Wedel and Taylor 2013 bifurcation Figure 4 - classes of bifurcation

Figure 4. Cervical vertebrae of Camarasaurus supremus AMNH 5761 cervical series 1 in anterior view, showing different degrees of bifurcation of the neural spine. Modified from Osborn & Mook (1921: plate 67).

Today sees the publication of my big paper with Mike on neural spine bifurcation, which has been in the works since last April. It’s a free download here, and as usual we put the hi-res figures and other supporting info on a sidebar page.

Navel-gazing about the publication process

This paper is a departure for us, for several reasons.

For one thing, it’s a beast: a little over 13,000 words, not counting tables, figure captions, and the bibliography. I was all geared up to talk about how it’s my longest paper after the second Sauroposeidon paper (Wedel et al. 2000), but that’s not true. It’s my longest paper, period (13192 vs 12526 words), and the one with the most figures (25 vs 22).

It’s the first time we’ve written the paper in the open, on the blog, and then repackaged it for submission to a journal. I have several things to say about that. First, it was more work than I expected. It turns out that I definitely do have at least two “voices” as a writer, and the informal voice I used for the initial run of blog posts (linked here) was not going to cut it for formal publication. So although there is very little new material in the paper that was not in the blog posts, a lot of the prose is new because I had to rewrite almost the whole thing.

I have mixed feelings about this. On one hand, last May kinda sucked, because just about every minute that wasn’t spent eclipse chasing was spent rewriting the paper. On the other hand, as Mike has repeatedly pointed out to me, it was a pretty fast way to generate a big paper quickly, even with the rewriting. It was just over two months from the first post in the destined-to-become-a-paper series on April 5, to submission on June 14 (not June 24 as it says on the last page of the PDF), and if you leave out the 10 days in late May that I was galavanting around Arizona, the actual time spent working on the paper was a bit under two months. It would be nice to be that productive all the time (it helped that we were basically mining everything from previously published work; truly novel work usually needs more time to get up and going).

Wedel and Taylor 2013 bifurcation Figure 18 - Barosaurus and Supersaurus cervicals

Figure 18. Middle cervical vertebrae of Barosaurus AMNH 6341 (top) and Supersaurus BYU 9024 (bottom) in left lateral view, scaled to the same centrum length. The actual centrum lengths are 850 mm and 1380 mm, respectively. BYU 9024 is the longest single vertebra of any known animal.

You may fairly wonder why, if almost all the content was already available on the blog, we went to the trouble of publishing it in a journal. Especially in light of sentiments like this. For my part, it’s down to two things. First, to paraphrase C.S. Lewis, what I wrote in that post was a yell, not a thought. I never intended to stop publishing in journals, I was just frustrated that traditional journals do so many stupid things that actually hurt science, like rejecting papers because of anticipated sexiness or for other BS reasons, not publishing peer reviews, etc. Happily, now there are better options.

Second, although in a sane world the quality of an argument or hypothesis would matter more than its mode of distribution, that’s not the world we live in. We’re happy enough to cite blog posts, etc. (they’re better than pers. comms., at least), but not everyone is, and the minimum bound of What Counts is controlled by people at the other end of the Overton window. So, bottom line, people are at least theoretically free to ignore stuff that is only published on blogs or other informal venues (DML, forums, etc.). If you want to force someone to engage with your ideas, you have to publish them in journals (for now). So we did.

Finally, ever since Darren’s azhdarchids-were-storks post got turned into a paper, it has bothered me that there is an icon for “Blogging on Peer-Reviewed Research” (from ResearchBlogging.org), but not one (that I know of) for “Blogging Into Peer-Reviewed Research”. If you have some graphic design chops and 10 minutes to kill, you could do the world a favor by creating one.

Hey, you! Want a project?

One of the few things in the paper that is not in any of the blog posts is the table summarizing the skeletal fusions in a bunch of famous sauropod specimens, to show how little consistency there is:

Wedel and Taylor 2013 NSB Table 1 - sauropod skeletal fusions

(Yes, we know that table legends typically go above, not below; this is just how they roll at PJVP.)

I want this to not get overlooked just because it’s in a long paper on neural spine bifurcation; as far as I’m concerned, it’s the most important part of the paper. I didn’t know that these potential ontogenetic indicators were all mutually contradictory across taxa before I started this project. Not only is the order of skeletal fusions inconsistent among taxa, but it might also be inconsistent among individuals or populations, or at least that’s what the variation among the different specimens of Apatosaurus suggests.

This problem cries out for more attention. As we say at the end of the paper:

To some extent the field of sauropod paleobiology suffers from ‘monograph tunnel vision’, in which our knowledge of most taxa is derived from a handful of specimens described decades ago (e.g. Diplodocus carnegii CM 84/94). Recent work by McIntosh (2005), Upchurch et al. (2005), and Harris (2006a, b, c, 2007) is a welcome antidote to this malady, but several of the taxa discussed herein are represented by many more specimens that have not been adequately described or assessed. A comprehensive program to document skeletal fusions and body size in all known specimens of, say, Camarasaurus, or Diplodocus, could be undertaken for relatively little cost (other than travel expenses, and even these could be offset through collaboration) and would add immeasurably to our knowledge of sauropod ontogeny.

So if you’re looking for a project on sauropod paleobiology and you can get around to a bunch of museums*, here’s work that needs doing. Also, you’ll probably make lots of other publishable observations along the way.

* The more the better, but for Morrison taxa I would say minimally: Yale, AMNH, Carnegie, Cleveland Museum of Natural History, Field Museum, Dinosaur National Monument, BYU, University of Utah, and University of Wyoming, plus Smithsonian, University of Kansas, OMNH, Denver Museum, Wyoming Dinosaur Center, and a few others if you can swing it. Oh, and Diplodocus hayi down in Houston. Check John Foster’s and Jack McIntosh’s publications for lists of specimens–there are a LOT more out there than most people are familiar with.

