Life restoration of Aquilops by Brian Engh. Farke et al. (2014: fig. 6C). CC-BY.

Life restoration of Aquilops by Brian Engh. Farke et al. (2014: fig. 6C). CC-BY.

Today sees the description of Aquilops americanus (“American eagle face”), a new basal neoceratopsian from the Cloverly Formation of Montana, by Andy Farke, Rich Cifelli, Des Maxwell, and myself, with life restorations by Brian Engh. The paper, which has just been published in PLOS ONE, is open access, so you can download it, read it, share it, repost it, remix it, and in general do any of the vast scope of activities allowed under a CC-BY license, as long as we’re credited. Here’s the link – have fun.

Obviously ceratopsians are much more Andy’s bailiwick than mine, and you should go read his intro post here. In fact, you may well be wondering what the heck a guy who normally works on huge sauropod vertebrae is doing on a paper about a tiny ceratopsian skull. The short, short version is that I’m here because I know people.

OMNH 34557, the holotype of Aquilops

OMNH 34557, the holotype of Aquilops

The slightly longer version is that OMNH 34557, the holotype partial skull of Aquilops, was discovered by Scott Madsen back in 1999, on one of the joint Cloverly expeditions that Rich and Des had going on at the time. That the OMNH had gotten a good ceratopsian skull out of Cloverly has been one of the worst-kept secrets in paleo. But for various complicated reasons, it was still unpublished when I got to Claremont in 2008. Meanwhile, Andy Farke was starting to really rock out on ceratopsians at around that time.

For the record, the light bulb did not immediately go off over my head. In fact, it took a little over a year for me to realize, “Hey, I know two people with a ceratopsian that needs describing, and I also know someone who would really like to head that up. I should put these folks together.” So I proposed it to Rich, Des, and Andy in the spring of 2010, and here we are. My role on the paper was basically social glue and go-fer. And I drew the skull reconstruction – more on that in the next post.

One of the world's smallest ceratopsians meets one of the largest: the reconstructed skull of Aquilops with Rich Cifelli and Pentaceratops for scale.

One of the world’s smallest ceratopsians meets one of the largest: the reconstructed skull of Aquilops with Rich Cifelli and Pentaceratops for scale. Copyright Leah Vanderburg, courtesy of the Sam Noble Oklahoma Museum of Natural History.

Anyway, it’s not my meager contribution that you should care about. I am fairly certain that, just as Brontomerus coasted to global fame on the strength of Paco Gasco’s dynamite life restoration, whatever attention Aquilops gets will be due in large part to Brian Engh’s detailed and thoughtful work in bringing it to life – Brian has a nice post about that here. I am very happy to report that the three pieces Brian did for us – the fleshed-out head that appears at the top of this post and as Figure 6C in the paper, the Cloverly environment scene with the marauding Gobiconodon, and the sketch of the woman holding an Aquilops - are also available to world under the CC-BY license. So have fun with those, too.

Finally, I need to thank a couple of people. Steve Henriksen, our Vice President for Research here at Western University of Health Sciences, provided funds to commission the art from Brian. And Gary Wisser in our scientific visualization center used his sweet optical scanner to generate the hi-res 3D model of the skull. That model is also freely available online, as supplementary information with the paper. So if you have access to a 3D printer, you can print your own Aquilops – for research, for teaching, or just for fun.

Cloverly environment with Aquilops and Gobiconodon, by Brian Engh (CC-BY).

Cloverly environment with Aquilops and Gobiconodon, by Brian Engh (CC-BY).

Next time: Aquilöps gets röck döts.

Reference

Farke, A.A., Maxwell, W.D., Cifelli, R.L., and Wedel, M.J. 2014. A ceratopsian dinosaur from the Lower Cretaceous of Western North America, and the biogeography of Neoceratopsia. PLoS ONE 9(12): e112055. doi:10.1371/journal.pone.0112055

Apatosaurus1B

We’ve blogged a lot of Bob Nicholls‘ art (here, here, and here) and we’ll probably continue to do so for the foreseeable future. We don’t have much choice: he keeps drawing awesome things and giving us permission to post them. Like this defiantly shaggy Apatosaurus, which was probably the star of the Morrison version of Duck Dynasty. Writes Bob:

On my way home at the airport I did a sketch of your giant Apatosaurus* — see attachment.  My thought was that massive thick necks were probably pretty sexy things to apatosaurs, so maybe sexually mature individuals used simple feathers (stage 1, 2 or 3?) to accentuate the neck profile.  The biggest males would of course have the most impressive growths so in the attached sketch your giant has one of the biggest beards in Earth’s history!  What do you think of this idea?

Well, I think it’s awesome. And entirely plausible, for reasons already explained in this post.

