We’ve noted that the Taylor et al. SVPCA abstract and talk slides are up now up as part of the SVPCA 2015 PeerJ Collection, so anyone who’s interested has probably taken a look already to see what it was about. (As an aside, I am delighted to see that two more abstracts have been added to the collection since I wrote about it.)

It was my privilege to present a talk on our hypothesis that the distinctive and bizarre toblerone-shaped necks of apatosaurs were an adaptation for intraspecific combat. This talk was based on an in-progress manuscript that Matt is lead-authoring. Also on board is the third SV-POW!sketeer, the silent partner, Darren Naish; and artist/ethologist Brian Engh.

Here is our case, briefly summarised from five key slides. First, let’s take a look at what is distinctive in the morphology of apatosaur cervicals:

Screen Shot 2015-09-12 at 11.22.26

Here I’m using Brontosaurus, which is among the more extreme apatosaurs, but the same features are seen developed to nearly the same extent in Apatosaurus louisae, the best-known apatosaur, and to some extent in all apatosaurs.

Now we’ll look at the four key features separately.

Screen Shot 2015-09-12 at 11.22.57

First, the cervicals ribs of sauropods (and other saurischians, including birds) anchored the longus colli ventralis and flexor colli lateralis muscles — ventral muscles whose job is to pull the neck downwards. By shifting the attachments points of these muscles downwards, apatosaurs enabled them to work with improved mechanical advantage — that is, to bring more force to bear.

Screen Shot 2015-09-12 at 11.23.06

Second, by redirecting the diapophyses and parapophyses ventrally, and making them much more robust than in other sauropods, apatosaurs structured their neck skeletons to better resist ventral impacts.

Screen Shot 2015-09-12 at 11.23.15

Third, because the low-hanging cervical ribs created an inverted “V” shape below the centrum, they formed a protective cradle for the vulnerable soft-tissue that is otherwise exposed on the ventral aspect of the neck: trachea, oesophagus, major blood vessels. In apatosaurus, all of these would have been safely wrapped in layers of connective tissue and bubble-wrap-like pneumatic diverticula. The presence of diverticula ventral to the vertebral centrum is not speculative – most neosauropods have fossae on the ventral surfaces of their cervical centra, and apatosaurines tend to have foramina that connect to internal chambers as well (see Lovelace et al. 2007: fig. 4, which is reproduced in this post).

Screen Shot 2015-09-12 at 11.23.22

Fourth, most if not all apatosaurs have distinctive ventrally directed club-like processes on the front of their cervical ribs. (It’s hard to tell with Apatosaurus ajax, because the best cervical vertebra of that species is so very reconstructed.) How did these appear in life? It’s difficult to be sure. They might have appeared as a low boss; or, as with rhinoceros horns, they might even have carried keratinous spikes.

Putting it all together, we have an animal whose neck can be brought downwards with great force; whose neck was mechanically capable of resisting impacts on its ventral aspect; whose vulnerable ventral-side soft-tissue was well protected; and which probably had prominent clubs or spikes all along the ventral aspect of the neck. And all of this was accomplished at the cost of making the neck a lot heavier than it would have been otherwise. Off the cuff, it seems likely that the cervical series alone would have massed twice as much in apatosaurines as in diplodocines of the same neck length.

Doubling the mass of the neck is a very peculiar thing for a sauropod lineage to do – by the Late Jurassic, sauropods were the leading edge of an evolutionary trend to lengthen and lighten the neck that had been running for almost 100 million years, through basal ornithodirans, basal dinosauromorphs, basal saurischians, basal sauropodomorphs, and basal sauropods. Whatever the selective pressures that led apatosaurines to evolve such robust and heavy necks, they must have been compelling.

The possibility that apatosaurs were pushing or crashing their necks ventrally in some form of combat accounts for all of the weird morphology documented above, and we know that sexual selection is powerful force that underlies a lot of bizarre structures in extant animals, and probably in extinct ornithodirans as well (see Hone et al. 2012, Hone and Naish 2013).

