sauropods, naturally, but I did have that one project looking at invertebrates, fungi, and microbes–or their traces–in faunal bone I collected from Capitol Reef National Forest in the summer of 2005. Now that was a fun project.

While I was working at BYU, Vicki got her PhD in anthropology from the University of Utah. Both of us had field sites in southern Utah, and we really fell in love with that part of the state. After we finished our degrees we moved to St. George, which is just gorgeous. Vicki coordinates the excavation and repatriation of Native American remains and artifacts from Utah federal lands, and I teach geology at Dixie State University. When I’m not digging, teaching, or hiking, I blog about sauropod taphonomy. My friends tease me because it’s such a geeky niche thing, but it makes me happy.

Matt in the field

2. Rich Cifelli, 1996

You know how sometimes you end up working on something just because it’s there? That’s how I started working on sauropods.

Immediately after I left Trish Schwagmeyer’s office, I marched down to the museum, barged into Rich’s office, threw myself in a chair, and asked him if he’d sponsor me on an independent study. He said that he’d be delighted to–what did I want to work on? Dinosaurs, I said, dinosaurs! “Well, we have these big sauropod vertebrae from southeastern Oklahoma that need to be identified.” We went and had a look. It wasn’t my dream project–I was more interested in big theropods and ceratopsians–but I said I’d take the job. There was a little paperwork to fill out. We conceived a one-semester project, to be completed in the fall of 1996, to identify the specimen, OMNH 53062, to the family level. Rich loaned me some of his sauropod papers to photocopy so that I could get up to speed on the anatomy. I spent the fall of 1996 grokking sauropod vertebral morphology and trying to figure out what this thing was.

RESET

Immediately after I left Trish Schwagmeyer’s office, I marched down to the museum, barged into Rich’s office, threw myself in a chair, and asked him if he’d sponsor me on an independent study. He said that he’d be delighted to–what did I want to work on? Dinosaurs, I said, dinosaurs–especially big theropods or ceratopsians! “Well, we have these ceratopsian odds and ends that Stovall collected back in the 30s and 40s. They’ve been catalogued all this time as Pentaceratops and Triceratops, but someone should probably check on those IDs.” Wow, my dream project–of course I pounced on it! There was a little paperwork to fill out. We conceived a one-semester project, to be completed in the fall of 1996, to identify the specimens to the genus level. Rich loaned me some of his ceratopsian papers to photocopy so that I could get up to speed on the anatomy. I spent the fall of 1996 grokking ceratopsian cranial morphology and trying to figure out what those things were.

Well, it turns out that they were Pentaceratops and Triceratops after all. So no big news, but I did learn a lot on that project: how to photograph and measure fossils, how to read scientific papers. Mostly it just got me back in the museum.

You know how sometimes you end up working on something just because it’s there? That’s how I started working on Tenontosaurus. I’ll confess, at first I didn’t have any deep, abiding love for “Tonto”. I scorned it as the world’s most boring dinosaur–no horns, spikes, frills, claws, or sails, basically just a scaly cow with a longer tail. But, man, these things were pouring out of the Antlers Formation like water out of a tap. We had adults, subadults, big juveniles, little  juveniles, even a few bones from individuals so small they must have been yearlings. I started working on them in my spare time, and got a little project going on the post-hatching ontogeny of Tenontosaurus. When I graduated with my BS in the fall of 1997, it just made sense to stick around and keep working on Tenontosaurus for my MS.

Topps - da baby eating sticker

Naturally I was presenting this stuff at SVP every fall, and that’s where I met Jack Horner. He thought my ontogenetic work on Tenontosaurus would be good preparation for tackling hadrosaur ontogeny and diversity. So I went to MSU for my PhD work. After I finished I got the job I have now, teaching geology in Missouri. Even when I was living in Montana, I’d still get into the OMNH collections for  a day or two of research whenever I was back in Oklahoma. Now that I’m just five hours away, I’m back at OMNH all the time. There’s just so much to work on–Eolambia, the small ornithopod material from the Cloverly Formation, and especially the teeth. The OMNH has hundreds of these little ornithopod teeth from the microsites in the Cedar Mountain Formation, the Cloverly Formation, and the Antlers Formation. Nobody wants to work on them, except me. While I was working on Tenontosaurus I had to come up with some size-independent characters that I could use to determine the ontogenetic age of ornithopods based on their teeth. Once I had those, all of those teeth catalogued as “Ornithopoda indet.” became a goldmine.

