This abomination — a proposal for a “UK National Licence” for open-access papers, making the available only in the UK, is not an April Fool joke. It’s a serious proposal, put forward by HEPI, the Higher Education Policy Institute, which styles itself “the UK’s only independent think tank devoted to higher education” (though I note without comment that they routinely partner with Elsevier).

It’s desperately disappointing that British academics should propose something as small-minded and xenophobic as this, which I can only refer to as the UKIP Licence.  Let’s start counting some of the ways this is a terrible, terrible idea.

1. It’s not open access by any existing definition of the term. For example, the Budapest Open Access Initiative, which first coined the term, describes OA as “free availability on the public internet” (i.e. not a subnet), “permitting any users” (i.e. not just British users) “without financial, legal, or technical barriers” (i.e. no filtering on IP addresses).

2. It positions the UK as the one country in the world willing to poison the open-access well, prepared to destroy value for 199 countries in the hope of increasing it for one. This makes it a classic prisoner’s-dilemma “defect” strategy — an approach which has been shown by multi-algorithm tournaments to reliably downgrade the defector’s outcome.

3. British people gain more when 200 countries are working on advances in health, education, etc., than when only one is. This tiny-minded licence, if adopted, would hobble British innovation, health and education, as well as that of the rest of the world.

4. Most important, it’s mean. We have to be better than this. Publishing research about diseases that kill millions in third-world countries, then preventing scientists in those countries from reading that research is not just stupid, it’s despicable. It’s hard to imagine behaviour more unrepresentative of the values that we like to imagine the UK embodies.

Oh, and 5. it won’t work, of course. Barring access by IP address is a notoriously flawed approach, which hides content from Brits abroad while allowing access to anyone anywhere who knows how to use a Web proxy.

Putting it all together, this is about the most misguided proposal imaginable. I would like to see its authors, both of them senior at UCL, withdraw it with all possible haste, and with an appropriate apology.

[I would have left this comment on HEPI’s blog-post announcing their proposal,  but comments are turned off — perhaps not surprisingly. I did leave a version of it on the Times Higher Education article about this.]

 

Update the next day: see also David Kernohan’s post A local licence for Henbury.

Update 9th April: this post, lightly modified, is published as a letter in today’s Times Higher Education. More importantly, you should all go and read Stephen Curry’s much more dispassionate, but equally critical, analysis of the National Licence proposal.

The Carnegie Quarry, at Dinosaur National Monument, near Jensen, Utah, is arguably the most impressive dinosaur-fossil exhibit anywhere in the world — a covered, semi-excavated quarry that’s absolutely packed with big dinosaur fossils.

It’s also notoriously difficult to photograph: too big to fit into a single photo, and with poor contrast between the bones and matrix. This is the best picture I’ve found of part of it (from here) …

PublicDomain-DouglassQuarry-DinosaurNationalMonument-NPSPhoto

… although this one (from here) conveys the scale better:

field_work_at_dinosaur_national_monument

It’s one of the great sadnesses of my life that I’ve yet to visit DNM.

The quarry is historically important: discovered by Earl Douglass in 1909, it yielded among other specimens CM 3018, the holotype of Apatosaurus louisae and the principle subject of Gilmore’s (1936) monograph.

I’ve only recently become aware (thanks, Matt!) of Ken Carpenter’s (2013) detailed treatment of the history, sedimentology and taphonomy of the quarry — an important work that deserves to be widely read. Pages 10-14 are largely taken up with parts A-E of figure 10 — a big multi-page map of the quarry, showing the location of its most important specimens. Unfortunately, the five sections of this figure are all at slightly different scales in the PDF. I’ve rescaled them and pasted them together into a single big (4387 × 1210) image which I reproduce here:

Carpenter (2013:fig 10): map of the Carnegie quarry, composited from parts A-E.

Carpenter (2013:fig 10): map of the Carnegie quarry, composited from parts A-E.

Enjoy!

Update (six hours later)

I just heard from Ken Carpenter, who created the illustration. He has kindly sent me the full-resolution version — which is four times as big as the one I extracted from the PDF — and gave me permission to post it here on SV-POW! under the CC By licence. So here it is!

DNM Quarry map

Thanks, Ken!

