Aquilops tattoo

My 40th birthday present from Vicki. I commissioned the art from Brian Engh. I bow to no one in my love for his original Aquilops head reconstruction:

Life restoration of Aquilops by Brian Engh. Farke et al. (2014: fig. 6C). CC-BY.

Life restoration of Aquilops by Brian Engh. Farke et al. (2014: fig. 6C). CC-BY.

BUT it’s waaay too detailed for a tattoo unless I wanted a full back piece. I sent Brian this sketch to convey what I wanted – to emphasize the strong lines of the piece, punch up the spines and spikes, basically shift it toward a comic book style without devolving into caricature:

Aquilops tattoo - Matt sketch raw

Originally I was going to have Aquilops‘ name and year of discovery in the tat. I decided to drop the lettering, for several reasons. One, it won’t hold up as well over the next few decades. Two, if someone is close enough to read it, we’ll probably be talking about the tattoo already. Third, the tattoo is a better conversation starter without a caption. First I get to tell people what Aquilops is, then I get to explain what ‘fourth author‘ means. ;-)

As he did for the original Aquilops head recon, Brian sent a selection of possible color schemes, mostly based on those of extant lizards. I couldn’t decide which I liked best, so I talked it over with my tattoo artist, Tanin McCoe at Birch Avenue Tattoo in Flagstaff, Arizona. I wasn’t just interested in what looks good on paper, but what would work well with my skin tone and still look good 20 years from now. Tanin really liked the earth-tone color scheme with the dark stripe across the eye, so that’s how we went. The tattoo Aquilops is facing left instead of right because it’s on my left shoulder – my right deltoid was already occupied.

They do good work at Birch Avenue – Vicki’s gotten three pieces there, including this skeleton key that was also done by Tanin:

Vicki skeleton key tattoo - 1200

Yes, the key’s bit is a human sphenoid – that was my idea.

Anyway, I’m super-happy with the tattoo, and I’m glad it’s healed enough to show off. Thanks, Brian and Tanin!

fat-necked-apatosaurs-make-the-world-go-round

The first hypothesis is that, contra Elk (1972), all Brontosauruses were rather fat at one end, then much fatter in the middle, then thin at the other end.

The second theory is that Diplodocus was dumb. Evidence is here presented in the form of an important new life restoration by Matthew Taylor.

derpolodocus

References

  • Elk, Anne. 1972. Anne Elk’s Theory on Brontosauruses. Reprinted in: Chapman, G., Cleese, J., Gilliam, T., Idle, E., Jones, T. and Palin, M. (eds). Just the Words, Volume 2. Methuen, London, 118-120.

Look on my works, ye mighty, and despair!

DSCN0476

[Giraffatitan brancai paralectotype MB.R.2181 (formerly HMN S II), mounted skeleton in left anteroventrolateral view. Presacral vertebrae sculpted, skull scaled and 3d-printed from specimen T1. Round the decay of that colossal wreck, boundless and bare, the lone and level sands stretch far away.]

In 2012, Matt and I spent a week in New York, mostly working at the AMNH on Apatosaurusminimus and a few other specimens that caught our eye. But we were able to spend a day at the Yale Peabody Museum up in New Haven, Connecticut, to check out the caudal pneumaticity in the mounted Apatosaurus (= “Brontosaurus“) excelsus, YPM 1980, and the bizarrely broad cervicals of the Barosaurus lentus holotype YPM 429.

While we there, it would have been churlish not to pay some attention to the glorious and justly famous Age of Reptiles mural, painted by Rudolph F. Zallinger from 1944-1947.

So here it is, with the Brontosaurus neck for scale:

IMG_0501-zallinger-mural

Click through for high resolution (3552 × 2664).

And here is a close-up of the most important, charismatic, part of the mural:

IMG_0500-zallinger-mural

Again, click through for high resolution (3552 × 2664).

That’s your lot for now. We’ve long promised a proper photo post of the Brontosaurus mount itself, and I’ll try to get that done soon. For now, it’s just scenery.

Kaatedocus by Brian Engh

Kaatedocus is heading to the sidebar to help the cause.

