Peggy Sue's Diner-saurs - London with sauropod

A couple of weekends ago, London and I went camping and stargazing at Afton Canyon, a nice dark spot about 40 miles east of Barstow. On the way home, we took the exit off I-15 at Ghost Town Road, initially because we wanted to visit the old Calico Ghost Town. But then we saw big metal dinosaurs south of the highway, and that’s how we came to Peggy Sue’s Diner and in particular the Diner-saur Park.

Peggy Sue's Diner-saurs - spinosaur

The Diner-saur Park is out behind the diner and admission is free. There are pools with red-eared sliders, paved walkways, grass, trees, a small gift shop, and dinosaurs. Here’s a Spinosauruscuriously popular in the Mojave Desert, those spinosaurs.

Peggy Sue's Diner-saurs - stegosaur

Ornithischians are represented by two stegosaurs, this big metal one and a smaller concrete one under a tree.

Peggy Sue's Diner-saurs - turtles

The turtles are entertaining. They paddle around placidly and crawl out to bask on the banks of the pools, and on little islands in the centers.

Peggy Sue's Diner-saurs - sign

The gift shop is tiny and the selection of paleo paraphernalia is not going to blow away any hard-core dinophiles. But it is not without its charm. And, hey, when you find a dinosaur gift shop in the middle of nowhere, you don’t quibble about size. London got some little plastic turtles and I got some cheap and horribly inaccurate plastic dinosaur skeletons to make a NecroDinoMechaLaser Squad for our Dinosaur Island D&D campaign.

Now, about that sauropod. The identification sign on the side of the gift shop notwithstanding, this is not a Brachiosaurus. With the short forelimbs and big back end, this is clearly a diplodocid. The neck is too skinny for Apatosaurus or the newly-resurrected Brontosaurus, and too long for Diplodocus. I lean toward Barosaurus, although I noticed in going back through these photos that with the mostly-straight, roughly-45-degree-angle neck, it is doing a good impression of the Supersaurus from my 2012 dinosaur nerve paper. Compare this:

Peggy Sue's Diner-saurs - sauropod 1

to this:

Wedel RLN fig1 - revised

If I had noticed it sooner, I would have maneuvered for a better, more comparable shot.

Guess I’ll just have to go back.

Reference

Wedel, M.J. 2012. A monument of inefficiency: the presumed course of the recurrent laryngeal nerve in sauropod dinosaurs. Acta Palaeontologica Polonica 57(2):251-256.

Brontosaurus, the animal formerly known as Apatosaurus, the animal formerly known as Brontosaurus.

YPM 1980: Brontosaurus excelsus, the animal formerly known as Apatosaurus excelsus, the animal formerly known as Brontosaurus excelsus.

Today is a good day for sauropod science. Since we’re not getting this up until the afternoon, you’ve probably already seen that Emanuel Tschopp and colleagues have published a monstrous specimen-level phylogenetic analysis of Diplodocidae and, among other things, resurrected Brontosaurus as a valid genus. The paper is in PeerJ so you can read it for free (here).

I’ve already been pinged by lots of folks asking for my thoughts on this. I know that the return of Brontosaurus is what’s going to catapult this paper into the spotlight, but I hope what everyone takes away from it is just what a thorough piece of work it is. I’ve never seen so many phylogenetic characters illustrated so well. It sets a new standard, and anyone who wants to overturn this had better roll up their sleeves and bring a boatload of data. I’m also very, very happy that it’s open-access so everyone in the world can see it, use it, question it, tear it apart or build on it. Getting Brontosaurus back is just gravy. Although, being pro-brontosaur enough to have named a dinosaur in honor of Brontosaurus, I’m also pretty happy about that. If you need a quick guide to who’s who now, A. ajax and A. louisae are still Apatosaurus, and B. excelsus, B. yahnahpin (formerly Eobrontosaurus), and B. parvus (originally Elosaurus) are all Brontosaurus. For more details, go read the paper.