Second update (12 March 2015)

Over on the Extinct Monsters blog, Ben Miller has published The Carnegie Quarry Diaspora. It’s a beautiful illustrated survey of some of the most important specimens to have come out of this quarry, including no fewer than seven important sauropod individuals.

References

I just got off a chat with Matt. Here is the whole thing, all but unedited, for your enjoyment. All you need to know is that my wife, Fiona, built a symphony, which Matt refers to as a boxomophone in tribute to Homer Simpson refering to Lisa’s instrument as a saxomophone.


Mathew: Hey, how is Fiona’s boxomophone working out?
me: O HAI.
As it happens, her boxomophone was in use as you wrote that. Rehearsal for the medieval group’s Christmas set.
BTW., we should start referring to extant crurotarsans as crocomodiles.
Mathew: LLOL
me: And I suppose their sister taxon would be the allimogator.
Mathew: And of course the sister lineage to Cruromotarsi is Ornithomodira.
me: Nice.
Mathew: Laughing so hard over here. Allimogator FTW!
me: I believe we have hit on a foolproof humour template. We need to start using it routinely, without comment, on SV-POW.
Macromonaria. Diplomodocidae.
Mathew: Yes, definitely. Sauromopods.
Dinomosaurs.
me: Amazing, we have yet to find a taxon name it doesn’t work for.
Neomosauropods.
Or is it neomosauromopods?
Mathew: Tyrannomosaurus.
me: Ah, but I think Triceratops is immune.
Mathew: I dunno, Triceramotops, maybe?
me: It doesn’t really fly, though.
Mathew: Opisthomocoelicaudia.
me: Nice one
me: Although I believe Opisthocoelimocaudia is better.
Mathew: Yes, you’re right.
It turns out to be more more about the placement of the ‘mo’ than whether it joins an existing ‘o’. Hence Opisthocoelimocaudia trumps Opisthomocoelicaudia.
me: I double-donkey dare you to give your next SCPCA talk, straight-faced, doing this for all taxon names.
Mathew: Sooo tempting.
me: I don’t believe you’d get close to finishing without laughing.
Mathew: Dude, I don’t think I’d get close to starting without laughing. I’d be down on the floor after the first couple of sentences, having a coromonary.
me: Or a pulmonary embomolism.
AutoLLOL
Mathew: Oh, that is perfect.
me: Horrible thought: perhaps the pervasive use of “Anatatotitan” throughout When Dinosaurs Roamed America was the result of as similar bet, rather than a simple screw-up?
Mathew: Funny. Maybe. Anatomotitan would be killer.
me: I really should not be laughing this much as something so dumb.
Mathew: I feel like we should just walk away from this chat while it’s still standing tall. Let it live in our memories as the perfect jewel that it has been.
me: Yes!
Mathew: Okay, I’m out.
me: It will never be surpassed.
Mathew: Catch you in the future.
me: Seriously, let’s drop it right now, and I’ll SV-POW! it as it stands.
Mathew: Rock on.
me: Consider it done.


 

I only hope we’re not the only ones who find this funny.

 

Crocodiles vs. elephants

November 18, 2014

I’ve been reading The Guinness Book of Animal Facts and Feats (Wood 1982) again. Here’s what he says on pages 98-99 about the strength of crocodiles, and what happens when they bite off more than they can chew.

The strength of the crocodile is quite appalling. Deraniyalga (1939) mentions a crocodile in N. Australia which seized and dragged into the river a magnificent 1 tonne Suffolk stallion which had recently been imported from England, despite the fact that this breed of horse can exert a pull of more than 2 tonnes, and there is at least one record of a full-grown black rhinoceros losing a tug-of-war with a big crocodile. Sometimes, however, even crocodiles over-estimate their strength. One day in the 1860s a hunted named Lesley was a witness when a saurian seized the hind-leg of a large bull African elephant while it was bathing in a river in Natal. The crocodile was promptly dragged up the bank by the enraged tusker and then squashed flat by one of its companions who had hurried to the rescue. The victorious elephant then picked up the bloody carcase with its trunk and lodged it in the fork of a nearby tree (Stokes, 1953). Oswell (1894) says he twice found the skeletons of crocodiles 15 ft 4.6 m up in trees by the river’s bank where they had been thrown by angry elephants. On another occasion a surprised crocodile suddenly found itself dangling 15 ft 4.6 m in mid-air when it foolishly seized a drinking giraffe by the head.

