A couple of times now, I’ve pitched in an abstract for a Masters project looking at neck cartilage, hoping someone at Bristol will work on it with me co-supervising, but so far no-one’s bitten. Here’s how I’ve been describing it:

Understanding posture and motion in the necks of sauropods: the crucial role of cartilage in intervertebral joints

The sauropod dinosaurs were an order of magnitude bigger than any other terrestrial animal. Much sauropod research has concentrated on their long necks, which were crucial to their success (e.g. Sander et al. 2010). One approach to understanding neck function tries to determine neutral posture and range of motion by modelling the cervical vertebrae as a mechanical system (e.g. Stevens and Parrish 1999).

The raw material of such studies is fossilised vertebrae, but these are problematic for several reasons. The invariable incompleteness and distortion of sauropod neck fossils causes fundamental difficulties; but even given perfect fossils, the lack of preserved cartilage means that the bones are not shaped or sized as they were in life.

Ignoring cartilage has dramatic consequences for neutral posture, range of motion and even length of necks: pilot studies (Cobley 2011, Taylor 2011) found that intact bird necks are 8–12% longer than articulated sequences of their dry bones, and that figure is as high as 24% for a juvenile giraffe neck. A turkey neck postzygapophysis was 26% longer when cartilage was included than after being stripped down to naked bone.

We do not yet know how much articular cartilage sauropods had in their necks, nor even what kind of intervertebral joints they had: crocodilians have fibrocartilaginous discs like those of mammals, while birds have synovial joints, so the extant phylogenetic bracket is uninformative.

The project will involve dissection and measurement of bird and crocodilian necks, documenting the extent and shape of articular cartilage, identifying osteological correlates of fibrocartilaginous and synovial joints, and applying this data to sauropods to determine the nature of their neck joints and length of their necks, to reconstruct the lost cartilage, and to determine its effect on neutral pose and range of motion.

Following completion, we anticipate publication of the project.


Cobley, Matthew J. 2011. The flexibility and musculature of the ostrich neck: implications for the feeding ecology and reconstruction of the Sauropoda (Dinosauria: Saurischia). MSc Thesis, Department of Earth Sciences, University of Bristol. vi+64 pages.

Sander, P. Martin, Andreas Christian, Marcus Clauss, Regina Fechner, Carole T. Gee, Eva-Maria Griebeler, Hanns-Christian Gunga, Jürgen Hummel, Heinrich Mallison, Steven F. Perry, Holger Preuschoft, Oliver W. M. Rauhut, Kristian Remes, Thomas Tütken, Oliver Wings and Ulrich Witzel. 2010. Biology of the sauropod dinosaurs: the evolution of gigantism. Biological Reviews 86:117–155. doi:10.1111/j.1469-185X.2010.00137.x

Stevens, Kent A., and J. Michael Parrish. 1999. Neck Posture and Feeding Habits of Two Jurassic Sauropod Dinosaurs. Science 284:798–800. doi:10.1126/science.284.5415.798

Taylor, Michael P., and Mathew J. Wedel. 2011. Sauropod necks: how much do we really know?. p. 20 in Richard Forrest (ed.), Abstracts of Presentations, 59th Annual Symposium of Vertebrae Palaeontology and Comparative Anatomy, Lyme Regis, Dorset, UK, September 12th–17th 2011. 37 pp. http://www.miketaylor.org.uk/dino/pubs/svpca2011/TaylorWedel2011-what-do-we-really-know.ppt

(Obviously some part of this have since been covered by my and Matt’s first cartilage paper, but plenty has not.)

I now think there are two reasons no-one’s taken up this project: first, because I wrote it as very focussed only on the question of what type of joint was present, whereas there are plenty of related issues to be investigated along the way; and second, because I wrote it as a quest to discover a specific treasure (an osteological correlate), with the implication that if there’s no treasure to be found then the project will have been a failure.

But I do think there is still plenty of important work to be done in this area, and that there’s lots of important information to be got out of comparative dissection of extant critters.

If anyone out there fancies working in this area, I’d be delighted. I’d also be happy to offer whatever advice and help I could.

Cervical rib cross-sections from Mamenchisaurus Giraffatitan and Diplodocus Klein et al 2012 fig 1

Klein et al. (2012: fig. 1)

We have good descriptions of the proximal parts of the cervical ribs for lots of sauropods. We also have histological cross-sections of a few, mostly thanks to the work of Nicole Klein and colleagues (Klein et al. 2012, Preuschoft and Klein 2013), although histological cross-sections of ribs were also figured as long ago as 1999, by Dalla Vecchia (1999: figs. 29 and 30), and as recently as this month, by Lacovara et al. (2014: supplementary figure 4).