I certainly never saw myself becoming “the ornithopod tooth guy”–what an oddly specific thing to be an expert on! But to me they are beautiful, intricate, and endlessly fascinating. Who knows, maybe one of these days I’ll take all of my best photographs and start a Tumblr.

OLYMPUS DIGITAL CAMERA

1. Trish Schwagmeyer, 1996

Trish: “You’re blowing it. You want to do research, but no-one is going to trust you with a project if you can’t take care of the basic stuff like keeping your grades up.”

Me: [face-burning, fully convicted silence]

Trish: “You are capable of much more than this. I know that these grades are not reflective of your best work. This is your chance to prepare yourself for the career you want. You owe it to yourself to do better than this.”

Me: [sucking it up] “I understand. And I’ll do better. Other than getting my grades up, what else can I do to make myself attractive to graduate programs?”

Trish: “Find a professor that you like and do an independent study. Get some research experience.”

Yow. I will remember that for as long as I live. “You’re blowing it.” Thank God that alone out of everyone in my life, Trish Schwagmeyer had the guts to look me in the eye and call me out.

RESET

Trish: “Your grades last semester were a little rough.”

Me: “Yeah. O-chem II was murder.”

Trish: “And biochem.”

Me: “Yeah. Biochem.”

Trish: “Have you noticed that you get As and Bs in your language and history classes, and Cs in your math and science classes?”

Me: “Yeah, of course.  Math and science are hard. Language and history are…”

Trish: “Are what?”

Me: “I dunno. Fun. More like play.”

Trish: “Maybe you’re in the wrong major.”

Yow. I will remember that for as long as I live. “Maybe you’re in the wrong major.” Thank God that alone out of everyone in my life, Trish Schwagmeyer had the guts to look me in the eye and diagnose the problem.

Immediately after I left her office, I marched over to the registrar and changed my major from Zoology to Letters. And breathed a huge sigh of relief. After that, I just cruised. I got my degree, stayed at OU for a Master’s in classical languages, and now I teach Latin at a private high school in Oklahoma City. I should have known that a career in science wasn’t in the cards. The evidence was written all over my transcript. Paleontology is still interesting to me–I doubt if I will ever stop being fascinated by dinosaurs–but it just wasn’t a realistic career option. I’m so glad I found my true calling.

the herd - small.0

 

How can it be?

IMG_0517

All credit to the Yale Peabody Museum for having the courage to display this historically important object in their public gallery instead of hiding it in a basement. It’s the skull from the original mount of the Brontosaurus (= Apatosaurus) excelsus holotype YPM 1980.

Needless to say, it bears no resemblance at all to the actual skull of Apatosaurus, and the one they now have on the mount is much, much better:

IMG_0500-skull

But how did the YPM people ever arrive at this double-plus-ugly skull above? We see a similar skull in Marsh’s (1891) second attempt at restoring the skeleton of Brontosaurus:

Marsh1891-plateXVI-Apatosaurus-skull

But even this is not as ugly and Just Plain Wrong as the physical model they made. (Marsh’s first restoration of the Brontosaurus skeleton, in 1893, had a much less clear skull.)

So how did the YPM come to make such a monstrosity? What was it based on? Tune in next time for the surprising details!

Bizarrely, we’ve never really featured the  YPM 1980 mount here on SV-POW! — we’ve often shown individual bones, but the mounted skeleton appears only in the background of the much less impressive Morosaurus (= Camarasaurus) lentus mount. We’ll fix that real soon.