The idea of elephants lodging crocodile corpses up in trees seems too bizarre to be true, but seeing it independently attested by two witnesses makes me more ready to accept it. There’s plenty of Internet chatter about this happening, but I’ve not been able to find photos — or better yet, video — proving that it happens.

References

  • Deraniyalga, P. 1939. The tetrapod reptiles of Ceylon, vol. 1: Testudinates and crocodilians. Colombo Nat. Mus., Ceylon.
  • Oswell, W. Cotton. 1894. South Africa fifty years ago. Badminton Library of Sports and Pastimes (Big Game Shooting), London.
  • Stokes, C. W. 1953. Sanctuary. Cape Town.
  • Wood, Gerald L. 1982. The Guinness Book of Animals Facts & Feats (3rd edition). Guinness Superlatives Ltd., Enfield, Middlesex. 252 pp.

Last night, I submitted a paper for publication — for the first time since April 2013. I’d almost forgotten what it felt like. But, because we’re living in the Shiny Digital Future, you don’t have to wait till it’s been through review and formal publication to read it. I submitted to PeerJ, and at the same time, made it available as a preprint (Taylor 2014).

It’s called “Quantifying the effect of intervertebral cartilage on neutral posture in the necks of sauropod dinosaurs”, and frankly the results are weird. Here’s a taste:

Taylor (2014:figure 3). Effect of adding cartilage to the neutral pose of the neck of Apatosaurus louisae CM 3018. Images of vertebra from Gilmore (1936:plate XXIV). At the bottom, the vertebrae are composed in a horizontal posture. Superimposed, the same vertebrae are shown inclined by the additional extension angles indicated in Table 1. If the slightly sub-horizontal osteological neutral pose of Stevens and Parrish (1999) is correct, then the cartilaginous neutral pose would be correspondingly slightly lower than depicted here, but still much closer to the elevated posture than to horizontal. (Note that the posture shown here would not have been the habitual posture in life: see discussion.)

Taylor (2014:figure 3). Effect of adding cartilage to the neutral pose of the neck of Apatosaurus louisae CM 3018. Images of vertebra from Gilmore (1936:plate XXIV). At the bottom, the vertebrae are composed in a horizontal posture. Superimposed, the same vertebrae are shown inclined by the additional extension angles indicated in Table 1. If the slightly sub-horizontal osteological neutral pose of Stevens and Parrish (1999) is correct, then the cartilaginous neutral pose would be correspondingly slightly lower than depicted here, but still much closer to the elevated posture than to horizontal. (Note that the posture shown here would not have been the habitual posture in life: see discussion.)

A year back, as I was composing a blog-post about our neck-cartilage paper in PLOS ONE (Taylor and Wedel 2013c), I found myself writing down the rather trivial formula for the additional angle of extension at an intervertebral joint once the cartilage is taken into account. In that post, I finished with the promise “I guess that will have to go in a followup now”. Amazingly it’s taken me a year to get that one-pager written and submitted. (Although in the usual way of things, the manuscript ended up being 13 pages long.)

To summarise the main point of the paper: when you insert cartilage of thickness t between two vertebrae whose zygapophyses articulate at height h above the centra, the more anterior vertebra is forced upwards by t/h radians. Our best guess for how much cartilage is between the adjacent vertebrae in an Apatosaurus neck is about 10% of centrum length: the image above shows the effect of inserting that much cartilage at each joint.

And yes, it’s weird. But it’s where the data leads me, so I think it would be dishonest not to publish it.

I’ll be interested to see what the reviewers make of this. You are all of course welcome to leave comments on the preprint itself; but because this is going through conventional peer-review straight away (unlike our Barosaurus preprint), there’s no need to offer the kind of detailed and comprehensive comment that several people did with the previous one. Of course feel free if you wish, but I’m not depending on it.

References

Gilmore Charles W. 1936. Osteology of Apatosaurus, with special reference to specimens in the Carnegie Museum. Memoirs of the Carnegie Museum 11:175–300 and plates XXI–XXXIV.