What we have very, very few of is series of cross-sections that show how the cr0ss-section of a cervical rib changes along its length. There may be more out there (and if I have forgotten any, please remind me!), but at the moment I can only think of three such figures: two in Janensch (1950: figs. 83 and 85), both on Giraffatitan, and one in Klein et al. (2012: fig. 1), with cross-sections from Mamenchisaurus, Giraffatitan, and Diplodocus (shown at the top of the post).

Sauroposeidon cervical rib cross-sections v3


Rarer still are images that show cross-sections of overlapped cervical ribs, stacked in situ. You could use the information in Janensch (1950: figs. 83 and 85) to generate the stacked cross-sections, but you wouldn’t know the spacing between the ribs as they were in the ground. I think the image just above, of the cervical rib bundles in the Sauroposeidon holotype, OMNH 53062, may be the first of its kind–again, if you know of any others, please let me know. I took the notes for this figure back in 2004, sitting down with the holotype and some digital calipers to make sure I could scale everything correctly, I just hadn’t ever put it into a presentable form until now. The first C6 section (blue V-shape) is from right at the root where the capitulum and tuberculum meet and the posterior shaft of the rib begins.

It is by now well-understood that the long cervical ribs of sauropods and other dinosaurs are ossified tendons of the long hypaxial neck muscles, specifically the longus colli ventralis and flexor colli lateralis. We argued this back in 200o on comparative anatomical grounds (Wedel et al. 2000b: pp. 378-379), and it has now been demonstrated histologically (Klein et al. 2012, Lacovara et al. 2014). The system of stacked tendons is also found in most birds. Here’s the bundle of stacked tendons in a rhea neck, only slightly fanned out:

Rhea ventral tendons stacked - full

And the same neck, with both the epaxial and hypaxial muscles more fully separated:

Rhea neck muscles fanned - full

What I’d really like is an MRI of a rhea or ostrich neck, showing the stacked tendons and their associated belts of muscle, to compare with the stacked cervical ribs of Sauroposeidon and other sauropods. Anyone know of any?

Incidentally, I think the cervical ribs and cervical rib bundles of sauropods are one line of evidence for sauropod necks having been rather slenderly-muscled. The long, multi-segment muscles like the longus colli ventralis are the outermost components of the muscular envelope that surrounds the vertebrae, as you can see in the rhea dissection photos. In sauropod specimens with articulated cervical ribs, the ribs do not deviate from one another or fan out. Rather, they lie in vertically stacked bundles that run from one capitulum-tuberculum intersection to the next. So the depth of that intersection–the “root” of the cervical rib of any given vertebra–plus the thickness of the ribs stacked underneath it, is pretty much the thickness of the muscular envelope around the neck, or at least around the ventral half. And the cervical ribs are typically pretty close to the vertebral centra–only weirdos like Apatosaurus and Erketu displace them very far ventrally (see Taylor and Wedel 2013a: fig. 7 and this post). So, thin jackets of muscle around proportionally large vertebrae–or, if you like, corn-on-the-cob rather than shish-kebabs.

As for why sauropods have long cervical ribs, Mike and I discussed some possibilities in our 2013 PeerJ paper (Taylor and Wedel 2013a), and Preuschoft and Klein addressed the issue last fall in PLOS ONE (Preuschoft and Klein 2013). My favorite hypothesis is that long tendons allow an animal to shift the bulk of the muscle–and therefore the center of gravity–toward the base of the neck, but that long unossified tendons can be distorted through stretching, which wastes muscular energy. Ossifying those long tendons is like putting bony wheelbarrow handles on each vertebra, allowing the muscles to move the vertebra from a distance without so much wasted energy, and probably with finer positional control.

That’s a nifty hypothesis in need of testing, anyway. In fact, cervical ribs and their associated muscles could stand a lot more attention on both the descriptive and analytical fronts. I know that Liguo Li has some research in the works on different conformations of hypaxial muscles, tendons, and cervical ribs in birds (you know, when she’s not describing bizarre new titanosaurs like Yongjinglong — see Li et al. 2014). If you saw Peter Dodson give their talk at SVP last fall, you probably remember some stunning images of dissected bird necks. As a famous legislator once said, we shall watch her career with great interest.