We have a new page on the sidebar – here – where we’re collecting as many museum abbreviations as possible, the idea being that you can copy and paste them into your papers to rapidly populate the ‘Museum Abbreviations’ section. I grabbed about 100 from my own previous papers and a handful of others, so currently the list is highly skewed toward museums with (1) sauropods (2) that I’ve had reason to yap about. I’ve probably missed tons of museums that are important for people working on hadrosaurs or stegosaurs or (shudder) mammals. From here on out the list will grow as people suggest additions and edits in the comments on that page. So please get on over there and contribute!

Completely unrelated eyeball-bait art courtesy of Brian Engh, who writes,

I don’t even remember drawing this, I just found it lying around and spruced it up a bit today. It’s supposed to be some kinda diplodocid, maybe Kaatedocus, but I think the main goal of the drawing was to draw one with a sense of weight that felt right given that their center of mass is supposed to be so far back. I like the idea of them getting startled and popping up every now and again… [see also–MJW]

Go to Google and do a picture search for “natural history museum”. Here are the results I get. (I’m searching the UK, where that term refers to the British museum of that name — results in the USA may very.)

google-search-for-nhm

In the top 24 images, I see that half of them are of the building itself — rightly so, as it’s a beautiful and impressive piece of architecture that would be well worth visiting even if it was empty. Of the rest, ten are of specimens inside the museum: and every single one of them is of the Diplodocus in the main hall. (The other two photos are from the French natural history museum, so don’t really belong in this set. Not coincidentally, they are both primarily photos of the French cast of the same Diplodocus.)

The NHM’s Diplodocus — I can’t bring myself to call it “Dippy” is the icon of the museum. It’s what kids go to see. It’s what the museum used as the basis of the logo for the 2005 SVPCA meeting that was held there. It’s essentially the museum mascot — the thing that everyone thinks of when they think of the NHM.

And rightly so: it’s not just a beautiful specimen, it’s not just sensational for the kids. As the first cast ever made of the Carnegie specimen CM 84, it’s a historically important object in its own right. It was the first mounted Diplodocus ever, being presented in 1905 before the the original material was even on display in Pittsburgh.

diplodocus_nocopyright

As a matter of fact, this cast was the very first mounted sauropod to be publicly displayed: that honour is usually given to the AMNH Apatosaurus, but as museum-history expert Ilja Nieuwland points out:

The London ‘Dippy’ was in fact the first sauropod on public display, if only for three days in early July of 1904, in the Pittsburgh Exposition Society Hall.

There you have the Natural History Museum Diplodocus: the symbol of the museum, an icon of evolution, a historical monument, a specimen of great scientific value and unparalleled symbolism.

So naturally the museum management want to tear it down. They want to convert the Diplodocus hall into a blue whale hall. Because the museum doesn’t already have a blue whale hall.

Or, no — wait — it does already have a blue whale hall. That’s it. That’s what I meant to say. And very impressive it is, too.

16222408

I don’t mind admitting that the whale hall is my second favourite room in the museum. Whenever I go there as a tourist (rather than as a scientist, when I spend all my time in the basement), I make sure I see it. It’s great.

The thing is, it’s already there. A museum with a whale hall does not need another whale hall.

Obviously anticipating the inevitable outcry, the museum got all its ducks in a row on this. They released some admittedly beautiful concept artwork, and arranged to have opinion pieces written in support of the change — some by people who I would have expected to know better.

One of the more breathtaking parts of this planned substitution is the idea that Diplodocus is no longer relevant. The NHM’s director, Sir Michael Dixon says the change is “about asking real questions of contemporary relevance”. He says “going forward we want to tell more of these stories about the societally relevant research that we do”. This “relevance” rhetoric is everywhere. The museum “must move with the times to stay relevant”, writes Henry Nicholls in the Guardian.

There was a time when Diplodocus was relevant, you know: waaay back in the 1970s. But time has moved on, and now that’s 150,000,035 years old, it’s become outdated.

Conversely, the rationale for the whale seems to be that they want to use it as a warning about extinction. But could there ever be a more powerful icon of extinction than a dinosaur?

The thing is, the right solution is so obvious. Here’s what they want to do:

2528769B00000578-2930638-image-a-19_1422525497076

Clearly the solution is, yes, hang the whale from the ceiling — but don’t remove the Diplodocus. Because, seriously, what could be a better warning about extinction than the juxtaposition of a glorious animal that we lost with one that we could be about to lose?

All this argument about which is better, a Diplodocus or a blue whale: what a waste of energy. Why should we have to choose? Let’s have both.