References

supersaurus-vs-giraffe

At the top: our old friend BYU 9024 — the cervical vertebra that’s part of the Supersaurus vivianae holotype. At the bottom, C2 (the longest cervical) of Giraffa camelopardalis angolensis FMNH 34426.

The Supersaurus vertebra is 138 cm long. We don’t know which cervical it is, but there’s no reason to think it’s the longest. The giraffe vertebra is 31 cm long. Not only is the Supersaurus vertebra four times as long as that of the giraffe, it’s one of more than twice as many cervicals as the giraffe has.

Did we cheat by using an unusually small giraffe? Not really. When we articulated all seven cervicals as best we could, the sequence measured 171 cm, which is a fairly healthy 71% of the 2.4 m neck of the world-record giraffe. It’s not a monster, but it’s a decent-sized adult.

Bottom line, giraffes are just lame.

If you found the hypothetical Amphicoelias fragillimus cervical in a recent post a bit too much to swallow, I won’t blame you. But how big do we know Morrison diplodocoid cervicals got?

The longest centrum of any specimen of anything, anywhere, is that of the cervical vertebra BYU 9024 that’s part of the Supersaurus vivianae holotype. It’s 138 cm long, which means that composited at scale with an MTSRSU, it looks like this:

latin-love-god-with-supersaurus

This is not hypothetical. It’s an actual fossil.

(Just for the record: C8 of the Sauroposeidon holotype OMNH 53062 is slightly longer overall, at 140 cm. But that includes overhanging prezygapophyses. Its centrum is “only” 125 cm long.)

In the recent post on OMNH 1670, a dorsal vertebra of a giant Apatosaurus from the Oklahoma panhandle, I half-promised to post the only published figure of this vertebra, from Stovall (1938: fig. 3.3). So here it is:

And in the second comment on that post, I promised a sketch from one of my notebooks, showing how much of the vertebra is reconstructed. Here’s a scan of the relevant page from my notebook. Reconstructed areas of the vert are shaded (confusingly, using strokes going in opposite directions on the spine and centrum, and the dark shaded areas on the front of the transverse processes are pneumatic cavities), and measurements are given in mm.

Next item: is this really a fifth dorsal vertebra?

Apatosaurus louisae CM 3018 D4 and D5, in anterior (top), left lateral, and posterior views, from Gilmore (1936: plate 25).

Here are D4 and D5 of A. louisae CM 3018. They sort of bracket OMNH 1670 in terms of morphology. D4 has a broader spine, and D5 has a narrower one. The spine of D5 lacks the slight racquet-shaped expansion seen in OMNH 1670, but the overall proportions of the spine are more similar. On the other hand, the transverse processes of D4 taper a bit in anterior and posterior view, as in OMNH 1670, and unlike the transverse processes of D5 with their more parallel dorsal and ventral margins. But honestly, neither of these verts is a very good match (and the ones on either side, D3 and D6, are even worse).

Apatosaurus parvus UWGM 15556 (formerly A. excelsus CM 563) D4 (left) and D3 (right) in anterior (top), right lateral, and posterior views, from Gilmore (1936: plate 32).

Here are D3 and D4 of A. parvus UWGM 15556. D3 is clearly a poor match as well–it is really striking how much the vertebral morphology changes through the anterior dorsals in most sauropods, and Apatosaurus is no exception. D3 looks like a dorsal in lateral view, but in anterior or posterior view it could almost pass for a posterior cervical. If I was going to use the term “cervicodorsal”, indicating one of the vertebrae from the neck/trunk transition, I would apply it as far back as D3, but not to D4. That thing is all dorsal.

And it’s a very interesting dorsal from the perspective of identifying OMNH 1670. It has fairly short, tapering transverse processes. The neural spine is a bit shorter and broader, but it has a similar racquet-shaped distal expansion. I’m particularly intrigued by the pneumatic fossae inscribed into the anterior surface of the neural spine–in Gilmore’s plate they make a broken V shapen, like so \ / (or maybe devil eyes). Now, OMNH 1670 doesn’t have devil eyes on its spine, but it does have a couple of somewhat similar pneumatic fossae cut into the spine just below the distal racquet–perhaps a serially modified iteration of the same pair of fossae as in the A. parvus D4. It’s a right sod that D5 from this animal has its spine blown off–but it still has its transverse processes, and they are short and tapering as in OMNH 1670.

Apatosaurus sp. FMNH P25112, dorsal vertebrae 1-10 and sacrals 1 and 2, Riggs (1903: plate 46)

Here are all the dorsals and the first couple sacrals of FMNH P25112, which was originally described as A. excelsus but in the specimen-level analysis of Upchurch et al. 2005) comes out as the sister taxon to the A. ajax/A. parvus/A. excelsus clade. Note the striking similarity of the D5 here with D4 of the A. parvus specimen in Gilmore’s plate (until the careful phylogenetic work up Upchurch et al. 2005, that A. parvus specimen, once CM 563 and now UWGM 15556, was considered to represent A. excelsus as well). But  also notice the striking similarity of D6 to OMNH 1670. It’s not quite a dead ringer–the transverse processes are longer and have weird bent-down “wingtips” (XB-70 Valkyrie, anyone?)–but it’s pretty darned close, especially in the shape of the neural spine.

So what does this all mean? First, that trying to specify the exact serial position of an isolated vertebra is nigh on to impossible, unless it’s something that is one-of-a-kind like an axis. Second, after doing all these comparos I think it’s unlikely that OMNH 1670 is a D4–those are a bit too squat across the board–but it could plausibly be either a D5 or a D6. Third, I’m really happy that it doesn’t seem to match any particular specimen better than all the rest. What I don’t want to happen is for someone to see that this vertebra looks especially like specimen X and therefore decide that it must represent species Y. As I said in the comments of the previous post, what this Oklahoma Apatosaurus material needs is for someone to spend some quality time seeing, measuring, and photographing all of it and then doing a phylogenetic analysis. That sounds like an ambitious master’s thesis or the core of a dissertation, and I hope an OU grad student takes it on someday.

