Awesome things, that’s what. In a previous post I asked people to make cool things with Aquilops. And you have. In spades. Here’s a compilation of the best things so far.

Aquilops sketch by Mike Keesey

First, a blast from the past. As far as I know, the first life restoration of Aquilops was actually this sketch by Mike Keesey, which he executed while sitting in the audience for Andy Farke’s talk on our not-yet-named ceratopsian at SVP 2013. Mike kindly sat on it for over a year, and then posted it to his Flickr stream after the paper came out last month. A small adventure ensued – a site called News Maine (which I refuse to link to) used Mike’s image without his knowledge or permission in their Aquilops article. When he wrote to them and pointed out their breach, they swapped his image for one of Brian Engh’s, but still did not provide an image credit! Now their Aquilops article appears to have been taken down entirely. Good riddance.

Mike says of his Aquilops, “I’d like to make it clear that it was done from looking at a slide during a talk and not meant to be rigorous or accurate.” But I dig it (and I did get his permission to repost it!). It has character – it looks weary, maybe a little grumpy, like a pint-size curmudgeon. And it definitely wants you kids to get off its damn lawn. If you want to see more of Mike’s sketches in this style from SVP 2013 – and you should, they’re very good – go here.

Extreme Aquilops papercraft skull by Gareth Monger

Dinosaur skull or starfighter? You decide!

Second, people have taken the paper skull I posted before and used it as the raw material for significantly more awesome versions. Gareth Monger made the more-fully-3D version shown here, and posted about it at his Pteroformer blog. I think it’s totally wicked, and I’d make my own if I had the patience and skill.

Aquilops puppet - Alf museum

But I don’t. Fortunately, there is help for me: Kathy Sanders, the Director of Outreach at the Raymond M. Alf Museum here in Claremont (where Aquilops lead author Andy Farke is based), took my skull drawings and turned them into a papercraft finger puppet suitable for all ages. I know it’s suitable for all ages because at the Alf Museum’s Family Science Discovery Day last Saturday, almost every one of many children going through the museum had an Aquilops puppet on one hand. London and I each made one, and we spent a lot of time Saturday evening goofing off with them.

IMG_3273

Alas, poor Aquilops! I knew him, readers; a fellow of minuscule crest, of most excellent beak; he hath borne my career on his head a whole month; and now, how adored in my imagination he is!

You can see a little video of the puppet in action on Ashley Hall’s Tumblr, Lady Naturalist. And you can get the files to make your own from the Alf Museum website, here. You’ll also need a couple of brads to make the jaw hinge joints, and a smaller-than-normal hole punch is handy for making the holes, but ultimately any method that produces a small, round hole will work.

Finished-Aquilops-2 by James Appleby

Heads not enough for you? Want a complete Aquilops to call your own? You are in luck – not one but two such critters have emerged from the virtual undergrowth. James Appleby, a 16-year-old who blogs at Edaphosaurus.com, did something that would not have occurred to me in a million years: he took the baby Aquilops (Aquilopses?) from Brian Engh’s awesomely detailed Cloverly environment scene and made a paper model. It’s a great example of how releasing something under an open license – in this case CC-BY – encourages people to do cool new things with your work. You can get the parts here.

Aquilops paper toy by Gareth Monger

Want something cuter? Try this papercraft Aquilops toy, another creation of the apparently indefatigable Gareth Monger. Post and parts here. I love Gareth’s concluding exhortation: “Edit it, share it, distribute it. Keep it fun and keep it free.” That’s practically the Aquilops motto.

I’m probably just scratching the surface here. I know there has been a flowering of awesome Aquilops restorations on DeviantART. David Orr has an adorkable ‘Pixel Aquilops t-shirt on Redbubble. Tell me what else is out there, and keep making new stuff. Let’s keep this thing rolling.

And a big thank you to Mike, Gareth, Kathy, Ashley, and James for making cool Aquilops stuff and posting it for people to see and build. You all rock.