I’ve even had an artist’s impression made, at great expense, to show how the combination exhibit would look. Check it out.

2528769B00000578-2930638-image-a-19_1422525497076-art

(If anyone would like to attempt an even better rendering, please by my guest. Let me know, and I’ll add artwork to this page.)

So that’s my solution. Keep the museum’s iconic, defining centrepiece — and add some more awesome instead of exchanging it. Everyone wins.

There’s a new mamenchisaurid in town! It’s called Qijianglong (“dragon of Qijiang”), and it’s the work of Xing et al. (2015).

Life restoration of Qijianglong, apparently by lead author Xing Lidar.

Life restoration of Qijianglong, by Cheung Chungtat.

As far as I can make out, the life restoration is also due to Xing Lida: at least, every instance of the picture I’ve seen says “Credit: Xing Lida”. If that’s right, it’s an amazing display of dual expertise to produce both the science and the art! We could quibble with details, but it’s a hundred times better than I could ever do. [Update: no, it’s by Cheung Chungtat, but being uniformly mis-attributed in the media. Thanks to Kevin for the correction in the comment below.]

There’s a mounted skeleton of this new beast in the museum local to where it was found, though I don’t know how much of the material is real, or cast from the real material. Here it is:

A reconstructed skeleton of Qijianglong now on display in Qijiang Museum

A reconstructed skeleton of Qijianglong now on display in Qijiang Museum

A new sauropod is always great news, of course, and it’s a source of shame to us that we cover so few of them here on SV-POW!. (Just think of some of the ones we’ve missed recently … Leikupal, for example.)

But as is so often the case, the most interesting thing about this new member of the club is its vertebrae — specifically the cervicals. Here they are:

FIGURE 11. Anterior cervical series of Qijianglong guokr (QJGPM 1001) in left lateral views unless otherwise noted. A, axis; B, cervical vertebra 3; C, cervical vertebra 4; D, cervical vertebrae 5 and 6; E, cervical vertebra 7 and anterior half of cervical vertebra 8 (horizontally inverted; showing right side); F, posterior half of cervical vertebra 8 and cervical vertebra 9; G, cervical vertebra 10; H, cervical vertebra 11; I, close-up of the prezygapophy- sis-postzygapophysis contact between cervical vertebrae 3 and 4 in dorsolateral view, showing finger-like process lateral to postzygapophysis; J, close- up of the postzygapophysis of cervical vertebra 5 in dorsal view, showing finger-like process lateral to postzygapophysis. Arrow with number indicates a character diagnostic to this taxon (number refers to the list of characters in the Diagnosis). All scale bars equal 5 cm. Abbreviations: acdl, anterior centrodiapophyseal lamina; cdf, centrodiapophyseal fossa; plc, pleurocoel; pocdl, postcentrodiapophyseal lamina; poz, postzygapophysis; pozcdf, post- zygapophyseal centrodiapophyseal fossa; pozdl, postzygodiapophyseal lamina; ppoz, finger-like process lateral to postzygapophysis; ppozc, groove for contact with finger-like process; przdl, prezygodiapophyseal lamina; sdf, spinodiapophyseal fossa.

Xing et al. (2015), FIGURE 11. Anterior cervical series of Qijianglong guokr (QJGPM 1001) in left lateral views unless otherwise noted. A, axis; B, cervical vertebra 3; C, cervical vertebra 4; D, cervical vertebrae 5 and 6; E, cervical vertebra 7 and anterior half of cervical vertebra 8 (horizontally inverted; showing right side); F, posterior half of cervical vertebra 8 and cervical vertebra 9; G, cervical vertebra 10; H, cervical vertebra 11; I, close-up of the prezygapophy- sis-postzygapophysis contact between cervical vertebrae 3 and 4 in dorsolateral view, showing finger-like process lateral to postzygapophysis; J, close- up of the postzygapophysis of cervical vertebra 5 in dorsal view, showing finger-like process lateral to postzygapophysis. Arrow with number indicates a character diagnostic to this taxon (number refers to the list of characters in the Diagnosis). All scale bars equal 5 cm. Abbreviations: acdl, anterior centrodiapophyseal lamina; cdf, centrodiapophyseal fossa; plc, pleurocoel; pocdl, postcentrodiapophyseal lamina; poz, postzygapophysis; pozcdf, post- zygapophyseal centrodiapophyseal fossa; pozdl, postzygodiapophyseal lamina; ppoz, finger-like process lateral to postzygapophysis; ppozc, groove for contact with finger-like process; przdl, prezygodiapophyseal lamina; sdf, spinodiapophyseal fossa.