 

A while back, Matt mentioned some of the surprising search-terms that lead people to SV-POW!. For reasons that will shortly become clear, I was checking out what’s being searched for now, and I thought I may as well issue this update. Here are the all-time top ten:

Search Views
brachiosaurus 18,484
rabbit 18,274
leopard seal 13,103
basement 12,507
flamingo 12,363
sauroposeidon 11,821
amphicoelias fragillimus 9,841
svpow 9,708
diplodocus 7,203
sv pow 7,053

It’s nice to see good old Brachiosaurus up there at the top: a proper sauropod, and possibly my favourite (not counting the two that I’ve named myself, and which I have an obvious special affection for). But then you have to drop down to number six before you hit another sauropod (Sauroposeidon). Those top two sauropods are reasonable: we’ve written a lot about them here. The third top sauropod is Amphicoelias fragillimus, which is more surprising as we’ve not written that much about it. I guess it just reflects a lot of interest in that beast. Boring old Diplodocus is the fourth and last sauropod in the top ten. The next few are Argentinosaurus (#11), Amphicoelias (#12), Giraffatitan (#16). Apatosaurus (#18)

Unsurprisingly, SV-POW! itself crops up twice in the top ten: once as “svpow” (#8) and once as “sv pow” (#10). It’s also #15 as “sv-pow”.

Meanwhile, four of the top five slots are still held by terms that have nothing to do with sauropods. “Rabbit” can only be due to this post on sauropod neck posture; “Leopard seal” is due to the inclusion of a single sensational (but off-topic) photo in a post on Cetiosaurus nomenclature. “Basement” is another one-hit wonder, thanks to a poorly located Mamenchisaurus cast. “Flamingo” is more of a mystery. I think it must be due to the passing flamingo in the classic Necks Lie post.

Other oddities include “twinkie” at #17, “shish kebab” at #25, “corn” at #34, “corn dog” at #42 and “corn on the cob” at #77 (probably all due to the same post on sauropod neck fatness). Rather sadly, “big ass” comes in at #89. I doubt that the 602 people who came here by searching for that found what they were looking for.

Plateosaurus is pathetic

January 16, 2013

DSCN5593-giraffatitan-vs-plateosaurus

This photograph is of what I consider the closest thing to the Platonic Ideal sauropod vertebra: it’s the eighth cervical of our old friend the Giraffatitan brancai paralectotype MB.R.2181. (previously known as “Brachiosaurusbrancai HM S II — yes, it’s changed genus and specimen number, both recently, but independently.)

And if you look very carefully, down at the bottom, you can see the same vertebra, C8, of the prosauropod Plateosaurus. Pfft.

This photo was taken down in the basement of the Museum für Naturkunde Berlin, on the same 2008 trip where Matt took the “Mike in Love” photo from two days ago. For anyone who didn’t recognise the specific vertebra I was in love with in that picture, shame on you! It is of course our old friend the ?8th dorsal vertebra of the same specimen, which we’ve discussed in detail here on account of its unique spinoparapophyseal laminae, its unexpectedly missing infradiapophyseal lamina and its bizarre perforate anterior centroparapophyseal laminae.

Mike in love

January 14, 2013

DSCN5581-mike-in-love

Matt took this photo in the basement of the Museum für Naturkunde Berlin, back in 2008 when we were there as part of the field-trip associated with the Bonn sauropod conference.

Hopefully all you long-time SV-POW! readers will recognise the specific vertebra that I’m in love with.

As you’ll know from all the recent AMNH basement (and YPM gallery) photos, Matt and I spent last week in New York (with a day-trip to New Haven). The week immediately before that, I spent in Boston with Index Data, my day-job employers. Both weeks were fantastic — lots of fun and very productive. But they did mean that between the scheduled activities and getting a big manuscript finally submitted, I’ve been very much out of touch, and I’m only now catching up with what’s happened in The Rest Of The World while I’ve been sequestered in various basements photographing sauropod vertebrae.

Matt measuring the width across the preacetabular lobes of the fused ilia on the sacrum of the referred “Morosaurus” sp. specimen, AMNH 690, illustrated by Osborn (1094: fig 2A-E). Behold the wonder that is the Big Bone Room.

The two big events in the Open Access world while I was away were the launch of PeerJ and the release of the Finch Report. I’ll write about PeerJ in future, but today I want to say a few words on the Finch Report. I’ve deliberately not read anyone else’s coverage of the report yet, in the hope of forming an uninfluenced perspective. I’ll be very interested, once I’ve finished writing this, to see what people like Cameron Neylon, Stephen Curry and Peter Murray-Rust have said about it.