What form of combat, exactly? There are various possibilities, which we’ll discuss another time. But I’ll leave you with Brian Engh’s beautiful illustration of one possible form of combat: a powerful impact of one neck brought down onto the dorsal aspect of another.


We’re aware that this proposal is necessarily somewhat speculative. But we’re just not able to see any other explanation for the distinctive apatosaur neck. Even if we’re wrong about the ventrolateral processes on the cervical ribs supporting bosses or spikes, the first three points remain true, and given how they fly in the face of sauropods’ long history of making their necks lighter, they fairly cry out for explanation. If anyone has other proposals, we’ll be happy to hear them.


  • Hone, D. W., Naish, D., & Cuthill, I. C. (2012). Does mutual sexual selection explain the evolution of head crests in pterosaurs and dinosaurs?. Lethaia 45(2):139-156.
  • Hone, D. W. E., & Naish, D. (2013). The ‘species recognition hypothesis’ does not explain the presence and evolution of exaggerated structures in non‐avialan dinosaurs. Journal of Zoology 290(3):172-180.
  • Lovelace, D. M., Hartman, S. A., & Wahl, W. R. (2007). Morphology of a specimen of Supersaurus (Dinosauria, Sauropoda) from the Morrison Formation of Wyoming, and a re-evaluation of diplodocid phylogeny. Arquivos do Museu Nacional, Rio de Janeiro 65(4):527-544.

As we’ve previously noted more than once here at SV-POW!, apatosaurine cervicals really are the craziest things. For one thing, they are the only dinosaur bones to have inspired the design of a Star Wars spaceship.

One result of this very distinctive cervical shape, with the ribs hanging down far below the centra, was that the necks of apatosaurines would have been triangular in cross-section, rather than tubular as often depicted. (The Apatosaurus maquette that Matt reviewed gets this right.)

Here’s how I conveyed this in two slides of my SVPCA talk:

Screen Shot 2015-09-07 at 23.38.07

Screen Shot 2015-09-07 at 23.38.12

Although apatosaurs take this to the extreme, the same was essentially true of all sauropod necks. The ventrolateral position of the cervical ribs would have lent the necks a rounded triangular shape, or diamond-shaped in the case of less extreme sauropods whose neck soft-tissue hung below the cervical ribs.

(Previously: Sauropods were tacos, not corn dogs; and Sauropods were corn-on-the-cob, not shish kebabs.)


The first hypothesis is that, contra Elk (1972), all Brontosauruses were rather fat at one end, then much fatter in the middle, then thin at the other end.

The second theory is that Diplodocus was dumb. Evidence is here presented in the form of an important new life restoration by Matthew Taylor.



  • Elk, Anne. 1972. Anne Elk’s Theory on Brontosauruses. Reprinted in: Chapman, G., Cleese, J., Gilliam, T., Idle, E., Jones, T. and Palin, M. (eds). Just the Words, Volume 2. Methuen, London, 118-120.

AMNH 460 skeleton model 2

In a recent post I showed some photos of the mounted apatosaurine at the American Museum of Natural History in New York, AMNH 460, which Tschopp et al. (2015) regarded as an indeterminate apatosaurine pending further study.

A lot of museums whose collections and exhibits go back to the late 19th and early 20th centuries have scale model skeletons and sculptures that were used to guide exhibit design. I have always been fascinated by these models, partly because they’re windows into another era of scientific research and science communication, and partly because they’re just cool – basically the world’s best dinosaur toys – and I covet them. In my experience, it is very, very common to find these treasures of history buried in collections, stuck up on top of specimen cabinets, or otherwise relegated to some out-of-the-way corner where they won’t be in the way. I know that exhibit space is always limited, and these old models often reflect ideas about anatomy, posture, or behavior that we now know to be mistaken. But I am always secretly thrilled when I see these old models still on exhibit.