Supersaurus vs Brachiosaurus - BYU 9024 and FMNH P25107

This was inspired by an email Mike sent a couple of days ago:

Remind yourself of the awesomeness of Giraffatitan:

Now think of this. Its neck is 8.5m long. Knock of one measly meter — for example, by removing one vertebra from the middle of the neck — and you have 7.5 m.

Supersaurus’s neck was probably TWICE that long.

Holy poo.

I replied that I was indeed freaked out, and that it had given me an idea for a post, which you are now reading. I didn’t have a Giraffatitan that was sufficiently distortion-free, so I used my old trusty Brachiosaurus. The vertebra you see there next to Mike and next to the neck of Brachiosaurus is BYU 9024, the longest vertebra that has ever been found from anything, ever.

Regarding the neck length of Supersaurus, and how BYU 9024 came to be referred to Supersaurus, here’s the relevant chunk of my dissertation (Wedel 2007: pp. 208-209):

Supersaurus is without question the longest-necked animal with preserved cervical material. Jim Jensen recovered a single cervical vertebra of Supersaurus from Dry Mesa Quarry in western Colorado. The vertebra, BYU 9024, was originally referred to “Ultrasauros”. Later, both the cervical and the holotype dorsal of “Ultrasauros” were shown to belong to a diplodocid, and they were separately referred to Supersaurus by Jensen (1987) and Curtice et al. (1996), respectively.

BYU 9024 has a centrum length of 1378 mm, and a functional length of 1203 mm (Figure 4-3). At 1400 mm, the longest vertebra of Sauroposeidon is marginally longer in total length [see this post for a visual comparison]. However, that length includes the prezygapophyses, which overhang the condyle, and which are missing from BYU 9024. The centrum length of the largest Sauroposeidon vertebra is about 1250 mm, and the functional length is 1190 mm. BYU 9024 therefore has the largest centrum length and functional length of any vertebra that has ever been discovered for any animal. Furthermore, the Supersaurus vertebra is much larger than the Sauroposeidon vertebrae in diameter, and it is a much more massive element overall.

Neck length estimates for Supersaurus vary depending on the taxon chosen for comparison and the serial position assumed for BYU 9024. The vertebra shares many similarities with Barosaurus that are not found in other diplodocines, including a proportionally long centrum, dual posterior centrodiapophyseal laminae, a low neural spine, and ventrolateral flanges that connect to the parapophyses (and thus might be considered posterior centroparapophyseal laminae, similar to those of Sauroposeidon). The neural spine of BYU 9024 is very low and only very slightly bifurcated at its apex. In these characters, it is most similar to C9 of Barosaurus. However, theproportions of the centrum of BYU 9024 are more similar to those of C14 of Barosaurus, which is the longest vertebra of the neck in AMNH 6341. BYU 9024 is 1.6 times as long as C14 of AMNH 6341 and 1.9 times as long as C9. If it was built like that of Barosaurus, the neck of Supersaurus was at least 13.7 meters (44.8 feet) long, and may have been as long as 16.2 meters (53.2 feet).

Based on new material from Wyoming, Lovelace et al. (2005 [published as Lovelace et al. 2008]) noted potential synapomorphies shared by Supersaurus and Apatosaurus. BYU 9024 does not closely resemble any of the cervical vertebrae of Apatosaurus. Instead of trying to assign its serial position based on morphology, I conservatively assume that it is the longest vertebra in the series if it is from an Apatosaurus-like neck. At 2.7 times longer than C11 of CM 3018, BYU 9024 implies an Apatosaurus-like neck about 13.3 meters
(43.6 feet) long.

Supersaurus vs Diplodocus BYU 9024 and USNM 10865 - Gilmore 1932 pl 6

Bonus comparo: BYU 9024 vs USNM 10865, the mounted Diplodocus longus at the Smithsonian, modified from Gilmore 1932 (plate 6). For this I scaled BYU 9024 against the 1.6-meter femur of this specimen.

If you’d like to gaze upon BYU 9024 without distraction, or put it into a composite of your own, here you go:

Supersaurus cervical BYU 9024




This is BYU 12867–you’ve seen it here before–in dorsal view. It’s not a brilliant shot–I took it through the glass of the display case while filming a documentary at the North American Museum of Ancient Life in Lehi, Utah, in 2008. Centrum length is 94 cm, total length with the overhanging prezygapophyses is over a meter.

My camera had a possibly-fatal accident in the field at the end of the day on Saturday, so I didn’t take any photos on Sunday or Monday. From here on out, you’re either getting my slides, or photos taken by other people.