(At first, I couldn’t figure out what this pocdl abbreviation meant. Then I realised it was a vanilla posterior centrodiapophyseal lamina. Come on, folks. That element has had a standard abbreviation since 1999. Let’s use our standards!)

The hot news in these cervicals is the presence of what the authors call “a distinct finger-like process extending from the postzygapophyseal process beside a zygapophyseal contact”. They don’t give a name to these things, but I’m going to call them parapostzygapophyses since they’re next to the postzygapophyses. [Update: see the comment from Matt below.]

You can get some sense of this morphology from the figure above — although it doesn’t help that we’re looking at tiny greyscale images which really don’t convey 3d structure at all. The best illustration is part J of the figure:

XingEtA2015-qijianglong-fig11J

What are these things? The paper itself says disappointingly little about them. I quote from page 9:

From the axis to at least the 14th cervical vertebra, a finger- like process extends posteriorly above the postzygapophysis and overlaps onto the dorsolateral surface of the prezygapophysis of the next vertebra (Fig. 11I, J). These processes are unique to Qijianglong, unlike all previously known mamenchisaurids that are preserved with cervical vertebrae (e.g., Chuanjiesaurus, Mamenchisaurus spp., Omeisaurus spp., Tonganosaurus). Therefore, the neck of Qijianglong presumably had a range of motion restricted in sideways.

That’s it.

So what are these things? The authors — who after all have seen the actual fossils, not just the rather inadequate pictures — seem to assume that they are a stiffening adaptation, but don’t discuss their reasoning. My guess — and it’s only a guess — it that they assumed that this is what was going on with these processes because it’s what people have assumed about extra processes on xenarthrous vertebrae. But as best as I can determine, that’s not been demonstrated either, only assumed. Funny how these things seem to get a pass.

Armadillo lumbar vertebrae in posterior, anterior and right lateral views.

Armadillo lumbar vertebrae in posterior, anterior and right lateral views.

So what are these processes? It’s hard to say for sure without having seen the fossils, or at least some better multi-view photos, but the obvious guess is that they are our old friends epipophyses, in extreme form. That is, they are probably enlarged attachment points for posteriorly directed dorsal muscles, just as the cervical ribs are attachment points for posteriorly directly ventral muscles.

It’s a shame that Xing et al. didn’t discuss this (and not only because it would probably have meant citing our paper!) Their new beast seems to have some genuinely new and interesting morphology which is worthy of a bit more attention than they gave it, and whose mechanical implications could have been discussed in more detail. Until more is written about these fossils (or better photographs published) I think I am going to have to suspend judgement on the as-yet unjustified assumption that the parapostzygs were there to make the neck rigid against transverse bending.

A final thought: doesn’t JVP seem terribly old-fashioned now? It’s not just the paywall — apologies to those many of you who won’t be able to read the paper. The greyscaling of the figures is part of it — something that makes no sense at all in 2015. The small size and number of the illustrations is also a consequence of the limited page-count of a printed journal — it compares poorly with, for example, the glorious high-resolution colour multiview illustrations in Farke et al.’s (2013) hadrosaur description in PeerJ. Seems to me that, these days, all the action is over at the OA journals with infinite space — at least when it comes to descriptive papers.

References

  • Farke, Andrew A., Derek J. Chok, Annisa Herrero, Brandon Scolieri and Sarah Werning. (2013) Ontogeny in the tube-crested dinosaur Parasaurolophus (Hadrosauridae) and heterochrony in hadrosaurids. PeerJ 1:e182. doi:10.7717/peerj.182
  • Xing Lida, Tetsuto Miyashita, Jianping Zhang, Daqing Li, Yong Ye, Toru Sekiya, Fengping Wang & Philip J. Currie. 2015. A new sauropod dinosaur from the Late Jurassic of China and the diversity, distribution, and relationships of mamenchisaurids. Journal of Vertebrate Paleontology. doi:10.1080/02724634.2014.889701

 

Follow

Get every new post delivered to your Inbox.

Join 512 other followers