If you were intrigued by my suggestion that the big Oklahoma Apatosaurus rivalled Supersaurus in size, and wanted to see a technical comparison of the two, I am happy to report that Scott Hartman has done the work for you. Here’s one of his beautiful Apatosaurus skeletal reconstructions, scaled to the size of OMNH 1670, next to his Supersaurus silhouette. This is just a small teaser–go check out his post on the subject for a larger version and some interesting (and funny) thoughts on how the two animals compare.

References

  • Gilmore, C.W. 1936. Osteology of Apatosaurus with special reference to specimens in the Carnegie Museum. Memoirs of the Carnegie Museum 11:175-300.
  • Riggs, E.S. 1903. Structure and relationships of opisthocoelian dinosaurs, part I: Apatosaurus Marsh. Field Columbian Museum Publications, Geological Series 2(4): 165–196.
  • Stovall, J.W. 1938. The Morrison of Oklahoma and its dinosaurs. Journal of Geology 46:583-600.

I have a new paper out:

Wedel, M.J. 2012. A monument of inefficiency: the presumed course of the recurrent laryngeal nerve in sauropod dinosaurs. Acta Palaeontologica Polonica 57(2):251-256.

Update June 6, 2012: the final version was formally published yesterday, so the rest of this paragraph is of historical interest only. Like Yates et al. on prosauropod pneumaticity, it is “out” in the sense that the manuscript has been through peer review, has been accepted for publication, and is freely available online at Acta Palaeontologica Polonica. Technically it is “in press” and not published yet, but all that formal publication will change is to make a prettier version of the paper available. All of the content is available now, and the paper doesn’t include any of those pesky nomenclatural acts, and so, as with the prosauropod pneumaticity paper, I don’t see any reason to pretend it doesn’t exist. Think of the accepted manuscript as the caterpillar to the published version’s butterfly: different look, but same genome.

This one came about because last summer I read a review of Richard Dawkins’s book, The Greatest Show on Earth: The Evidence for Evolution. The review mentioned that the book includes a lengthy discussion of the recurrent laryngeal nerve (RLN) in the giraffe, which is a spectacularly dumb piece of engineering and therefore great evidence against intelligent design creationism. It wasn’t the first time I’d heard of the RLN, of course. It’s one of the touchstones of both human anatomy and evolutionary biology; anatomy because of its clinical importance in thyroid surgery, known for more than two millennia, and evolutionary biology because it is such a great example of a developmental constraint. (Dawkins’s coverage of all of this is great, BTW, and you should read the book.)

No, the reason the book review inspired me to write the paper was not because the RLN was new to me, but because it was overly familiar. It is a cool piece of anatomy, and its fame is justly deserved–but I am sick and tired of seeing the stinkin’ giraffe trotted out as the ultimate example of dumb design. My beloved sauropods were way dumber, and it’s time they got some credit.

But first, let’s talk about that nerve, and how it got to be there.

No necks for sex? How about no necks for anybody!

Embryos are weird. When you were just a month old (counting from fertilization), you had a set of pharyngeal arches that didn’t look radically different from those of a primitive fish. These started out quite small, tucked up underneath your comparatively immense brain, and each pharyngeal arch was served by a loop of artery called an aortic arch. What we call the arch of the aorta in an adult human is a remnant of just one of these embryonic aortic arches, and as you’ve no doubt noticed, it’s down in your chest, not tucked up next to your brain. When you were in the embryonic stages I’m talking about, you didn’t yet have a neck, so your brain, pharyngeal arches, aortic arches, and the upper parts of your digestive system were all smooshed together at your front end.

One thing you did have at that stage was a reasonably complete peripheral nervous system. The nerve cell bodies in and near your central nervous system sent out axons into the rest of your body, including your extremities. Many of these axons did not persist; they failed to find innervation targets and their parent neurons died. Imagine your embryonic central nervous system sending out a starburst of axons in all directions, and some of those axons finding targets and persisting, and others failing and dying back. So the architecture of your nervous system is the result of a process of selection in which only some cells were successful.

Crucially, this radiation and die-off of axons happened very early in development, when a lot of what would become your guts was still hanging under your proportionally immense brain like the gondola on a blimp. This brings us to the recurrent laryngeal nerve.

Going back the way we came

The fates of your embryonic pharyngeal arches are complex and I’m not going to do a comprehensive review here (go here for more information). Suffice it to say that the first three arches give rise to your jaws and hyoid apparatus, the fourth and sixth form your larynx (voicebox), and fifth is entirely resorbed during development. Update: I made a pharyngeal arch cheat sheet.

There are two major nerves to the larynx, each of which is bilaterally paired. The nerve of the fourth pharyngeal arch becomes the superior laryngeal nerve, and it passes cranial to the fourth aortic arch. The nerve of the sixth pharyngeal arch becomes the inferior or recurrent laryngeal nerve, and it passes caudal to the sixth aortic arch. At the time that they form, both of these nerves take essentially straight courses from the brainstem to their targets, because you’re still in the blimp-gondola stage.

If you were a shark, the story would be over. The more posterior pharyngeal arches would persist as arches instead of forming a larynx, each arch would hold on to its artery, and the nerves would all maintain their direct courses to their targets.

The normal fate of the aortic arches in humans. From http://education.yahoo.com/reference/gray/subjects/subject/135

But you’re not a shark, you’re a tetrapod. Which means that you have, among other things, a neck separating your head and your body. And the formation of your neck shoved your heart and its associated great vessels down into your chest, away from the pharyngeal arches. This was no problem for the superior laryngeal nerve, which passed in front of the fourth aortic arch and could therefore stay put. But the inferior laryngeal nerve passed behind the sixth aortic arch, so when the heart and the fourth and sixth aortic arches descended into the chest, the inferior laryngeal nerve went with them. Because it was still hooked up to the brainstem and the larynx, it had to grow in length to compensate.