Aquilops wants to play

December 28, 2014

Here are three fun things to do with Aquilops, in descending order of how much gear they require.

Aquilops printed fossil skull

1. Print your own Aquilops fossil.

Got access to a 3D printer? Download the 3D models of the holotype skull, OMNH 34557, that we published as supplementary info with the paper, and rock out. Here’s a test print that the guys in our scientific visualization center made for me. I gotta tell you, after 18 and a half years of sauropods, it’s very satisfying to have a holotype I can shove in my pocket. UPDATE a few weeks later: read Zach Miller’s post about his 3D-printed Aquilops holotype, it’s cool.

Want a bigger challenge? If you printed it in steel or titanium, it would probably make a decent bottle opener. Just sayin’.

Aquilops paper skull assembled2. Cut and fold your own Aquilops skull.

Got access to a regular printer? Download these files, print, cut, fold, and enjoy:

Aquilops cut-and-fold – 2 small skulls. Should print 2 skulls at about life size on regular 8.5 x 11 or A4 paper. Warning: they’re small.

Aquilops cut-and-fold – 1 large skull. Warning: still not very big.

I found that regular printer paper is too flimsy to really hold the shape, so I built mine an endoskeleton (endoskull?) out of bits of cut up file folder. Just about anything would work. Teaching a course in which Aquilops could be relevant (which is all of them)? Have your students roll their own paper skulls, and use them as a springboard for talking about dinosaurs or evolution or anatomy or current events or whatever tickles your fancy.

Want a bigger challenge? My cut-and-fold skull is the epitome of laziness: I just mirror-image duplicated my lateral view and sandwiched the dorsal view in between. You could definitely make a better one, and with all of the free Aquilops data online, you have all the raw material you need. If you come up with something good, let me know in the comments and I’ll feature it in a later post.

Aquilops reconstructed skull 3D model screenshot

This is not the model, this is just a screenshot. But when you go to the link below, the 3D model will load in a window that looks just like this. Model by Garrett Stowe, copyright and courtesy of the Sam Noble Oklahoma Museum of Natural History.

3. Play with the 3D models.

No access to a printer of any sort? Well, you can still have fun with Aquilops in your browser and on your hard drive. If you want to see the holotype specimen as it looks today, there are 3D PDFs in the paper’s supplementary info. But if you haven’t been to the OMNH Aquilops page to play with the model of the complete, uncrushed skull that Garrett Stowe made, go do that now. On the same page is a 3D life restoration of Aquilops, also by Garrett Stowe. Both models are awesome, and Garrett is still working on them so they’ll be even better soon.

Want a bigger challenge? Surprise me. We made Aquilops freely available to the world, so you can take any and all of the stuff that we published – the figures from the paper, Brian Engh’s artwork, the 3D models of the fossil – and make cool new things that we haven’t thought of. C’mon, let’s play.

As I mentioned in my first post on Aquilops, I drew the skull reconstructions that appear in figure 6 of the paper (Farke et al. 2014). I’m writing this post to explain that process.

We’ve blogged here before about the back-and-forth between paleontologists and artists when it comes to reconstructing and restoring extinct animals (example 1, example 2). Until now, I’ve always been the guy making suggestions about the art, and asking for changes. But for the Aquilops project, the shoe was on the other foot: Andy Farke was my ‘client’, and he had to coach me through drawing a basal ceratopsian skull – a subject that I was definitely not familiar with.

Aquilops skull - Farke et al 2014 figure 3

I started from the specimen, OMNH 34557, which is more complete than you might think at first glance. The skull is folded over about 2/3 of the way up the right orbit, so in lateral view it looks like the top of the orbit and the skull roof are missing. They’re actually present, just bent at such a sharp angle that they’re hard to see at the same time as the lateral side of the skull.