AMNH T rex skeleton model

The AMNH has a bunch of these things, because Henry Fairfield Osborn was crazy about ’em. He not only used 2D skeletal reconstructions and 3D model skeletons to guide exhibit design, he published on them – see for example his 1898 paper on models of extinct vertebrates, his 1913 paper on skeleton reconstructions of Tyrannosaurus, and his 1919 paper with Charles Mook on reconstructing Camarasaurus. That genre of scientific paper seems to have disappeared. I wonder if the time is right for a resurgence.

So in a glass case at the feet of AMNH 460 is a model – I’d guess about 1/12 or 1/15 scale – of that very skeleton. You can tell that it’s a model of that particular skeleton and not just some average apatosaur by looking carefully at the vertebrae. Apatosaurines weren’t all stamped from quite the same mold and the individual peculiarities of AMNH 460 are captured in the model. It’s an amazing piece of work.

AMNH 460 skeleton model

The only bad thing about it is that – like almost everything behind glass at the AMNH – it’s very difficult to photograph without getting a recursive hell of reflections. But at least it’s out where people can see and marvel at it.

Oh, and those are the cervical vertebrae of Barosaurus behind it – Mike and I spent more time trying to look and shoot past this model than we did looking at it. But that’s not the model’s fault, those Barosaurus cervicals are just ridiculously inaccessible.

So, memo to museums: at least some of us out here are nuts about your old dinosaur models, and where there’s room to put them on exhibit, they make us happy. They also give us views of the skeletons that we can’t get otherwise, so they serve a useful education and scientific purpose. More, please.


Osborn, H. F. (1898). Models of extinct vertebrates. Science, New Series, 7(192): 841-845.

Osborn, H.F. (1913). Tyrannosaurus, restoration and model of the skeleton. Bulletin of the American Museum of Natural History, 32: 91-92, plates 4-6.

Osborn, H. F., & Mook, C. C. (1919). Characters and restoration of the sauropod genus Camarasaurus Cope. From type material in the Cope Collection in the American Museum of Natural History. Proceedings of the American Philosophical Society, 58(6): 386-396.

AMNH 460 left anterolateral view

Apatosaurines on the brain right now.

I’ve been thinking about the question raised by Jerry Alpern, a volunteer tour guide at the AMNH, regarding the recent Tschopp et al. (2015) diplodocid phylogeny. Namely, if AMNH 460 is now an indeterminate apatosaurine, pending further study, what should the museum and its docents tell the public about it?

Geez, Apatosaurus, it’s not like we’re married!

I think it’s a genuinely hard problem because scientific and lay perspectives on facts and hypotheses often differ. If I say, “This animal is Apatosaurus“, that’s a fact if I’m talking about YPM 1860, the genoholotype of Apatosaurus ajax; it would continue to be a fact even if Apatosaurus was sunk into another genus (as Brontosaurus was for so long). We might call that specimen something else, but there would always be a footnote pointing out that it was still the holotype of A. ajax, even if the A. part was at least temporarily defunct – the scientific equivalent of a maiden name.* For every other specimen in the world, the statement, “This animal is Apatosaurus” is a hypothesis about relatedness, subject to further revision.

* This is going to sound kinda horrible, but when one partner in a marriage takes the other’s surname, that’s a nomenclatural hypothesis about the future of the relationship.

Apatosaurine cervicals are the best cervicals.

Apatosaurine cervicals are the best cervicals.

Fuzzy science

Things that look fairly solid and unchanging from a distance – specifically, from the perspective of the public – often (always?) turn out to be fairly fuzzy or even arbitrary upon closer inspection. Like what is Apatosaurus (beyond the holotype, I mean) – or indeed, what is a planet.** There is no absolute truth to quest for here, only categories and hypotheses that scientists have made up so that we can have constructive conversations about the crazy spectrum of possibilities that nature presents us. We try to ground those categories and hypotheses in evidence, but there will always be edge cases, and words will always break down if you push them too hard. Those of us who work on the ragged frontier of science tend to be fairly comfortable with these inescapable uncertainties, but I can understand why people might get frustrated when they just want to know what the damned dinosaur is called.