As you sit reading this, your inferior laryngeal nerves run down your neck into your chest, loop around the vessels derived from the fourth and sixth aortic arches (the subclavian artery on the right, and the arch of the aorta and ductus arteriosus on the left) and run back up your neck to your larynx. Because they do this U-turn in your chest and go back the way they came, the inferior laryngeal nerves are said to ‘recur’ to the larynx and are therefore more commonly referred to as the recurrent laryngeal nerves (RLNs).

An enlightening diversion

The RLN is the poster child for “unintelligent design” because it is pretty dumb. Your RLNs travel a heck of a lot farther to reach your larynx than they ought to, if they’d been designed. Surely an intelligent designer would have them take the same direct course as the superior laryngeal nerve. But evolution didn’t have that option. Tetrapod embryos could not be built from the ground up but had to be modified from the existing “sharkitecture” of ancestral vertebrates. The rules of development could not be rewritten to accommodate a shorter RLN. Hence Dawkins’s love affair with the RLN, which gets 7 pages in The Greatest Show on Earth. He also appeared on the giraffe episode of Inside Nature’s Giants, in which the RLN was dug out of the neck and the continuity of its ridiculous path was demonstrated–probably the most smack-you-in-the-face evidence for evolution that has ever been shown on television (said the rabid fan of large-tetrapod dissections).

Incidentally, the existence and importance of the RLN has been known since classical times. The RLN innervates the muscles responsible for speech, and on either side it passes right behind the thyroid gland, which is subject to goiters and tumors and other grotesque maladies. So a careless thyroidectomy can damage one or both of the RLNs; if one gets snipped, the subject will be hoarse for the rest of his or her life; if both are cut, the subject will be rendered mute. The Roman physician Galen memorably demonstrated this by dissecting the neck of an immobilized but unanesthetized pig and isolating the RLNs (Kaplan et al. 2009). One moment the poor pig was squealing its head off–as any of us would be if someone dug out our RLNs without anesthesia–and the next moment Galen severed the RLNs and the animal abruptly fell silent, still in unbelievable pain but now without a mechanism to vocally express its discomfort.

Galen versus pig. Figure 2 from Kaplan et al. 2009.

The name of the nerve also goes back to Galen, who wrote:

I call these two nerves the recurrent nerves (or reversivi) and those that come upward and backward on account of a special characteristic of theirs which is not shared by any of the other nerves that descend from the brain.

Like at least some modern surgeons, Galen does not seem to have been overly burdened by humility:

All these wonderful things, which have now become common property, I was the first of all to discover, no anatomist before me ever saw one of these nerves, and so all of them before me missed the mark in their anatomical description of the larynx.

Both of those quotes are from Kaplan et al. (2009), which is a fascinating paper that traces the knowledge of the recurrent laryngeal nerve from classical times to the early 20th century. If you’d like a copy and can’t get hold of one any other way, let me know and I’ll hook you up.

Share and share alike

By now you can see where this is going: all tetrapods have larynges, all tetrapods have necks, and all tetrapods have recurrent laryngeal nerves. Including giraffes, much to the delight of Richard Dawkins. And also including sauropods, much to the delight of yours truly.

Now, I cannot show you the RLN in a living sauropod, nor can I imagine a scenario in which such a delicate structure would be recognizably preserved as a fossil. But as tetrapods, sauropods were bound to the same unbreakable rules of development as everything else. The inference that sauropods had really long, really dumb RLNs is as secure as the inference that they had brainstems, hearts, and larynges.

Wedel (2012) Fig. 1. Course of the left vagus nerve and left recurrent laryngeal nerve in a human, a giraffe, and Supersaurus. The right recurrent laryngeal nerve passes caudal to the right subclavian artery rather than the aorta and ductus arteriosus, but otherwise its course is identical to that of the left.

Giraffes have necks up to 2.4 meters long (Toon and Toon 2003), so the neurons that make up their RLNs approach 5 meters in the largest indiividuals. But the longest-necked sauropods had necks 14 meters long, or maybe even longer, so they must have had individual neurons at least 28 meters long. The larynx of even the largest sauropod was probably less than 1 meter away from the brainstem, so the “extra” length imposed on the RLN by its recurrent course was something like 27 meters in a large individual of Supersaurus. Take that, Giraffa.

Inadequate giraffe is inadequate.

One way or another

It is possible to have a nonrecurrent laryngeal nerve–on one side, anyway. If you haven’t had the opportunity to dissect many cadavers, it may come as a surprise to learn that muscles, nerves, and blood vessels are fairly variable. Every fall in Gross Anatomy at WesternU, we have about 40 cadavers, and out of those 40 people we usually have two or three with variant muscles, a handful with unusual branching patterns of nerves, and usually half a dozen or so with some wackiness in their major blood vessels. Variations of this sort are common enough that the better anatomy atlases illustrate not just one layout for, say, the branching of the femoral artery, but 6-10 of the most common patterns. Also, these variations are almost always asymptomatic, meaning that they never cause any problems and the people who have them usually never know (ask Mike about his lonely kidney sometime). You–yes, you, gentle reader!–could be a serious weirdo and have no idea.

Variations in the blood vessels seem to be particularly common, possibly because the vessels develop in situ with apparently very little in the way of genetic control. Most parts of the body are served by more than one artery and vein, so if the usual vessel isn’t there or takes an unusual course, it’s often no big deal, as long as the blood gets there somehow. To wit: occasionally a person does not have a right subclavian artery. This does not mean that their right shoulder and arm receive no blood and wither away; usually it means that one of the segmental arteries branching off the descending aorta–which normally serve the ribs and their associated muscles and other soft tissues–is expanded and elongated to compensate, and looks for all the world like a normal subclavian artery with an abnormal connection to the aorta. But if the major artery that serves the forelimb comes from the descending aorta, and the 4th aortic arch on the right is completely resorbed during development, then there is nothing left on the right side to drag the inferior laryngeal nerve down into the torso. A person with this setup will have an inferior laryngeal nerve on the right that looks intelligently designed, and the usual dumb RLN on the left.