A louisae from Wikipedia - full

Apatosaurus lousiae CM 3018: still Apatosaurus. Photo from Wikipedia.

My personal feelings aside, a lot of people are asking how solid is this generic re-separation. I haven’t read the entire paper yet – it’s 299 pages long, for crying out loud – but the separation of Brontosaurus and Apatosaurus seems solid enough. Tschopp et al. didn’t do it lightly, they justify their decision in detail. I don’t hold with the idea that just because two taxa are sisters, means that they cannot be separated generically. As usual in phylogenetic taxonomy, it comes down to what we decide as a community constitutes “diagnosably distinct”. Tschopp et al. have actually put some thought into what that might mean here, and whether you agree with them or not, they’ve at least made all of their evidence and reasoning explicit. That’s both an opportunity and a challenge for critics: an opportunity to pin down exactly where and why you may disagree, and a challenge to do exactly that. You can’t just sit back and say, “I think the analysis is flawed” or “I wouldn’t have coded that character that way” (well, you can, but if that’s all you say, no-one is obliged to take that kind of lazy, drive-by criticism seriously). There are 477 characters here, most of them illustrated, for 81 OTUs, and a lot of post-hoc discussion of the results. So whether you agree with the authors or not, in whole or in part, both fans and critics should dig in and build on this work. Is it the last word on diplodocid taxonomy? Of course not. But it does move the field forward significantly, and the Tschopp et al. should be applauded for that.

There’s a lot more in there than just bringing back Brontosaurus. “Diplodocus” hayi is elevated to its own genus, Galeamopus. Neither of those things are super surprising. There have been rumors since the 90s at least that Brontosaurus might be coming back, and everyone has known for a while that D. hayi was a bit wonky. I was also not surprised to see Australodocus returned to Diplodocidae – when I saw the type material in 2011, it looked diplodocid to me (based on some characters I’ll have to unpack in some other post). More surprising to me are the sinking of Dinheirosaurus into Supersaurus, the finding that Tornieria is not particularly close to Diplodocus, and the uncertain positions of AMNH 460, the American Museum mount, which is an indeterminate apatosaurine pending further study, of FMNH 25112, the Field Museum “Apatosaurus”, which might not even be an apatosaurine at all(!). In several cases, Tschopp et al. come right out and say that X is going to need further study, so if you want to work on sauropods and you’re stuck for project ideas, go see what needs doing.

AMNH mounted Apatosaurus with Taylor for scale

AMNH 460: we don’t know who this is anymore.

As I was scanning the paper again while composing the last paragraph, I almost fell down the rabbit hole. So much interesting stuff in this paper. Even if all you care about is morphology, the hundred or so figures illustrating the phylogenetic characters ought to keep you happy for a very long time. I look forward to reading through the vertebral characters in detail and seeing what I’ve been missing all these years.

I’m contractually obliged to point out that the authors chose to publish the complete peer-review history of the paper, so you can see what the editor (Andy Farke) and reviewers had to say. As always, I think this transparency (and credit for the reviewers) is great for science, and I can’t wait until it’s the norm at more journals.

FMNH 25112 formerly Apatosaurus

FMNH 25112: what even IS that thing?

In addition to the paper, there’s also an interview with lead author Emanuel Tschopp on the PeerJ blog, and a nice shout-out for SV-POW!

Parting shot: why did Tschopp et al. get different results than anyone had previously? Because they used more specimens and more taxa – more data full stop. That’s also why their paper warrants serious consideration. It’s serious work. Let’s go stand on their shoulders.

Reference

Tschopp E, Mateus O, Benson RBJ. (2015) A specimen-level phylogenetic analysis and taxonomic revision of Diplodocidae (Dinosauria, Sauropoda) PeerJ 3:e857 https://dx.doi.org/10.7717/peerj.857

In 2012, Matt and I spent a week in New York, mostly working at the AMNH on Apatosaurusminimus and a few other specimens that caught our eye. But we were able to spend a day at the Yale Peabody Museum up in New Haven, Connecticut, to check out the caudal pneumaticity in the mounted Apatosaurus (= “Brontosaurus“) excelsus, YPM 1980, and the bizarrely broad cervicals of the Barosaurus lentus holotype YPM 429.