Powell Museum sauropod humerus

On Sunday we were at the John Wesley Powell River History Museum in Green River, Utah, for the Cretaceous talks. There were some fossils on display downstairs, including mounted skeletons of Falcarius and one or two ornithischians,* and this sauropod humerus from the Cedar Mountain Formation (many thanks to Marc Jones for the photo).

* A ceratopsian and Animantarx, maybe? They were in the same room as the sauropod humerus, so it’s no surprise that I passed them by with barely a glance.

There were loads of great talks in the Cretaceous symposium on Sunday, and I learned a lot, about everything from clam shrimp biostratigraphy to ankylosaur phylogeny to Canadian sauropod trackways. But I can’t show you any slides from those talks, so the rest of this post is the abstact from Darren’s and my talk, illustrated by a few select slides.

Wedel Naish 2014 Sauroposeidon and kin - slide 1 title

Sauroposeidon is a giant titanosauriform from the Early Cretaceous of North America. The holotype is OMNH 53062, a series of four articulated cervical vertebrae from the Antlers Formation (Aptian-Albian) of Oklahoma. According to recent analyses, Paluxysaurus from the Twin Mountain Formation of Texas is the sister taxon of OMNH 53062 and may be a junior synonym of Sauroposeidon. Titanosauriform material from the Cloverly Formation of Wyoming may also pertain to Paluxysaurus/Sauroposeidon. The proposed synonymy is based on referred material of both taxa, however, so it is not as secure as it might be.

Wedel Naish 2014 Sauroposeidon and kin - slide 34 Sauroposeidon characters

Top row, vertebrae of Paluxysaurus. From left to right, the centrum lengths of the vertebrae are 72cm, 65cm, and 45cm. Main image, the largest and most complete vertebra of the holotype of Sauroposeidon. Labels call out features that are present in every Sauroposeidon vertebra where they can be assessed, but consistently absent in Paluxysaurus. Evaluating the proposed synonymy of Paluxysaurus and Sauroposeidon is left as an exercise for the reader.

MIWG.7306 is a cervical vertebra of a large titanosauriform from the Wessex Formation (Barremian) of the Isle of Wight. The specimen shares several derived characters with the holotype of Sauroposeidon: an elongate cervical centrum, expanded lateral pneumatic fossae, and large, plate-like posterior centroparapophyseal laminae. In all of these characters, the morphology of MIWG.7306 is intermediate between Brachiosaurus and Giraffatitan on one hand, and Sauroposeidon on the other. MIWG.7306 also shares several previously unreported features of its internal morphology with Sauroposeidon: reduced lateral chambers (“pleurocoels”), camellate internal structure, ‘inflated’ laminae filled with pneumatic chambers rather than solid bone, and a high Air Space Proportion (ASP). ASPs for Sauroposeidon, MIWG.7306, and other isolated vertebrae from the Wessex Formation are all between 0.74 and 0.89, meaning that air spaces occupied 74-89% of the volume of the vertebrae in life. The vertebrae of these animals were therefore lighter than those of brachiosaurids (ASPs between 0.65 and 0.75) and other sauropods (average ASPs less than 0.65).

Wedel Naish 2014 Sauroposeidon and kin - slide 64 Mannion phylogeny

Check this out: according to at least some versions of the Mannion et al. (2013) tree, Sauroposeidon and Paluxysaurus are part of a global radiation of andesaurids in the Early and middle Cretaceous. Cool!

Sauroposeidon and MIWG.7306 were originally referred to Brachiosauridae. However, most recent phylogenetic analyses find Sauroposeidon to be a basal somphospondyl, whether Paluxysaurus and the Cloverly material are included or not. Given the large number of characters it shares with Sauroposeidon, MIWG.7306 is probably a basal somphospondyl as well. But genuine brachiosaurids also persisted and possibly even radiated in the Early Cretaceous of North America; these include Abydosaurus, Cedarosaurus, Venenosaurus, and possibly an as-yet-undescribed Cloverly form. The vertebrae of Abydosaurus have conservative proportions and solid laminae and the bony floor of the centrum is relatively thick. In these characters, Abydosaurus is more similar to Brachiosaurus and Giraffatitan than to Sauroposeidon or MIWG.7306. So not all Early Cretaceous titanosauriforms were alike, and whatever selective pressures led Sauroposeidon and MIWG.7306 to evolve longer and lighter necks, they didn’t prevent Giraffatitan-like brachiosaurs such as Abydosaurus and Cedarosaurus from persisting well into the Cretaceous.