Can people have a nonrecurrent laryngeal nerve on the left? Sure, if they’ve got situs inversus, in which the normal bilateral asymmetry of the internal organs is swapped left to right. Situs inversus is pretty darned rare in the general population, occurring in fewer than 1 in 10,000 people. It is much more prevalent in television shows and movies, where the hero or villain may survive a seemingly mortal wound and then explain that he was born with his heart on the right side. (Pro tip: the heart crosses the midline in folks of both persuasions, so just shoot through the sternum and you’ll be fine. Or, if you’re worried about penetration, remember Rule #2 and put one on either side.) Anyway, take everything I wrote in the preceding paragraph, mirror-image it left to right, and you’ve got a nonrecurrent laryngeal nerve on the left. But just like the normally-sided person who still has an RLN on the left, a person with situs inversus and no remnant 4th aortic arch on the left (double variation alert!) still has an RLN looping around the aorta and ductus arteriosus on the right.

Bottom line: replumb the vessels to your arms, swap your organs around willy-nilly, you just can’t beat the aorta. If you have an aorta, you’ve got at least one RLN; if you don’t have an aorta, you’re dead, and no longer relevant to this discussion.

Nonrecurrent laryngeal nerves–a developmental Hail Mary?

But wait–how do we know that the inferior laryngeal nerve in embryonic sauropods didn’t get rerouted to travel in front of the fourth and sixth aortic arches, so it could be spared the indignity of being dragged into the chest later on?

First of all, such a course would require that the inferior laryngeal nerve take an equally dumb recurrent course in the embryo. Or maybe it should be called a procurrent course. Instead of simply radiating out from the central nervous system to its targets in the sixth pharyngeal arch, the axons that make up the RLN would have to run well forward of their normal course, loop around the fourth and sixth aortic arches from the front, and then run back down to the sixth pharyngeal arch. There is simply no known developmental mechanism that could make this happen.

Even if we postulated some hypothetical incentive that would draw those axons into the forward U-turn, other axons that took a more direct course from the central nervous system would get to the sixth pharyngeal arch first. By the time the forwardly-recurring axons finished their intelligently-routed course and finally arrived at the sixth pharyngeal arch, all of the innervation targets would be taken, and those axons would die off.

Also, at what point in the evolution of long necks would this forwardly-looping course supposedly be called into existence? Ostriches and giraffes have RLNs that take the same recurrent course as those of humans, pigs, and all other tetrapods. The retention of the recurrent course in extant long-necked animals is further evidence that the developmental constraint cannot be broken.

Finally, the idea that a non-recurrent laryngeal nerve would need to evolve in a long-necked animal is based on the perception that long nerve pathways are somehow physiologically taxing or otherwise bad for the animals in which they occur. But almost every tetrapod that has ever lived has had much longer neurons than those in the RLN, and we all get on just fine with them.

In dire extremity

Probably you seen enough pictures of neurons to know what one looks like: round or star-shaped cell body with lots of short branches (dendrites) and one very long one (the axon), like some cross between an uprooted tree–or better yet, a crinoid–and the Crystalline Entity. When I was growing up, I always imagined these things lined up nose to tail (or, rather, axon to dendrite) all down my spinal cord, arms, and legs, like boxcars in a train. But it ain’t the case. Textbook cartoons of neurons are massively simplified, with stumpy little axons and only a few to a few dozen terminals. In reality, each neuron in your brain is wired up to 7000 other neurons, on average, and you have about a hundred billion neurons in your brain. (Ironically, 100 billion neurons is too many for your 100 billion neurons to visualize, so as a literal proposition, the ancient admonition to “know thyself” is a non-starter.)

Back to the axons. Forget the stumpy little twigs you’ve seen in books and online. Except for the ganglia of your autonomic nervous system (a semi-autonomous neural network that runs your guts), all of the cell bodies of your neurons are located in your central nervous system or in the dorsal root ganglia immediately adjacent to your spinal cord. The nerves that branch out into your arms and legs, across your face and scalp, and into your larynx are not made of daisy chains of neurons. Rather, they are bundles of axons, very long axons that connect muscles, glands, and all kinds of sensory receptors back to the nerve cell bodies in and around your brain and spinal cord.

Indulge me for a second and wiggle your toes. The cell bodies of the motor neurons that caused the toe-wiggling muscles to fire are located in your spinal cord, at the top of your lower back. Those motor neurons got orders transmitted down your spinal cord from your brain, and the signals were carried to the muscles of your feet on axons that are more than half as long as you are tall.

Some of your sensory neurons are even longer. Lift your big toe and then set it down gently, just hard enough to be sure that it’s touching down on the floor or the sole of your shoe, but not hard enough to exert any pressure. When you first felt the pad of your toe touch down, that sensation was carried to your brain by a single neuron (or, rather, by several neurons in parallel) with receptor terminals in the skin of your toe, axon terminals in your brainstem, and a nerve cell body somewhere in the middle (adjacent to your sacrum and just a bit to one side of your butt crack, if you want the gory details). That’s right: you have individual sensory neurons that span the distance from your brainstem to your most distal extremity. And so does every other vertebrate, from hagfish to herons to hippos. Including, presumably, sauropods.

I had you set your toe down gently instead of pushing down hard because the neurons responsible for sensing pressure do not travel all the way from toe-tip to brainstem; they synapse with other neurons in the spinal cord and those signals have been through a two-neuron relay by the time they reach your brainstem. Ditto for sensing temperature. But the neurons responsible for sensing vibration and fine touch go all the way.

If you want to experience everything I’ve discussed in this post in a single action, put your fingertips on your voicebox and hum. You are controlling the hum with signals sent from your brain to your larynx through your recurrent laryngeal nerves, and sensing the vibration through individual neurons that run from your fingertips to your brainstem. Not bad, eh?