** Triton, the largest body orbiting Neptune, is almost certainly a captured Kuiper Belt object, and it’s bigger than Pluto. Moon or planet? Probably best to say a former dwarf planet currently operating as a satellite of Neptune – but that’s a mouthful (and a mindful, if you stop to think about it), not a short, convenient, easily-digestible label. Any short label is going to omit important information. This is related to the problem of paper title length – below some threshold, making something shorter means making it incomplete.

What I would say

I suppose the short version that is most faithful to the Tschopp et al. results is:

This skeleton (AMNH 460) might be Apatosaurus or Brontosaurus or a third, new thing – scientists aren’t sure yet.

A reasonable follow-up sentence – and an answer to the inevitable “Why not?” – would be:

They have to look at 477 anatomical details for lots of skeletons and weigh all the evidence, and that takes time.

Personally, if I was talking to museum visitors I would lean in conspiratorially and say:

If you want to call it Apatosaurus or Brontosaurus, go ahead – those are both ‘live’ hypotheses, and even the world’s experts on this problem can’t tell you that you’re guessing the wrong way – at least not yet.

And if there was a kid in the group, I’d add:

Maybe you’ll be the one to figure it out!

What would you say?

My neck is fat.

My neck is fat.

P.S. I wouldn’t change the signage. It could still turn out to be Apatosaurus, and the Tschopp et al. results do not lend themselves to easy label-ification.

P.P.S. With some modification for taxonomy, all of this applies to the Field Museum diplodocid FMNH P25112 as well.


Tschopp E, Mateus O, Benson RBJ. (2015) A specimen-level phylogenetic analysis and taxonomic revision of Diplodocidae (Dinosauria, Sauropoda) PeerJ3:e857 https://dx.doi.org/10.7717/peerj.857

Brontosaurus, the animal formerly known as Apatosaurus, the animal formerly known as Brontosaurus.

YPM 1980: Brontosaurus excelsus, the animal formerly known as Apatosaurus excelsus, the animal formerly known as Brontosaurus excelsus.

Today is a good day for sauropod science. Since we’re not getting this up until the afternoon, you’ve probably already seen that Emanuel Tschopp and colleagues have published a monstrous specimen-level phylogenetic analysis of Diplodocidae and, among other things, resurrected Brontosaurus as a valid genus. The paper is in PeerJ so you can read it for free (here).

I’ve already been pinged by lots of folks asking for my thoughts on this. I know that the return of Brontosaurus is what’s going to catapult this paper into the spotlight, but I hope what everyone takes away from it is just what a thorough piece of work it is. I’ve never seen so many phylogenetic characters illustrated so well. It sets a new standard, and anyone who wants to overturn this had better roll up their sleeves and bring a boatload of data. I’m also very, very happy that it’s open-access so everyone in the world can see it, use it, question it, tear it apart or build on it. Getting Brontosaurus back is just gravy. Although, being pro-brontosaur enough to have named a dinosaur in honor of Brontosaurus, I’m also pretty happy about that. If you need a quick guide to who’s who now, A. ajax and A. louisae are still Apatosaurus, and B. excelsus, B. yahnahpin (formerly Eobrontosaurus), and B. parvus (originally Elosaurus) are all Brontosaurus. For more details, go read the paper.

A louisae from Wikipedia - full

Apatosaurus lousiae CM 3018: still Apatosaurus. Photo from Wikipedia.