Stevens, Kent A., and J. Michael Parrish. 1999. Neck posture and feeding habits of two Jurassic sauropod dinosaurs. Science 284(5415):798–800. doi:10.1126/science.284.5415.798

Taylor, Michael P. 2014. Quantifying the effect of intervertebral cartilage on neutral posture in the necks of sauropod dinosaurs. PeerJ PrePrints 2:e588v1 doi:10.7287/peerj.preprints.588v1

Taylor, Michael P., and Mathew J. Wedel. 2013c. The effect of intervertebral cartilage on neutral posture and range of motion in the necks of sauropod dinosaurs. PLOS ONE 8(10):e78214. 17 pages. doi:10.1371/journal.pone.0078214

Actually we had the Jurassic talks today, but I can’t show you any of the slides*, so instead you’re getting some brief, sauropod-centric highlighs from the museum.

* I had originally written that the technical content of the talks is embargoed, but that’s not true–as ReBecca Hunt-Foster pointed out in a comment, the conference guidebook with all of the abstracts is freely available online here.

IMG_5136

Like this Camarasaurus that greets visitors at the entrance.

IMG_5143

And this Apatosaurus ilium ischium with bite marks on the distal end, indicating that a big Morrison theropod literally ate the butt of this dead apatosaur. Gnaw, dude, just gnaw.

IMG_5147

And the shrine to Elmer S. Riggs.

IMG_5191

One of Elmer’s field assistants apparently napping next to the humerus of the Brachiosaurus alithorax holotype. This may be the earliest photographic evidence of someone “pulling a Jensen“.

Cary and Matt with Brachiosaurus forelimb

Here’s the reconstructed forelimb of B. altithorax, with Cary Woodruff and me for scale. The humerus and coracoid (and maybe the sternal?) are cast from the B.a. holotype, the rest of the bits are either sculpted or filled in from Giraffatitan. The scap is very obviously Giraffatitan.

Matt with MWC Apatosaurus femur

Cary took this photo of me playing with a fiberglass 100% original bone Apatosaurus femur upstairs in the museum office, and he totally passed up the opportunity to push me down the stairs afterward. I kid, I kid–actually Cary and I get along just fine. It’s no secret that we disagree about some things, but we do so respectfully. Each of us expects to be vindicated by better data in the future, but there’s no reason we can’t hang out and jaw about sauropods in the meantime.

Finally, in the museum gift shop (which is quite lovely), I found this:

Dammit Nova

You had one job, Nova. ONE JOB!

So, this is a grossly inadequate post that barely scratches the surface of the flarkjillion or so cool exhibits at the museum. I only got about halfway through the sauropods, fer cryin’ out loud. If you ever get a chance to come, do it–you won’t be disappointed.

When Fiona checked her email this morning, she found this note from our next-door neighbour Jenny:

Hi
I seem to remember Mike wanting a mole – I do hope so because I’ve left you a body on your patio in a cereal box!

Cheers Jen x

What a delightful surprise! And here it is:

The SV-POW! mole, intact

The SV-POW! mole, intact

And a close-up of that awesome digging hand:

The SV-POW! mole, right manus

The SV-POW! mole, right manus

I don’t have time to deal with it properly right now, so it’s gone into a plastic box with some small holes in the lid, where I will trust invertebrates to do my work for me — as they did to great effect with the juvenile baby rabbit whose skeleton I must show you some time.

The end-game here is of course to obtain a complete skeleton; but if not that, then at least the upper-arm bones. I’m on record as saying that next to sauropod vertebrae, mole humeri are the bones that move me most; and elsewhere I nominated mole humeri in response to John Hutchinson’s question, “what are the strangest animal bones (in form & function etc) that have ever been discovered?”

Here’s why:

Left: rat humerus (for comparison), Right: mole humerus. The rat humerus is unfused on top, which is why there is a visible gap between the two parts.

Left: rat humerus (for comparison), Right: mole humerus. The rat humerus is unfused on top, which is why there is a visible gap between the two parts.

I stole this picture from an Ossamenta post, The strangest animal bone?. Get yourself over there for more wacky rat-vs.-mole comparisons!

Follow

Get every new post delivered to your Inbox.

Join 492 other followers