Archaeoceratops lateral

I also used a cast skull of Archaeoceratops as a reference – it’s clear from what we have of Aquilops that the two animals were pretty similar.

Aquilops skull lateral 1 - outline

I started with this pencil outline on a piece of tracing paper.

Aquilops skull lateral 2 - rough stipple

And then I went right ahead and stippled the whole thing, without showing it to Andy until I was done. Yes, that was dumb. Noe the lack of sutures in this version.

Aquilops skull lateral 3 - rough stipple marked up

I added sutures and sent it off to Andy, who sent it back with these suggested changes. At this point I realized my error: I had already spent about a day and a half putting ink on the page, and I’d have to either start all over, or do a lot of editing in GIMP. I picked the latter course, since there were plenty of areas that were salvageable.

Aquilops skull lateral 4 - redrawn bits

Next I did something that I’d never done before, which is to redraw parts of the image and then composite them with the original in GIMP. Here’s are the redrawn bits.

Aquilops skull lateral 5 - penultimate version

With those bits composited in, and a few more tweaks to sutures, we got to this version, which was included in the submitted manuscript.

Aquilops skull lateral 6 - beak curvature issue

Then we brought Brian Engh in to do the life restorations. When Brian takes on a project, he does his homework. If you’ve seen his post on painting Aquilops, you know that all of the ferns in the Cloverly scene are based on actual fossils from the Cloverly Formation. Brian came to Claremont this summer and he and Andy and I spent most of a day at the Alf Museum looking at the specimen and talking about possible layouts for the full-body life restorations. He took a bunch of photos of the specimen while he was there, and a day or two later he sent us this diagram. He’d chopped up his photos of the skull to produce his own undistorted version to guide his painting, and in doing so he’d noticed that I had the line of the upper jaw a bit off.

Aquilops skull lateral 7 - partly revised

That required another round of digital revisions to fix. It ended up being a lot more work than the earlier round of edits in GIMP, because so many features of the skull had to be adjusted. I ended up cutting my own skull recon into about 8 pieces and then stitching them back together one by one. Here’s what the image looked like about halfway through that process. The back of the skull, orbit, and beak are all fixed here, but the snout, cheek, and maxilla don’t yet fit together.

Aquilops skull lateral 8 - final published version

After a little more work, I got the whole thing back together, and this is the final version that appears in the paper. It is not perfect – the area in front of the orbit where the frontal, nasal, maxilla, and premaxilla come together is a bit dodgy, and I’m not totally happy with the postorbital. But eventually you have to stop revising and ship something, and this is what I shipped.

Aquilops dorsal recon lineup for SV-POW

I did the dorsal view after the submitted version of the lateral view was finished. It went a lot faster, for several reasons:

  • Most of the gross proportional issues were already sorted out from doing the lateral view first.
  • The bilateral symmetry didn’t cut down on the number of dots but it did cut the conceptual workload in half.
  • I did all my roughs in pencil and didn’t start inking until after we had almost all of the details hashed out.

I did have to revise the dorsal view after getting feedback from Brian about the lateral view, but that revision was pretty minor by comparison. I stretched the postorbital region and tinkered a bit with the face and the frill, and both of those steps required putting in some new dots, but it was still just one afternoon’s worth of work. Here’s the final dorsal recon:

Aquilops dorsal skull reconstruction - final published version

In addition to the Life Lessons already noted in this post, I learned (or rather relearned) this important principle: if you do a big drawing and then shrink it down to column width, fine errors – a shaky line here, an ugly dot there – get pushed down below the threshold of perception. But there’s a cost, too, which is that uneven stippling becomes more apparent. I was skipping back and forth a lot between 25% image scale to see where the problem areas were, and 200% to revise the lines and dots accordingly.

All in all, it was a fun project. It was my most ambitious technical illustration to date, I learned a ton about ceratopsian skulls, and it was nice to get to make at least one substantial contribution to the paper.