My personal feelings aside, a lot of people are asking how solid is this generic re-separation. I haven’t read the entire paper yet – it’s 299 pages long, for crying out loud – but the separation of Brontosaurus and Apatosaurus seems solid enough. Tschopp et al. didn’t do it lightly, they justify their decision in detail. I don’t hold with the idea that just because two taxa are sisters, means that they cannot be separated generically. As usual in phylogenetic taxonomy, it comes down to what we decide as a community constitutes “diagnosably distinct”. Tschopp et al. have actually put some thought into what that might mean here, and whether you agree with them or not, they’ve at least made all of their evidence and reasoning explicit. That’s both an opportunity and a challenge for critics: an opportunity to pin down exactly where and why you may disagree, and a challenge to do exactly that. You can’t just sit back and say, “I think the analysis is flawed” or “I wouldn’t have coded that character that way” (well, you can, but if that’s all you say, no-one is obliged to take that kind of lazy, drive-by criticism seriously). There are 477 characters here, most of them illustrated, for 81 OTUs, and a lot of post-hoc discussion of the results. So whether you agree with the authors or not, in whole or in part, both fans and critics should dig in and build on this work. Is it the last word on diplodocid taxonomy? Of course not. But it does move the field forward significantly, and the Tschopp et al. should be applauded for that.

There’s a lot more in there than just bringing back Brontosaurus. “Diplodocus” hayi is elevated to its own genus, Galeamopus. Neither of those things are super surprising. There have been rumors since the 90s at least that Brontosaurus might be coming back, and everyone has known for a while that D. hayi was a bit wonky. I was also not surprised to see Australodocus returned to Diplodocidae – when I saw the type material in 2011, it looked diplodocid to me (based on some characters I’ll have to unpack in some other post). More surprising to me are the sinking of Dinheirosaurus into Supersaurus, the finding that Tornieria is not particularly close to Diplodocus, and the uncertain positions of AMNH 460, the American Museum mount, which is an indeterminate apatosaurine pending further study, of FMNH 25112, the Field Museum “Apatosaurus”, which might not even be an apatosaurine at all(!). In several cases, Tschopp et al. come right out and say that X is going to need further study, so if you want to work on sauropods and you’re stuck for project ideas, go see what needs doing.

AMNH mounted Apatosaurus with Taylor for scale

AMNH 460: we don’t know who this is anymore.

As I was scanning the paper again while composing the last paragraph, I almost fell down the rabbit hole. So much interesting stuff in this paper. Even if all you care about is morphology, the hundred or so figures illustrating the phylogenetic characters ought to keep you happy for a very long time. I look forward to reading through the vertebral characters in detail and seeing what I’ve been missing all these years.

I’m contractually obliged to point out that the authors chose to publish the complete peer-review history of the paper, so you can see what the editor (Andy Farke) and reviewers had to say. As always, I think this transparency (and credit for the reviewers) is great for science, and I can’t wait until it’s the norm at more journals.

FMNH 25112 formerly Apatosaurus

FMNH 25112: what even IS that thing?

In addition to the paper, there’s also an interview with lead author Emanuel Tschopp on the PeerJ blog, and a nice shout-out for SV-POW!

Parting shot: why did Tschopp et al. get different results than anyone had previously? Because they used more specimens and more taxa – more data full stop. That’s also why their paper warrants serious consideration. It’s serious work. Let’s go stand on their shoulders.


Tschopp E, Mateus O, Benson RBJ. (2015) A specimen-level phylogenetic analysis and taxonomic revision of Diplodocidae (Dinosauria, Sauropoda) PeerJ 3:e857 https://dx.doi.org/10.7717/peerj.857

According to Rare Historical Photos from the 1860s to the 1960s, this is the iceberg that sank the Titanic:

 photo of the iceberg that sunk the Titanic, taken the morning of April 15, 1912 from board of the ship “Prinz Adalbert”, before knowing the Titanic had sunk. The smear of red paint along the base of the berg (bottom right) prompted the chief steward to take the picture.

photo of the iceberg that sunk the Titanic, taken the morning of April 15, 1912 from board of the ship “Prinz Adalbert”, before knowing the Titanic had sunk. The smear of red paint along the base of the berg (bottom right) prompted the chief steward to take the picture.

Clearly this was no iceberg, but a gigantic Apatosaurus vertebra, most of it hidden under water. Here is an artist’s impression:


They get everywhere, don’t they?


Get every new post delivered to your Inbox.

Join 3,490 other followers