Wedel (2012) Fig. 2. The longest cells in the bodies of sauropods were sensory neurons that connected receptors in the skin of the extremities with interneurons in the brainstem, a pattern of neural architecture that is present in all extant vertebrates. The nerve cell bodies would have been located in the dorsal root ganglia adjacent to the spinal cord. The diagram of the neuron is based on Butler and Hodos (1996: fig. 2–1B).

Getting back to big animals: the largest giraffes may have 5-meter neurons in their RLNs, but some of the sensory neurons to their hindfeet must be more like 8 meters long. I don’t think anyone’s ever dissected one out, but blue whales must have sensory neurons to the tips of their flukes that are almost 30 meters (98 feet) long (subtract the length of the skull, but add the lateral distance from body midline to fluke-tip). And Supersaurus, Amphicoelias, and the like must have had neurons that were approximately as long as they were, minus only the distance from the snout-tip to the back of the skull. I could be wrong, and if I am I’d love to be set straight, but I think these must have been the longest cells in the history of life.

Oh, one more thing: up above I said that almost every tetrapod that has ever lived has had much longer neurons than those in the RLN. The exceptions would be animals for which the distance from brainstem to base of neck was longer than the distance from base of neck to tip of limb or tail, so that twice the length of the neck would be longer than the distance from base of skull to most distal extremity. In that case, the neurons that contribute to the RLN would be longer than those running from brainstem to tail-tip or toe-tip. Tanystropheus and some of the elasmosaurs probably qualified; who else?

Parting Thoughts

In this post I’ve tried to explain the courses that these amazingly long cells take in humans and other vertebrates. I haven’t dealt at all with the functional implications of long nerves, for which please see the paper. The upshot is that big extant animals get along just fine with their crazy-long nerves, and there’s no reason to assume that sauropods were any more troubled. So why write the paper, then? Well, it was fun, I learned a lot (dude: axoplasmic streaming!), and most importantly I got to steal a little thunder from those silly poseurs, the giraffes.

Department of Frivolous Nonsense: yes, I titled the paper after those TV ads for Chili’s hamburgers from a few years back. If you never saw them, the ads compared mass-produced, machine-stamped fast-food burgers with restaurant burgers painstakingly built by hand, and concluded with, “Chili’s Big-Mouth Burgers: monuments of inefficiency!”

Update: All of this is out of date now that the paper has been formally published. Department of Good Karma: since the paper is at the “accepted manuscript” stage, I still have the chance to make (hopefully minor) changes when I get the proofs. As is always, always, always the case, I caught a few dumb errors only after the manuscript had been accepted. Here’s what I’ve got so far, please feel free to add to the list:

  • Page 1, abstract, line 3: pharyngeal, not pharyngial
  • Page 1, abstract, line 8: substitute ‘made up’ for ‘comprised’
  • Page 6, line 12: substitute ‘make up’ for ‘comprise’
  • Page 9, line 5: citation should be of Carpenter (2006:fig. 3), not fig. 2
  • Page 10, line 7: “giant axons of squid are”, not ‘ares’
  • Page 12, entry for Butler and Hodos should have year (1996)
  • Page 12, entry for Carpenter has ‘re-evaluation misspelled
  • Page 16, entry for Woodburne has ‘mammalian’ misspelled

(Notes to self: stop trying to use ‘comprise’, lay off the ‘s’ key when typing bibliography.)

References

I recently stumbled across this rather good photograph of the holotype vertebra of our old buddy “Ultrasauros“, thanks to Wikipedia contributor Ninjatacoshell, and thought you’d like to see it:

This is a rather legendary vertebra, but until recently there were no good photographs of it on the web (I know because I tried to find one for my talk at the Dinosaurs: A Historical Perspective conference in 2008).

See It’s Ultrasaurus… I mean, um, Ultrasauros… err, Supersaurus! for the now-traditional run-down of the taxonomic mess surrounding this specimen.

In other news, everyone in palaeontology should read Heinrich Mallison’s recent article No 4WD For Plateosaurus over on the Palaeontologia Electronica blog.  He highlights a lot of important issues that have general applicability.

Well, this is frustrating.  Over on the VRTPALEO mailing list, all the talk at the moment is of the new paper by Henry Galiano and Raimund Albersdörfer (2010), describing their rather comically named new species Amphicoelias brontodiplodocus.  And to be fair, the material they’re describing is sensational, and the photographs in the paper are pretty good.

 

Galiano and Albersdorfer (2010:fig 10A-B): Above, cervical vertebrae 7-10 of Amphicoelias brontodiplodocus specimen DQ-TY; below, corresponding cervical vertebrae of Diplodocus carnegii holotype CM 84, modified from Hatcher (1901: plate III)

 

But I don’t want to talk about that.

There are other things I do want to talk about, but I can’t help feeling that whatever else we cover here at the moment, everyone is going to be thinking “Yes, but what about Amphicoelias brontodiplodocus?”  So I don’t think I can go on to write about the things I want to before we’ve at least acknowledged the existence of this paper.

And yet, and yet …  I have so many problems with this paper, even before we get to the controversial part, namely the conclusion that Diplodocus, Barosaurus, Apatosaurus, SupersaurusSuuwassea, Tornieria and Eobrontosaurus are all congeneric with Amphicoelias — more precisely, conspecific with the single species Amphicoelias altus.