While we there, it would have been churlish not to pay some attention to the glorious and justly famous Age of Reptiles mural, painted by Rudolph F. Zallinger from 1944-1947.

So here it is, with the Brontosaurus neck for scale:

IMG_0501-zallinger-mural

Click through for high resolution (3552 × 2664).

And here is a close-up of the most important, charismatic, part of the mural:

IMG_0500-zallinger-mural

Again, click through for high resolution (3552 × 2664).

That’s your lot for now. We’ve long promised a proper photo post of the Brontosaurus mount itself, and I’ll try to get that done soon. For now, it’s just scenery.

Kaatedocus by Brian Engh

Kaatedocus is heading to the sidebar to help the cause.

We have a new page on the sidebar – here – where we’re collecting as many museum abbreviations as possible, the idea being that you can copy and paste them into your papers to rapidly populate the ‘Museum Abbreviations’ section. I grabbed about 100 from my own previous papers and a handful of others, so currently the list is highly skewed toward museums with (1) sauropods (2) that I’ve had reason to yap about. I’ve probably missed tons of museums that are important for people working on hadrosaurs or stegosaurs or (shudder) mammals. From here on out the list will grow as people suggest additions and edits in the comments on that page. So please get on over there and contribute!

Completely unrelated eyeball-bait art courtesy of Brian Engh, who writes,

I don’t even remember drawing this, I just found it lying around and spruced it up a bit today. It’s supposed to be some kinda diplodocid, maybe Kaatedocus, but I think the main goal of the drawing was to draw one with a sense of weight that felt right given that their center of mass is supposed to be so far back. I like the idea of them getting startled and popping up every now and again… [see also–MJW]

Murphy and Mitchell (1974: fig. 1)

Murphy and Mitchell (1974: fig. 1)

One thing that I’ve never understood is why some people are skeptical about sauropods using their tails defensively, when lizards do this all the time. I’ve been digging through the literature on this for a current project, and there are some really great accounts out there, and by ‘great’ I mean ‘scary’.

Here’s a key passage from Murphy and Mitchell (1974: p. 95):

V. salvator uses the tail to strike repeatedly in combination with biting for defense…Captive Varanus (varius, spenceri, mertensi, and salvadorii) use the tail for defense, but only salvadorii appears to aim directly for a handler’s eye. An adult male V. salvadorii accurately struck the senior author’s eye with the tip of the tail as he was attempting to maneuver the lizard. On many subsequent occasions, the monitor tried to strike the eye of the handler with accuracy.

Not being a monitor expert, I was initially thrown by the V. salvator/V. salvadorii issue. V. salvator is the water monitor, V. salvadorii is the crocodile monitor. Both get pretty darned big; Wikipedia lists 3.21 m (10.5 ft) for V. salvator and 2.44-3.23 m (8.0-10.6 ft) for V. salvadorii.

Anyway, I’d heard of lots of anecdotal reports of lizards from many clades using their tails to lash at rivals, predators, or handlers, but I’d never read about a lizard aiming directly for the target’s eyes. It immediately made me think about (1) sauropod tails, especially the whip-lash tails of flagellicaudan diplodocoids and at least some titanosaurs (Wilson et al. 1999), and (2) the supraorbital crests and ridges in many theropods, especially big Morrison forms like Allosaurus and Ceratosaurus. Of course, supraorbital crests in theropods could serve many functions, including shading the eyes and social and sexual display, but it’s interesting to speculate that they might have had a defensive function as well. Has anyone ever proposed that in print?