Wedel Naish 2014 Sauroposeidon and kin - slide 65 Cloverly sauropods

The evolutionary dynamics of sauropods in the North American mid-Mesozoic are still mysterious. In the Morrison Formation, sauropods as a whole are both diverse and abundant, but Camarasaurus and an efflorescence of diplodocoids account for most of that abundance and diversity, and titanosauriforms, represented by Brachiosaurus, are comparatively scarce. During the Early Cretaceous, North American titanosauriforms seem to have radiated, possibly to fill some of the ecospace vacated by the regional extinction of basal macronarians (Camarasaurus) and diplodocoids. However, despite a flood of new discoveries in the past two decades, sauropods still do not seem to have been particularly abundant in the Early Cretaceous of North America, in contrast to sauropod-dominated faunas of the Morrison and of other continents during the Early Cretaceous.

Wedel Naish 2014 Sauroposeidon and kin - slide 66 acknowledgments

That final slide deserves some explanation. On the way back from the field on Saturday–the night before my talk–a group of us stopped at a burger joint in Hanksville. Sharon McMullen got a kid’s meal, and it came in this bag. We took it as a good omen that Sauroposeidon was the first dinosaur listed in the quiz.

For the full program and abstracts from both days of talks, please download the field conference guidebook here.

You know the drill: lotsa pretty pix, not much yap.


Our first stop of the day was the Fruita Paleontological Area, which has a fanstastic diversity of Morrison animals, including the mammal Fruitafossor and the tiny ornithopod Fruitadens.


Plus it’s a pretty epic landscape, especially with the clouds and broken light we had this morning.


I found a bone! Several bits, actually, a few meters away from the Fruitadens type quarry. I’d like to think that this proximal femur might be Fruitadens, but I don’t know the diagnostic characters and haven’t had time to look them up. Anyone know how diagnostic this honorary shard of excellence might be?


After lunch, John Foster took us on a short hike to the quarry where Elmer Riggs got the back half of the Field Museum Apatosaurus. The front half came from a site in southern Utah, several decades later.


The locals brought Riggs out in the 1930s for the dedication of two monuments–this one at the Apatosaurus quarry, and another like it at the Brachiosaurus quarry some miles away. Tragically, both monuments have the names of the dinosaurs misspelled!


In the afternoon we visited the Mygatt-Moore Quarry and the Camarasaurus site in Rabbit Valley. Can you see the articulated Camarasaurus neck in this photo?


Here’s a hint: the neural arches of two posterior cervical vertebrae in transverse horizontal cross-section.


This Camarasaurus is apparently a permanent feature. If you’re wondering why no-one has excavated it, it’s because it’s buried in sandstone that is stupid-dense. The expenditure of time and resources just isn’t worth it, when right down the hill dinosaurs are pouring out of the much softer sediments of the Mygatt-Moore Quarry like water from a hydrant. This is the lesson I am learning about the Morrison: finding dinosaurs is easy. Finding dinosaurs you can get out of the ground and prepare–that’s something else.


Our last stop of the day was Gaston Design, where Rob Gaston showed us how he molds, casts, and mounts everything from tiny teeth to good-sized skeletons.


Like this Deinosuchus that is about to chomp on Jim Kirkland. Jim doesn’t look too worried.


Here’s a nice cast of a busted sauropod dorsal, probably from Apatosaurus or Diplodocus, showing the pneumatic internal structure. Compare to similar views of dorsals in this post and this one. This is actually one half of a matched set that includes both halves of the centrum. I left with one of those sets of my own, a few dollars poorer and a whole lot happier.


The end–for now.

Order up!

Sauroposeidon OMNH 53062 articulated right lateral composite with giraffe

Sauroposeidon is stitched together from orthographic views of the 3D photogrammetric models rendered in MeshLab. Greyed out bits of the vertebrae are actually missing–I used C8 to patch C7, C7 to patch C6, and so on forward. The cervical ribs as reconstructed here were all recovered and they are in collections, but they’re in several jackets and boxes and therefore not easily photographed.

The meter bars are both one meter as advertised. The giraffe neck is FMNH 34426 (from this post), which is actually 1.7 meters long, but I scaled it up to 2.4 meters to match that of the tallest known giraffe. I think it’s cool that a world-record giraffe neck is roughly as long as two vertebrae from the middle of the neck of Sauroposeidon.

There are loads of little morphological details in the Sauroposeidon vertebrae that are clearer now than they were in our old photographs, but those will be stories for other posts.


Get every new post delivered to your Inbox.

Join 397 other followers