Aside from the a priori unlikelihood of that, we have these problems:

  • First, and maybe most important, the specimens described in this paper are all privately owned, so whatever conclusions might be gleaned from examining them are not replicable by other scientists.  For the Society of Vertebrate Paleontology, that’s a deal-breaker right there (and I am in full agreement).
  • Second, the new paper doesn’t seem to be published: at least, no-one’s yet claimed that it exists in numerous identical hardcopies, so for ICZN purposes the new name is a nomen nudum.  (That will surely change, though: I am confident that Dinosauria International, LLC are perfectly capable of printing off a hundred copies and sending them out to libraries.)
  • Third, the paper doesn’t seem to have been peer-reviewed: at least, there’s nothing in the acknowledgements that indicates that it was.  It doesn’t seem to have been edited in anything like the usual sense either.
  • Fourth, there is mechanical evidence of enormous sloppiness in the composition of the paper.  For example, many cited papers are not included in the REFERENCES CITED section, and most of the references that are included are not in fact cited in the paper.  As an example, my own Taylor et al. (2009) is cited but not referenced, while Taylor and Naish (2005) is referenced but not cited.  Lots of Upchurch papers in the bibliography are never cited.  That doesn’t give me confidence about the rest of the work.
  • Likewise, the paper is rife with typos and grammar errors, such as this from page 28: “A. louisae is by far the most widely acclaimed example, and B. excelsus skeleton mounted and exhibited in the Peabody museum. Despite the familiarity of these Apatosaurus specimens various aspects of it [sic] skeleton remain poorly known.”  Not a killer, but again it doesn’t give me confidence.
  • brontodiplodocus” is a stupid name.

Against that backdrop, consider the radical taxonomic hypothesis.  All Morrison formation diplodocids (and some from elsewhere) are considered to belong to a single species, Amphicoelias altus … except for the new specimens, which belong to the new and separate species A. brontodiplodocus.  In other words, we’re being asked to believe that the new specimens are more different from all other Morrison diplodocids than any of them are from each other.  And yet we’re brought to this conclusion by the very animals that are apparently not as similar.  It’s as though I discovered dogs, and thereby concluded that lions, cheetahs and house-cats are are all the same species.

So this is not just a matter of extreme taxonomic lumping: it’s weirder than that.  It’s “all the other stuff is just a single species except the one we’ve discovered which is different”.

The point

As Tom Holtz is fond of saying, extraordinary claims demand extraordinary evidence.  I’m not going to come out and say it’s impossible that all Morrison diplodocids except the new specimens were conspecific.  But if I were the one setting out to propose such a heterodox hypothesis, I would do myself every possible favour: I’d do it from properly accessioned specimens in public museums, I’d publish in a recognised peer-reviewed journal, I’d take care to get my nomenclature right, match up my citations and references, and generally dot the i’s and cross the t’s.

Until that’s done with this new material, I’m not sure there’s much point in investing a lot more effort in evaluating the phylogenetic/taxonomic claims.

(Henry, I know you’re an occasional reader here.  Sorry to be so negative, but I’m sure you’ll understand that I have to call ‘em as I see ‘em.)

References

Dorsal vertebrae from Argentinosaurus (center) and Supersaurus (either side). The vert on the left is the holotype of Ultrasauros, and the one on the right is the holotype of Dystylosaurus, but both of those taxa have been sunk into Supersaurus. Found on teh intert00bz.

As often happens here, a comment thread got to be more interesting than the original post and ended up deserving a post of its own. In this case, I’m talking about the thread following the recent Mamenchisaurus tail club post, which got into some interesting territory regarding mass estimates for the largest sauropods. This post was inspired by a couple of comments in particular.

Zach Armstrong wrote:

I don’t trust Mazzetta et al.’s (2004) estimate, because it is based off of logarithmic-based regression analyses of certain bone lengths, which a recent paper by Packard et al. (2009) have shown to overestimate the mass by as much as 100 percent! This would mean the estimate of 73 tonnes given my Mazzetta would be reduced to 36 tonnes.

To which Mike replied:

Zach, Mazzetta et al. used a variety of different techniques in arriving at their Argentinosaurus mass estimate, cross-checked them against each other and tested their lines for quality of fit. I am not saying their work is perfect (whose is?) but I would certainly not write it off as readily as you seem to have.

Weeeeell…Mazzetta et al. did use a variety of measurements to make their mass estimates, but they did it in a way that hardly puts them above criticism. First, their estimates are based on limb-bone allometry, which is known to have fairly low accuracy and precision (like, often off by a factor of 2, as Zach noted in his comment). Second, the “raw data” for their allometric equation consists of volumetric mass estimates. So their primary estimation method was calibrated against…more estimates. Maybe I’m just lazy, but I would have skipped the second step and just used volumetric methods throughout. Still, I can see the logic in it for critters like Argentinosaurus where we have limb bones but no real idea of the overall form or proportions of the entire animal.

Anyway, the accuracy of their allometric estimates is intertwingled with their volumetric results, so if their volumetric estimates are off…. The volumetric estimates used a specific gravity of 0.95, which to me is unrealistically high. Taking into account the skeletal pneumaticity alone would lower that to 0.85 or 0.8, and if the critter had air sacs comparable to those of birds, 0.75 or even 0.7 is not beyond the bounds of possibility (as discussed here and also covered by Zach in his comment).

Now, Mazzetta et al. (2004) were not ignorant of the potential effects of pneumaticity. Here’s  what they wrote about density (p. 5):

The values from Christiansen (1997) were recalculated using a slightly higher overall density (950 kg/m^3), as the 900 kg/m^3 used in that paper may be slightly too low. Most neosauropods have extensively pneumatised vertebrae, particularly the cervicals, which would tend to lower overall density. However, these animals are also very large, implying a proportionally greater amount of skeletal tissue (Christiansen, 2002), particularly appendicular skeletal tissue, and consequently, they should have had a higher overall density.

This is pretty interesting: they are arguing that the positive allometry of skeletal mass as a fraction of body mass–which is well documented in extant critters–would offset the mass reduction from pneumaticity in animals as big as sauropods. I haven’t given that enough thought, and I definitely need to. My guess–and it is a guess–is that the effects of skeletal allometry were not enough to undo the lightening imposed by both PSP (~10%) and pulmonary air sacs (another ~10%, separate from the lungs), but I haven’t done any math on this yet. Fodder for another post, I reckon.

Getting back to Mazzetta et al., some of the volumes themselves strike me as too high, like ~41,500 liters for HM SII. That’s a LOT more voluminous than Greg Paul, Don Henderson, or Mike found for the same critter. The 16 metric ton Diplodocus and 20.6 metric ton Apatosaurus used by Mazzetta et al. are also outside the bounds of other recent and careful estimates. Not necessarily wrong, but definitely at the upper end of the current spectrum.