Diplodocus USNM 10865 - Gilmore 1932 pl 6 - cleaned up

Diplodocus longus USNM 10865, from Gilmore (1932: plate 6)

 

Most of the papers that pooh-pooh the use of whiplash tails in defense (e.g., Myhrvold and Currie 1997) argue that the tail-tip would be too small to do any serious damage to a multi-ton attacker, and too fragile to survive an impact. This seems wrong-headed to me, like arguing that unless you find putative animal weapons broken and caked in their adversaries’ blood, they aren’t used as weapons. A structure doesn’t have to do lethal damage or any damage at all to serve as a weapon, as long as it dissuades a predator from attacking. I’d think that getting hit in the eye by a 35-foot bullwhip might convince an allosaur to go have a look at Camptosaurus instead.

Now, one could argue that if the whip-lash doesn’t do any serious damage, predators will learn to blow them off as dishonest signals (we’re assuming here that having your eye possibly knocked out doesn’t count as ‘serious damage’ to an allosaur). But it’s not like the whiplash was the only weapon a diplodocid could bring to bear: the proximal tail could probably deliver a respectable clobberin’, and then there’s the zero fun of being stomped on by an adversary massing a dozen tons or more. In that sense, the whip-lash is writing checks the rest of the body can certainly cash. It’s saying, “Getting hit with this will be no fun, and if that isn’t enough, there’s plenty more coming.”

All of this is leaving aside more obvious defensive adaptations of the tail in Shunosaurus, maybe Omeisaurus and Mamenchisaurus, and probably Spinophorosaurus (although I’d feel better about Spinophorosaurus if the association of the spikes and the tail was more secure). I suspect that all sauropod tails were useful in defense, but only some sauropod taxa used that behavior enough for a morphological enhancement (club, spikes, whiplash) to have evolved. Similarly, common snapping turtles, Chelydra serpentina, will wiggle their unspecialized tongues to attract fish (I’ve witnessed this myself in captive specimens) but lack the worm-shaped tongue lure found in the more ambush-specialized alligator snappers, Macrochelys temminckii. On reflection, there are probably few morphological changes in evolution that aren’t preceded by behavior. Not in a Lamarckian sense, just that certain variations aren’t useful unless the organism is already (suboptimally) performing the relevant function.

Bonus observation: Mike noted back when that Shunosaurus and Varanus retain complex caudal vertebrae all the way out to the end. Since in this case ‘complex’ means ‘having processes that muscles can attach to’, maybe that has something to do with keeping up relatively fine motor control in your bad-guy-whomping organ. Would be interesting to compare caudal morphology between tail-whomping lizards and committed caudal pacifists (assuming we can find any of the latter that we’re certain about – maybe tail-whomping just doesn’t get used very often in some taxa, like those that have caudal autotomy). Anyone know anything about that?

References

  • Murphy, J. B., & Mitchell, L. A. (1974). Ritualized combat behavior of the pygmy mulga monitor lizard, Varanus gilleni (Sauria: Varanidae). Herpetologica, 90-97.
  • Myhrvold, N. P., & Currie, P. J. (1997). Supersonic sauropods? Tail dynamics in the diplodocids. Paleobiology, 23(4), 393-409.
  • Wilson, J. A., Martinez, R. N., & Alcober, O. (1999). Distal tail segment of a titanosaur (Dinosauria: Sauropoda) from the Upper Cretaceous of Mendoza, Argentina. Journal of Vertebrate Paleontology, 19(3), 591-594.

According to Rare Historical Photos from the 1860s to the 1960s, this is the iceberg that sank the Titanic:

 photo of the iceberg that sunk the Titanic, taken the morning of April 15, 1912 from board of the ship “Prinz Adalbert”, before knowing the Titanic had sunk. The smear of red paint along the base of the berg (bottom right) prompted the chief steward to take the picture.

photo of the iceberg that sunk the Titanic, taken the morning of April 15, 1912 from board of the ship “Prinz Adalbert”, before knowing the Titanic had sunk. The smear of red paint along the base of the berg (bottom right) prompted the chief steward to take the picture.

Clearly this was no iceberg, but a gigantic Apatosaurus vertebra, most of it hidden under water. Here is an artist’s impression:

iceberg

They get everywhere, don’t they?