“Now, wait,” you may be thinking, “I thought you guys said that sauropod necks weren’t sexually selected.” Actually we made a slightly different point: that the available evidence does not suggest that sexual selection was the primary driver of sauropod neck elongation. But we also acknowledged that biological structures are almost never single-purpose, and although the long necks of sauropods probably evolved to help them gather more food, there is no reason that long necks couldn’t have been co-opted as social billboards. This seems especially likely in Apatosaurus, where the neck length is unremarkable** but the neck fatness is frankly bizarre (and even inspired a Star Wars starfighter!).

I also love the “mobile ecosystem” of birds, other small dinosaurs, and insects riding on this Apatosaurus or following in its train. It’s a useful reminder that we have no real idea what effect millions of sauropods would have on the landscape. But it’s not hard to imagine that most Mesozoic terrestrial ecosystems were sauropod-driven in a thousand cascading and ramifying chains of cause and effect. I’d love to know how that worked. At heart, I’m still a wannabe chrononaut, and all my noodlings on pneumaticity and sauropod nerves and neural spines and so on are just baby steps toward trying to understand sauropod lives. Safari by way of pedantry: tally-ho!

For other speculative apatosaurs, see:

* “My” giant is the big Oklahoma Apatosaurus, which I gave a talk on at SVPCA a couple of weeks ago. See these posts for more details (123).

** Assuming we can be blasé about a neck that is more than twice as long (5 m) as a world-record giraffe neck (2.4 m), for garden variety Apatosaurus, or three times that length for the giant Oklahoma Apatosaurus (maybe 7 m).

Last Sunday I got to hang out with Brian Engh and some of his friends in LA. You may remember Brian from thisthis, this, this, and, most notoriously, this. We got to drawing dinosaurs, naturally.

Now, for me to try to draw dinosaurs next to Brian is more than a little intimidating. I really felt the need to bring my A-game. So this is what I came up with. I’m posting it not because I think it is particularly likely* but because the blog has been a little sauropod-lite this summer, and heck, it’s Friday.

Engh-ed out brachiosaur

* Although frigatebirds and anoles and such might have some things to say about that.

Trust me, you want to click for the full effect.

Trust me, you want to click for the full effect.

This post is just an excuse for me to show off Brian Engh’s entry for the All Yesterdays contest (book here, contest–now closed–here). The title is a reference to this post, by virtue of which I fancy myself at least a spear-carrier in what I will grandly refer to as the All Yesterdays Movement.

Oddly enough, I don’t have a ton to say about this; I think Brian has already explained the thinking behind the piece sufficiently on his own blog. In the brave new world of integumentarily enhanced ornithodirans, these diamantinasaurs are certainly interesting but not particularly outlandish (Brian’s already done outlandish). And it’s pretty darned hard to argue that sauropods never went into caves, although I can’t off the top of my head think of any previous spelunking sauropods (I’m not counting Baylene in Disney’s Dinosaur; feel free to refresh my memory of others in the comments). The glowworms are not proven, but biogeographically and stratigraphically plausible, which is probably as good as we’re going to get given the fossilization potential of bioluminescence.

I’m much more excited about this as a piece of art. I got to see a lot of the in-progress sketches and they were wonderful, with some very tight, detailed pencil-work. The danger in investing that kind of effort is that then you’re tempted to show it off, and if I had any worry about the finished piece, it was that it would be over-lit to show off all the details. But it isn’t. I can tell you from seeing the pencil sketches that the detail went all the way down, but Brian was brave enough to let some of that go, especially on the animals’ legs, to get the lighting effect right. My favorite touches are the reflections in the water, and the fallen pillar in the foreground–toppled by a previous visitor, perhaps–with new mineral deposits already forming on it.

All in all, it takes me back to the best paleoart from my childhood, which made me think, “Wow, these were not monsters or aliens, they were real animals, as real, and as mundane in their own worlds, as deer and coyotes and jackrabbits.” * **

And that’s pretty cool. What do you think?

———-

* Okay, maybe not  in those exact words. I am translating a feeling I had when I was nine through 28 years of subsequent experience and vocabulary expansion.

** My major discovery in the last two decades is that deer and coyotes and jackrabbits are just as exotic as dinosaurs, if only you learn to really see them. And before Mike jumps me for saying that, I said ‘just as exotic’, not ‘just as awesome‘.

UPDATE the next day

If you thought the glowworms were unrealistic–and at least one commenter did–check these out (borrowed from here, pointed out by Brian):

NZ121877D6

NZ121864D6

That’s game, set, and match on the glowworm issue.

Fuzzy Apato Juvenile by Niroot

Well, this is rad. And adorable. Brian Switek, whom we adore, commissioned a fuzzy juvenile sauropod from Niroot, whom we adore, for his (Brian’s) upcoming book, My Beloved Brontosaurus, which I am gearing up to adore. And here is the result, which I adore, borrowed with permission from Love in the Time of Chasmosaurs.

There is much to like here. Here’s my rundown:

  • Small forefeet that are the correct shape: good. Maybe too small, given that young animals often have big feet. But better too small than too big, given how often people screw this up.
  • Pronounced forelimb-hindlimb disparity: win.
  • Fat neck: pretty good.