What is the Finch Report, you may ask? The introduction explains:

The report recommends actions which can be taken in the UK which would help to promote much greater and faster access, while recognising that research and publications are international. It envisages that several different channels for communicating research results will remain important over the next few years, but recommends a clear policy direction in the UK towards support for open access publishing.

So the first point to make is that it’s very good news about the overall direction. In fact, it would be easy to overlook this. The swing that’s happened over the last six months has been slow enough to miss, but the cumulative effect of myriad small shifts has been enormous: where there used to be a lot of skepticsm about open access, pretty much everyone is now accepting that it’s inevitable. (See this compilation of quotes from US congressmen, UK government ministers, publishers, editors and professors.) The questions now are about what form ubiquitous open access will take, not whether it’s coming. It is.

But there’s an oddity in that introduction which is a harbinger of something that’s going to be a recurring theme in the report:

[Open access publishing] means that publishers receive their revenues from authors rather than readers, and so research articles become freely accessible to everyone immediately upon publication.

People who have been following closely will recognise this as the definition of Gold Open Access — the scheme where the author (or her institution) pays a one-time publication fee in exchange for the publisher making the result open to the world. The other road, known as Green OA, is where an author publishes in a subscription journal but deposits a copy of the paper in a repository, where it becomes freely available after an embargo period, typically six to twelve months. That Green OA is not mentioned at this point is arguably fair enough; but that OA is tacitly equated with Gold only feels much more significant. It’s as though Green is being written out of history.

More on this point later.

Green and Gold Chrysogonum virginianum Flower 3008 by Derek Ramsey, from Wikimedia Commons.

The actual report is 140 pages long, and I don’t expect it to be widely read. But The executive summary is published as a separate document, and at 11 pages is much more digestible. And its heart is in the right place, as this key quote from p4 tells us:

The principle that the results of research that has been publicly funded should be freely accessible in the public domain is a compelling one, and fundamentally unanswerable.

Amen. Of course, that is the bedrock. But more practically, on page 3, we read:

Our aim has been to identify key goals and guiding principles in a period of transition towards wider access. We have sought ways both to accelerate that transition and also to sustain what is valuable in a complex ecology with many different agents and stakeholders.

I do want to acknowledge that this is a hard task indeed. It’s easy to pontificate on how things ought to be (I do it all the time on this blog); but it’s much harder to figure out how to get there from here. I’m impressed that the Finch group set out to answer this much harder question.

But I am not quite so impressed at their success in doing so. And here’s why. In the foreword (on page 2) we read this:

This report … is the product of a year’s work by a committed and knowledgeable group of individuals drawn from academia, research funders and publishing. … Members of the group represented different constituencies who have legitimately different interests and different priorities, in relation to the publication of research and its subsequent use.

My most fundamental issue with the report, and with the group that released it, is this. I don’t understand why barrier-based publishers were included in the process. The report contains much language about co-operation and shared goals, but the truth as we all know is that publishers’ interests are directly opposed to those of authors, and indeed of everyone else. Who does the Finch Group represent? I assumed the UK Government, and therefore the citizens of the UK — but if it’s trying to represent all the groups involved in academic activity, there’s a conflict of interests that by its nature must prevent everyone else from clearly stating what they want from publishers.

This isn’t an idle speculation:  the report itself contains various places where is suddenly says something odd, something that doesn’t quite fit, or is in conflict with the general message. It’s hard not to imagine these as having been forced into the report by the publishers at the table (according to the membership list, Bob Campbell, senior publisher at Wiley Blackwell; Steve Hall, managing director of IoP Publishing; and Wim van del Stelt, executive VP of corporate strategy at Springer). And I just don’t understand why the publishers were given a seat at the table.

And so we find statements like this, from p5:

The pace of the transition to open access has not been as rapid as many had hoped, for a number of reasons. First, there are tensions between the interests of key stakeholders in the research communications system. Publishers, whether commercial or not-for-profit, wish to sustain high-quality services, and the revenues that enable them to do so.