Go to Google and do a picture search for “natural history museum”. Here are the results I get. (I’m searching the UK, where that term refers to the British museum of that name — results in the USA may very.)

google-search-for-nhm

In the top 24 images, I see that half of them are of the building itself — rightly so, as it’s a beautiful and impressive piece of architecture that would be well worth visiting even if it was empty. Of the rest, ten are of specimens inside the museum: and every single one of them is of the Diplodocus in the main hall. (The other two photos are from the French natural history museum, so don’t really belong in this set. Not coincidentally, they are both primarily photos of the French cast of the same Diplodocus.)

The NHM’s Diplodocus — I can’t bring myself to call it “Dippy” is the icon of the museum. It’s what kids go to see. It’s what the museum used as the basis of the logo for the 2005 SVPCA meeting that was held there. It’s essentially the museum mascot — the thing that everyone thinks of when they think of the NHM.

And rightly so: it’s not just a beautiful specimen, it’s not just sensational for the kids. As the first cast ever made of the Carnegie specimen CM 84, it’s a historically important object in its own right. It was the first mounted Diplodocus ever, being presented in 1905 before the the original material was even on display in Pittsburgh.

diplodocus_nocopyright

As a matter of fact, this cast was the very first mounted sauropod to be publicly displayed: that honour is usually given to the AMNH Apatosaurus, but as museum-history expert Ilja Nieuwland points out:

The London ‘Dippy’ was in fact the first sauropod on public display, if only for three days in early July of 1904, in the Pittsburgh Exposition Society Hall.

There you have the Natural History Museum Diplodocus: the symbol of the museum, an icon of evolution, a historical monument, a specimen of great scientific value and unparalleled symbolism.

So naturally the museum management want to tear it down. They want to convert the Diplodocus hall into a blue whale hall. Because the museum doesn’t already have a blue whale hall.

Or, no — wait — it does already have a blue whale hall. That’s it. That’s what I meant to say. And very impressive it is, too.

16222408

I don’t mind admitting that the whale hall is my second favourite room in the museum. Whenever I go there as a tourist (rather than as a scientist, when I spend all my time in the basement), I make sure I see it. It’s great.

The thing is, it’s already there. A museum with a whale hall does not need another whale hall.

Obviously anticipating the inevitable outcry, the museum got all its ducks in a row on this. They released some admittedly beautiful concept artwork, and arranged to have opinion pieces written in support of the change — some by people who I would have expected to know better.

One of the more breathtaking parts of this planned substitution is the idea that Diplodocus is no longer relevant. The NHM’s director, Sir Michael Dixon says the change is “about asking real questions of contemporary relevance”. He says “going forward we want to tell more of these stories about the societally relevant research that we do”. This “relevance” rhetoric is everywhere. The museum “must move with the times to stay relevant”, writes Henry Nicholls in the Guardian.

There was a time when Diplodocus was relevant, you know: waaay back in the 1970s. But time has moved on, and now that’s 150,000,035 years old, it’s become outdated.

Conversely, the rationale for the whale seems to be that they want to use it as a warning about extinction. But could there ever be a more powerful icon of extinction than a dinosaur?

The thing is, the right solution is so obvious. Here’s what they want to do:

2528769B00000578-2930638-image-a-19_1422525497076

Clearly the solution is, yes, hang the whale from the ceiling — but don’t remove the Diplodocus. Because, seriously, what could be a better warning about extinction than the juxtaposition of a glorious animal that we lost with one that we could be about to lose?

All this argument about which is better, a Diplodocus or a blue whale: what a waste of energy. Why should we have to choose? Let’s have both.

I’ve even had an artist’s impression made, at great expense, to show how the combination exhibit would look. Check it out.

2528769B00000578-2930638-image-a-19_1422525497076-art

(If anyone would like to attempt an even better rendering, please by my guest. Let me know, and I’ll add artwork to this page.)

So that’s my solution. Keep the museum’s iconic, defining centrepiece — and add some more awesome instead of exchanging it. Everyone wins.

Follow

Get every new post delivered to your Inbox.

Join 478 other followers