Now, here’s the take-away: this is my reconstruction, and both of those words are important. “Reconstruction” because it has a lot of extrapolation, inference, and sheer guesswork included. “My” because you’re getting just one possible take on this. You can download the 3D files for the cranium and play with them yourselves. I hope that other artists and scientists will use those tools to produce their own reconstructions, and I fully expect that those reconstructions will differ from mine. I look forward to seeing them, and learning from them.

For other posts about my stippled technical illustrations, see:

Reference

Farke, A.A., Maxwell, W.D., Cifelli, R.L., and Wedel, M.J. 2014. A ceratopsian dinosaur from the Lower Cretaceous of Western North America, and the biogeography of Neoceratopsia. PLoS ONE 9(12): e112055. doi:10.1371/journal.pone.0112055

Check out this beautiful Lego Diplodocus:

10954093715_c4c7fe19ec_k-crop

(Click through for the full image at full size.)

I particularly like the little touch of having of bunch of Lego Victorian gentleman scientists clustered around it, though they’re probably a bit too big for the skeleton.

This is the work of MolochBaal, and all rights are reserved. You can see five more views of this model in his Flickr gallery. I especially admire how he’s managed to get the vertebral transitions pretty smooth, the careful use of separate radius/ulna and tibia/fibula, and the use of a transparent brick in the skull to represent the antorbital fenestra.

The forefeet are wrong — their toes should not be splayed out — but you can’t blame MolochBaal for that, as he was copying the mounted CM 84/94 cast in the Madrid museum.

 

We feature a lot of Brian Engh’s stuff here–enough that he has his own category. But lately he has really been outdoing himself.

The wave of awesome started last year, when Brian started posting videos showing builds and suit tests for monsters–monster suits, monster puppets, monster you-name-its. Like this monster-sculpting timelapse from last August:

And this suit test from last October:

Brian even wrote a blog post about how he builds monsters.

Things really ramped up this May with the release of “In Mountains”, the first video in a three-part series from Brian’s Earth Beasts Awaken album (which is badass, and available for free here).

If you’re thinking that the Mountain Monster has some Estemmenosuchus in its background, you are correct–that astonishing real-world critter was one of Brian’s inspirations, among many others.

More awesomeness is coming in July, when the next video, “Call to Awaken”, is slated to be released. Here’s a teaser:

I have even more exciting Brian-Engh-related news, but I am not at liberty to discuss that just yet. Hopefully sometime this fall. Stay tuned, true believers. UPDATE: Now I’m at liberty to discuss it!

 

I think it’s fair to say that this “bifurcation heat-map”, from Wedel and Taylor (2013a: figure 9), has been one of the best-received illustrations that we’ve prepared:

Wedel and Taylor 2013 bifurcation Figure 9 - bifurcatogram

(See comments from Jaime and from Mark Robinson.)

Back when the paper came out, Matt rashly said “Stand by for a post by Mike explaining how it came it be” — a post which has not materialised. Until now!

This illustration was (apart from some minor tweaking) produced by a program that I wrote for that purpose, snappily named “vcd2svg“. That name is because it converts a vertebral column description (VCD) into a scalable vector graphics (SVG) file, which you can look at with a web-browser or load into an image editor for further processing.

The vertebral column description is in a format designed for this purpose, and I think it’s fairly intuitive. Here, for example, is the fragment describing the first three lines of the figure above:

Taxon: Apatosaurus louisae
Specimen: CM 3018
Data: —–YVVVVVVVVV|VVVuuunnn-

Taxon: Apatosaurus parvus
Specimen: UWGM 155556/CM 563
Data: –nnn-VVV—V-V|VVVu——

Taxon: Apatosaurus ajax
Specimen: NMST-PV 20375
Data: –n–VVVVVVVVVV|VVVVYunnnn

Basically, you draw little ASCII pictures of the vertebral column. Other directives in the file explain how to draw the various glyphs represented by (in this case) “Y”, “V”, “u”, and “n”.