This is very tactfully put, if I might say so. Distilled to its essence, the is saying that while the UK government, universities, libraries, hospitals and citizens want open access, publishers want to keep the walls that give them their big profits. The bit about “high-quality services” is just a fig-leaf, and a rather transparent one at that. Reading on, still in p5:

There are potential risks to each of the key groups of players in the transition to open access: rising costs or shrinking revenues, and inability to sustain high-quality services to authors and readers.

Those all sounds like risks to the same group: publishers. And again, there is no reason I can see why these need be our problem. We know that publishing will survive in a form that’s useful to academia — the success of BioMed Central and PLoS, and the birth of ventures like eLife and PeerJ show us that — so why would it be the any part of our responsibility to make sure that the old, slow, expensive, barrier-based publishers continue to thrive?

Reading on:

Most important, there are risks to the intricate ecology of research and communication, and the support that is provided to researchers, enabling them to perform to best standards, under established publishing regimes.

I don’t understand this at all. What support? Something that publishers provide? I just don’t get what point is being made here, and can only assume that this “intricate ecology” section is one of the passages that the publishers had inserted. I wonder whether it’s a subtle attempted land-grab, trying to take the credit for peer-review? At any rate, it’s wildly unconvincing.

And so we come to the actual recommendations of the report. There are ten of these altogether, on pages 6-7, and they begin as follows:

We therefore recommend that:

i. a clear policy direction should be set towards support for publication in open access or hybrid journals, funded by APCs, as the main vehicle for the publication of research, especially when it is publicly funded;

So there it is: The Finch Report says that Gold Open Access is the way forward.

And despite my carping about publishers’ involvement in the process, and their dilution of the output, I’m pretty happy with that recommendation. Of course, there are a hundred questions about who will pay for OA (though they will be considerably less pressing in a world where $99 buy you all the publishing you can eat at PeerJ). Lots of details to be ironed out. But the bottom line is that paying at publication time is a sensible approach. It gives us what we want (freedom to use research), and provides publishers with a realistic revenue stream that, unlike subscriptions, is subject to market forces. (I will enlarge on this point in a subsequent post.)

To briefly summarise the ten recommendations:

i. Overall policy should be to move to Gold OA.
ii. Funders should provide money for Gold OA charges.
iii. Re-use rights, especially non-commercial, should be provided.
iv. Funding of subscriptions should continue during transition.
v. Walk-in access should be “pursued with vigour”
vi. We must work together to negotiate and fund licences.
vii. Subscription price negotiations should take into account the forthcoming transition to OA.
viii. Experimentation is needed on OA monographs.
ix. Repositories should be developed in “a valuable role complementary to formal publishing”.
x. Funders should be careful about mandating short embargo limits.

Mostly good stuff. I’m not happy about the emphasis on non-commercial forms of re-use in (iii), and of course walk-in access (v) is spectacularly dumb. (vi) seems a bit vacuous, but harmless I suppose — I’m not sure what point it’s trying to make.  (ix) is quietly sinister in its drive-by relegation of repositories to a subsidiary role, and of course (x) is pure publisher-food. Still, even with these caveats, the overall thrust is good.

Well, this has already gone on much longer than I intended, so I will leave further analysis for next time. For now, I am inclined to award the Finch Report a solid B+. I’ll be interested to see how that assessment stands up when I’ve read some other people’s analysis.

Sometimes you just can’t make this stuff up.

You may recall a story from the Onion Our Dumb Century book, allegedly from 1904, about the skeleton of Satan being discovered in Wyoming. Mike used his occult powers to put together this scan from freely available online sources:

If you scrutinize the above image carefully, you’ll see that ‘Satan’ is an Allosaurus (I’m no theropod booster, but I always thought that was a little harsh on T. rex).

Why am I telling you this? Because last week Mike and I were toiling in the big bone room in the basement of the AMNH when we came across AMNH 666.

It’s an ilium. (Of course it would have to be an appendicular element. Vertebrae are from on high [or dorsal, if you prefer].)

Of Allosaurus!

The stomach-churning color here could be a manifestation of diabolical power, or just what happens when you try to photograph a pink specimen label on a yellow-orange forklift.