Mazzetta et al. got a mass estimate of 73,000 kg for Argentinosaurus, but (1) they used a density that I think is probably too high even if skeletal allometry is considered, (2) at least some of the volumetric mass estimates that form the “data” for the limb-bone regressions are probably too high, and (3) even if those problems were dealt with, there is still the general untrustworthiness of limb-bone regression as a mass estimation technique. 1 and 2, if fixed to my satisfaction, would tend to push the estimated mass of Argentinosaurus down, perhaps significantly (the effect of 3 is, if not unknowable, at least unknown to me). Given that, Zach’s ~52 metric ton estimate for Argentinosaurus is very defensible. (Probably worth remembering that I am a sparse-wing fanatic, though.)

None of this means that Mazzetta et al. (2004) were sloppy or that their estimate is wrong. Indeed, one of the reasons that we can have such a deep discussion of these points is that every link in their chain is so well documented. And there is room for honest disagreement in areas where the fossils don’t constrain things as much as we’d like. You cannot simply take a skeleton, even a complete one, and get a single whole-body volume. The body masses of wild animals often fluctuate by a third over the course of a single year, which pretty well buries any hope of getting precise estimates based on skeletons alone. And no one knows how dense–or sparse–sauropods were. I haven’t actually done any math to gauge the competing effects of skeletal allometry on one hand and PSP and air sacs on the other–and, AFAIK, no one else has either (Mazzetta et al. were guessing about pneumaticity as much as I’m guessing about skeletal allometry). Finally, Argentinosaurus is known from a handful of vertebrae and a handful of limb bones and that’s all, at least for now. If we can’t get a single body volume even when we have a complete skeleton, we have to get real about how precise we can be in cases where we have far less material.

The upshot is not that Argentinosaurus massed 73 metric tons or 52 or any other specific number. As usual, the two-part take home message is that (1) mass estimates of sauropods are inherently imprecise, so all we can do is make our assumptions as clear as possible, and (2) even the biggest sauropods might have been smaller than you think. ;-)

Reference

Mazzetta, G.V., Christiansen, P., and Farina, R.A. 2004. Giants and bizarres: body size of some southern South American Cretaceous dinosaurs. Historical Biology 2004:1-13.

Here’s one of those text-light photo posts that we always aspire to but almost never achieve. In the spring of 2008 I flew to Utah to do some filming for the History Channel series “Evolve”, in particular the episode on size, which aired later that year. I always intended to post some pix from that trip once the show was done and out, and I’m just now getting around to it…a bit belatedly.

Utah 2008 01 mountains from museum door

Here’s the view out the back door of the BYU Earth Sciences Museum in Provo, Utah. Not bad–the mountains actually made me drag my eyes away from sauropod vertebrae for a few seconds here and there.

Utah 2008 02 Brooks driving forklift

Here’s the view in other direction, with Brooks  Britt using a forklift to retrieve the big Supersaurus cervical.

Utah 2008 03 Supes and giraffe

And here is said cervical, with a mid-cervical of a giraffe for scale. You may remember the big cervical from this post (and if you click that link, notice how much nicer the new collections area is than the off-site barn where I first encountered the Cervical of Doom). Sauropods FTW!

Utah 2008 04 taping down Diplo vert

While the film crew were shooting Brooks and picking up some establishing shots, I was ransacking the collections for pretty vertebrae. We took our treasures up to the University of Utah med center in Salt Lake for CT scanning. Here Kent Sanders is helping me tape down a Diplodocus cervical.

Utah 2008 05 Kent in reading room

And here’s Kent in the CT reading room playing with the data. Like old times–I spent most of my Saturdays in 1998 and 1999 scanning verts with Kent when he was at the University of Oklahoma Health Sciences Center.

Utah 2008 06 NAMAL main drag

The next morning we went to the North American Museum of Ancient Life in Lehi. Here’s a view down the main drag, with the mounted Supersaurus on the left, mounted Brachiosaurus in the center, and original Supersaurus sacrum (on loan from BYU) in the case on the right.

Utah 2008 07 Matt in lift

The highlight of my day trip year.

I was back at BYU just a few months ago shooting another documentary, but that story will have to wait for the dramatically appropriate moment. Stay tuned!

More out than in

November 24, 2009

I drew a couple of these a while back, and I’m posting them now both to fire discussion and because I’m too lazy to write anything new.

Apato neck v2 480

Here’s the neck of Apatosaurus, my own reconstruction based on Gilmore (1936), showing the possible paths and dimensions of continuous airways (diverticula) outside the vertebrae.

Lovelace et al fig 4 480

Here’s figure 4 from Lovelace et al. (2007), which first got me thinking about pneumatic traces on the ventral surfaces of the centra and what they might imply. You can see pneumatic spaces between the parapophyses in Supersaurus (A) and Apatosaurus (C) but not in Barosaurus (B).

Apatosaurus-soft-tissues v3 480

This is another of my moldy oldies, again based on one of Gilmore’s pretty pictures, showing how I think the soft tissues were probably arranged. The muscles are basically the technicolor version of Wedel and Sanders (2002). Two points:

  1. How bulky you make the neck depends mainly on how much muscle you think was present (which of course depends on how heavy you think the neck was…). Here I was just trying to get the relationships right without worrying about bulk, but it’s worth considering.
  2. The volume of air inside the vertebra was dinky compared to the probable volume of air outside. In Apatosaurus, either of the canals formed by the transverse foramina has almost twice the cross-sectional area of the centrum.

A fair amount of this has been superseded with better data and prettier pictures by Schwarz et al. (2007), so don’t neglect that work in any ensuing discussion (it’s free, fer cryin’ out loud). And have a happy Thanksgiving!

References

Postscript

Mike asked me to add the labeled version of Nima’s brachiosaur parade, so here you go. Click to embiggen.

Follow

Get every new post delivered to your Inbox.

Join 346 other followers