In fact, let me interrupt the flow of praise here to put in Brant Bassam’s dorsal view of his mounted Phil Platt model Apatosaurus skeleton. I’ve been meaning to post about this for a while now and haven’t gotten to it, so now’s a good time: just look at how friggin’ FAT that neck is, and how it blends in with the body, and how the tail gets a lot skinnier a lot quicker (and, yeah, caudofemoralis, but not that much).  Now, go look at a bunch of life restorations of Apatosaurus–drawings, paintings, sculptures, toys, whatever–and see how many people get this wrong, by giving Apatosaurus a too-skinny neck. The answer is, damn near everyone.

Apatosaurus lousiae 1/12 scale skeleton in dorsal view, modelled by Phil Platt, assembled and photographed by Brant Bassam. Image courtesy of BrantWorks.com.

Apatosaurus lousiae 1/12 scale skeleton in dorsal view, modelled by Phil Platt, assembled and photographed by Brant Bassam. Image courtesy of BrantWorks.com.

Okay, back to Niroot’s baby:

  • Proportionally shorter neck and tail because it’s a juvenile: win.
  • Neck wrinkles possibly corresponding to vertebrae: okay, just this once.
  • Greenish fuzz possibly functioning as camouflage: We-ell

Yes, it’s true that all of the known sauropod skin impressions show scales, not fuzz. But. We don’t have anything like full-body coverage. And I suspect that there is a collection bias against fuzzy skin impressions. Scaly skin impressions are probably easier to recognize than 3D feathery skin impressions (as opposed to feathers preserved flat as at Liaoning and Solnhofen) because the latter probably just look like wavy patterns on rock, and who is looking for feather impressions when swinging a pickaxe at a sauropod’s back end? And how many sauropods get buried in circumstances delicate enough to preserve dinofuzz anyway? Also, some kind of fuzz is probably primitive for Ornithodira, and scales do not necessarily indicate that feathers were absent because owl legs. So is this speculative? Yes. Is it out of the question? I think not. In the spirit of Mythbusters, I’m calling it ‘plausible’.

Oh, one more thing: Niroot posted this in honor of Brian Switek’s birthday. Happy birthday, Brian! (You owe me a book!)

BrontomerusRoughWeb From field correspondent Brian Engh:

A Brontomerus on the edge of a jumbled forest of partially knocked over trees. While I won’t be finishing this particular drawing I decided I want to develop this idea a bit further – I think it would be cool to show a group of brontomeri rearing and grazing on the edge of a forest where a lot of the trees are leaning and show signs of heavy grazing, particularly by giants who rear up, bear hug them and rip down their branches. I’m talking tore-up bark around hand-claw height, trees that are growing bent, but then straighten up above max-bronto height, and maybe a constellation of camptosaurs and pterosaurs living around the brontos for food and protection… anyway, just an idea. Any thoughts?

Yeah. I judge it rad. And plausible. I love the heavy texturing on Bronto and the way the background is simple and evocative at the same time. I like the idea of a forest modified by sauropods for their use. I would like to see more plants damaged by sauropods (but still surviving)–and vice versa. For the proposed full version, the camptosaurs will have to be replaced by tenontosaurs, this being the Early Cretaceous. But they’re both ornithopods, so probably no one will know or care.

Anyway, I’m pretty sure Brian wants genuine feedback, and not just predictable gushing from yours truly. The comment field is open.

Bonus Engh sketch: a rearing Miragaia. Rearing Miragaia by Brian Engh

A few months ago, Matt and Darren saw a picture someone had done of an Apatosaurus with huge neck-flaps. Since they, they’ve tried to find it again but without success. Then, happily, I stumbled across it in this All Yesterdays review, so here it is:

tumblr_mdqur507GE1rgw4eto1_500

Unfortunately, I can’t tell you much about it. I know it’s the work of Emiliano Troco, but I’ve not been able to find his web-site, nor a description of the piece, nor a version in a decent resolution. So all we have to go on at the moment is this thumbnail. If you know more, please leave a comment!

Is it credible? Who’s to say? The one thing we know for certain about Apatosaurus is that it had truly crazy cervical vertebrae, unlike those of any other animal. In our recent arXiv paper, we wrote:

It is difficult to see the benefit in Apatosaurus excelsus of cervical ribs held so far below the centrum – an arrangement that seems to make little sense from any mechanical perspective, and may have to be written off as an inexplicable consequence of sexual selection or species recognition.

It certainly seems to have been doing something weird with its neck. It’s no obvious why big flaps like these would require honking great cervicals ribs to hang down from, but maybe it was swinging them around or something?

[We’ve featured bizarrely ornamented sauropods here before, notably Brian Engh’s pouch-throated Sauroposeidon.]

Follow

Get every new post delivered to your Inbox.

Join 422 other followers