After this harrowing encounter, we cleansed our bodies, minds, and souls with street-vendor hot dogs and The Avengers.* That particular mode of exorcism may not be the most effective–I felt distinctly dodgy that evening. But the next day we received illumination at the Altar of Sauropod Awesomeness and were soon back to what we jokingly refer to as normal.

* The best way to see The Avengers is by going up to the observation deck of the Empire State Building shortly beforehand, so big swathes of the Manhattan skyline will still be in your mental RAM during the big final battle. I understand it’s not an option for everyone.

I only became aware of the term Academic Spring the other day but I instantly loved it. The OA wars have heated up significantly in the past few weeks, and Academic Spring crystallizes a lot of what is going on.

Although we always welcome new readers, and no-one who cares about science can afford to be ignorant about access to scholarly publications, we do sometimes feel that at SV-POW! we are mostly preaching to the converted. But access is not just a problem for scientists and academics, it’s a problem for everyone, including physicians, patient groups, engineers, small business owners, students, and, frankly, anydamnbody who wants to inspect the fruits of the research their taxes paid for. So it’s important to get the message out, broadly, to the most people possible, in as many venues as possible, until Joe and Jane Citizen get mad enough about the situation to demand better behavior by their elected representatives and better service from the corporations that allegedly have their interests at heart.

To that end, Mike has a new piece up at The Independent today. Because he couldn’t assume that his readers would be familiar with the OA wars or Academic Spring, he had to lay out the whole case in a limited number of words. I think he did a bang-up job. Because the piece is so self-contained (although it has some choice links that are worth following up), it serves as a front-line report for those of us familiar with the OA wars, and a solid overview for everyone else. Go check it out.

Finally, since you haven’t gotten a lot of sauropod action lately, here are some small Giraffatitan humeri in the basement of the  Museum für Naturkunde with Vanessa Graff for scale. You can tell these are small ones because they’re Vanessa-sized or smaller; the big ones are taller than I am…and they’re still from subadults. Must blog sometime about the awesomeness of the basement full o’ sauropods at the MfN, but not today. Excelsior!

If you’re a scientist, then one of the things you need to do is prepare high-quality images for your papers.  And, especially if you’re a palaeontologist, or in some other science that involves specimens, that’s often going to mean manipulating photographs.  So image editing has become one of those “grey skills”, like word processing and phylogenetic analysis, that you need to have a little of, even if you’re not specialising in that direction.

Here at SV-POW!, none of us is anything remotely approaching wizardly when it comes to image-editing.  But we’ve done enough of it that we have a few tips to pass on, so this is the first in an occasional series that will offer some random but relevant hints.  (Matt and I both use GIMP, a free image-editing program, but I’m sure PhotoShop has the all the same facilities and more.)

Today: thirty-second colour-balancing.  It’s a technique that comes in handy every now and then, especially if you take a lot of specimen photographs in poorly lit basements that make everything look greenish.  It came up because in the previous post Matt included this photo of a partially dissected turkey neck:

All the orange made my eyeballs hurt.

So you can spend hours on colour-balancing a photo carefully, and that can be appropriate if you’re preparing a figure for publication.  But to fix a photo like this one in thirty seconds, here’s what I do.

Load the image.

Bring up the Layers window and use it to duplicate the layer:

With the top layer selected, choose Colours -> Auto -> Equalize. (There is also a Colours -> Auto -> White Balance option, but I never find that it gives good results.)

Equalize will make the top layer look truly horrible:

Now go back to the Layers window, and play with the top layer’s opacity, so that you get a blend of the original and equalised images:

In this case, I found that 50% opacity looked about the best:

(While it’s still no oil-painting, it’s much better than the all-orange-all-the-time original.)

With the top layer still selected, choose Layers -> Merge Down to make the layers into one, and save the result.

It really does take about thirty seconds total, including the time to start up and shut down the image editor.  (Yes, GIMP starts up more quickly than PhotoShop!)

Update (11 April 2012)

If you’re wondering why this is “part 0″, it’s because it was originally posted as a stand-alone article, and we only realised much later that it fits into the tutorial sequence — in particular, the planned multi-part tutorial on preparing illustrations.

 

Follow

Get every new post delivered to your Inbox.

Join 381 other followers