It’s pretty flexible. We used the same program to generate the right-hand side (though not the phylogenetic tree) of Wedel and Taylor (2013b: figure 2):

Wedel and Taylor (2013b: Figure 2).

Wedel and Taylor (2013b: Figure 2).

The reason I mention this is because I released the software today under the GNU General Public Licence v3.0, which is kind of like CC By-SA. It’s free for anyone to download, use, modify and redistribute either verbatim or in modified form, subject only to attribution and the requirement that the same licence be used for modified versions.

vcd2svg is written in Perl, and implemented in part by the SVG::VCD module, which is included in the package. It’s available as a CPAN module and on GitHub. There’s documentation of the command-line vcd2svg program, and of the VCD file format. Also included in the distribution are two documented examples: the bifurcation heat-map and the caudal pneumaticity diagram.

Folks, please use it! And feel free to contribute, too: as the change-log notes, there’s work still to be done, and I’ll be happy to take pull requests from those of you who are programmers. And whether you’re a programmer or not, if you find a bug, or want a new feature, feel free to file an issue.

A final thought: in academia, you don’t really get credit for writing software. So to convert the work that went into this release into some kind of coin, I’ll probably have to write a short paper describing it, and let that stand as a proxy for the actual program. Hopefully people will cite that paper when they generate a figure using the software, the way we all reflexively cite Swofford every time we use PAUP*.

Update (12 April 2014)

On Vertebrat’s suggestion, I have renamed the program VertFigure.

References

Mummified mouse - closeup

Here’s a nice thing: friends and relatives just assume (correctly) that I will want whatever dead animals they find. So I was not completely surprised when I got a call from my brother Ryan (pillager of the Earth) asking if I wanted a dead mouse he’d found mummified at the back of an unused cupboard. Happily this was over the holidays so I could get the specimen in person and not have to deal with mailing it.

This was not destined to be my mummified mouse, however. My son, London, has started a collection of his own. One of the first real skulls in his collection was that of a rat that we found dead in our front yard last year. I cut off its head and we boiled and cleaned the skull together (I still need to post about that). Then we mounted it in a clear plastic bottle that had previously contained toothpicks, so he could take it for show-and-tell. Last fall a second rat turned up dead in the yard; that one is still in the freezer, awaiting complete skeletonization. The mystery of the plague of dead rats was solved when we got home one evening and found our cat, Moe, in the front yard with only the hind leg of a third rat hanging out of his mouth. If I could just train him to kill them and not eat them, we could make a rat army

Funny side-note: we keep Skulls Unlimited catalogs around for leisure reading. London was looking through one not long after we prepped his rat skull and he saw that you could get a fully-prepared natural bone skull for about twenty bucks. That price seems about right to me, given the amount of work and care that has to go into cleaning, but London was outraged: “Why would people pay TWENTY DOLLARS for a rat skull when they could just clean their own!?”

That’s my boy! I didn’t have the heart to tell him that some people don’t have a ready supply of rats lying around. He’s not old enough to understand that level of deprivation.

Mummified mouse - in box

So, obviously the mummified mouse was going to show-and-tell. But I didn’t want it to get destroyed. My cheap and low-tech solution was to get a rigid plastic display box from the local hobby store ($5.99 for a two-pack) and stuff it with cotton balls. We cleared some of the cotton around the skull first so it would be more visible. Knowing how third-graders can be when exciting things get passed around, I also glued the lid on. The mouse and the cotton balls are completely immobile even when violently shaken, and hopefully they’ll stay that way indefinitely. I forgot to include a scale bar in either of these photos or to measure my damned murine, but the box lid is 5 inches on side. HeroClix Knifehead showed up because kaiju are notorious attention hogs.

Now, to see if Mousenkhamun can survive the rigors of third grade. I’ll keep you posted.

Follow

Get every new post delivered to your Inbox.

Join 439 other followers