Ten years ago today — on 15 September 2005 — my first palaeo paper was published: Taylor and Naish (2005) on the phylogenetic nomenclature of diplodocoids. It’s strange to think how fast the time has gone, but I hope you’ll forgive me if I get a bit self-indulgent and nostalgic.


I’d applied to join Portsmouth University on a Masters course back in April 2004 — not because I had any great desire to earn a Masters but because back in the bad old days, being affiliated to a university was about the only way to get hold of copies of academic papers. My research proposal, hilariously, was all about the ways the DinoMorph results are misleading — something that I am still working on eleven years later.

In May of that year, I started a Dinosaur Mailing List thread on the names and definitions of the various diplodocoid clades. As that discussion progressed, it became clear that there was a lot of ambiguity, and for my own reference I started to make notes. I got into an off-list email discussion about this with Darren Naish (who was then finishing up his Ph.D at Portsmouth). By June we thought it might be worth making this into a little paper, so that others wouldn’t need to do the same literature trawl we’d done.

In September of 2004, I committed to the Portsmouth course, sending my tuition fees in a letter that ended:


On the way to SVPCA that year, in Leicester, I met Darren on the train, and together we worked through a printed copy of the in-progress manuscript that I’d brought with me. He was pretty happy with it, which meant a lot to me. It was the first time I’d had a legitimate palaeontologist critique my work.

At one of the evening events of that SVPCA, I fell into conversation with micro-vertebrate screening wizard Steve Sweetman, then on the Portsmouth Ph.D course, and he persuaded me to switch to the Ph.D. (It was my second SVPCA, and the first one where I gave a talk.) Hilariously, the heart of the Ph.D project was to be a description of the Archbishop, something that I have still not got done a decade later, but definitely will this year. Definitely.

On 7th October 2004, we submitted the manuscript to the Journal of Paleontology, and got an acknowledge of receipt<sarcasm>after just 18 short days</sarcasm>. But three months later (21st January 2005) it was rejected on the advice of two reviewers. As I summarised the verdict to Darren at the time:

It’s a rejection. Both reviewers (an anonymous one and [redacted]) say that the science is pretty much fine, but that there just isn’t that much to say to make the paper worthwhile. [The handling editor] concurs in quite a nice covering letter […] Although I think the bit about “I respect both of you a great deal” is another case of Wrong Mike Taylor Syndrome :-)

This was my first encounter with “not significant enough for our journal” — a game that I no longer play. It was to be very far from my last experience of Wrong Mike Taylor Syndrome.

At this point, Darren and I spent a while discussing what to do: revise and resubmit (though one of the reviewers said not to)? Try to subsume the paper into another more substantial one (as one reviewer suggested)? Invite the reviewers to collaborate with us on an improved version (as the editor suggested)? Or just revise according to the reviewers’ more helpful recommendations and send it elsewhere? I discussed this with Matt as well. The upshot was that on 20th February Darren and I decided to send the revised version to PaleoBios, the journal of the University of California Museum of Paleontology (UCMP) — partly because Matt had had good experiences there with two of his earlier papers.

[Side-note: I am delighted to see that, since I last checked, PaleoBios has now made the leap to open access, though as of yet it says nothing about the licence it uses.]

Anyway, we submitted the revised manuscript on 26th May; and we got back an Accept With Minor Revisions six weeks later, having received genuinely useful reviews from Jerry Harris and Matt. (This of course was long before I’d co-authored anything with Matt. No handling editor would assign him to review one of my papers now.) It took us two days to turn the manuscript around with the necessary minor changes made, and another nine days of back and forth with the editor before we reached acceptance. A week later I got the proof PDF to check.

Back in 2005, publication was a very different process, because it involved paper. I remember the thrill of several distinct phases in the publication process — particularly sharp the first time:

  • Seeing the page proof — evidence that I really had written a legitimate scholarly paper. It looked real.
  • The moment of being told that the paper was published: “The issue just went to the printer, so I will send the new reprints […] when I get them, probably sometime next week.”
  • Getting my copy of the final PDF.
  • The day that the physical reprints arrived — funny to think that they used to be a thing. (They’re so Ten Years Ago now that even the SVPCA auction didn’t have many available for bid.)
  • The tedious but somehow exhilarating process of sending out physical reprints to 30 or 40 people.
  • Getting a physical copy of the relevant issue of the journal — in this case, PaleoBios 25(2).

I suppose it’s one of the sadder side-effect of ubiquitous open access that many of these stages don’t happen any more. Now you get your proof, then the paper appears online, and that’s it. Bam, done.

I’m kind of glad to have lived through the tail end of the old days, even though the new days are better.

To finish, there’s a nice little happy ending for this paper. Despite being in a relatively unregarded journal, it’s turned out to be among my most cited works. According to Google Scholar, this humble little taxonomic note has racked up 28 citations: only two fewer than the Xenoposeidon description. It’s handily outperforming other papers that I’d have considered much more substantial, and which appeared in more recognised journals. It just goes to show, you can never tell what papers will do well in the citation game, and which will sink without trace.


Re-reading an email that Matt sent me back in January, I see this:

One quick point about [an interesting sauropod specimen]. I can envision writing that up as a short descriptive paper, basically to say, “Hey, look at this weird thing we found! Morrison sauropod diversity is still underestimated!” But I honestly doubt that we’ll ever get to it — we have literally years of other, more pressing work in front of us. So maybe we should just do an SV-POW! post about the weirdness of [that specimen], so that the World Will Know.

Although as soon as I write that, I think, “Screw that, I’m going to wait until I’m not busy* and then just take a single week* and rock out a wiper* on it.”

I realize that this way of thinking represents a profound and possibly psychotic break with reality. *Thrice! But it still creeps up on me.

(For anyone not familiar with the the “wiper”, it refers to a short paper of only one or two pages. The etymology is left as an exercise to the reader.)

It’s just amazing how we keep on and on falling for this delusion that we can get a paper out quickly, even when we know perfectly well, going into the project, that it’s not going to work out that way. To pick a recent example, my paper on quantifying the effect of intervertebral cartilage on neutral posture was intended to be literally one page, an addendum to the earlier paper on cartilage: title, one paragraph of intro, diagram, equation, single reference, DONE! Instead, it landed up being 11 pages long with five illustrations and two tables.

I think it’s a reasonable approximation to say that any given project will require about an order of magnitude more work than we expect at the outset.

Even as I write this, the top of my palaeo-work priority list is a paper that I’m working on with Matt and two other colleagues, which he kicked off on 6 May, writing:

I really, really want to kill this off absolutely ASAP. Like, seriously, within a week or two. Is that cool? Is that doable?

To which I idiotically replied:


A month and a bit later, the answers to Matt’s questions are clear. Yes, it’s cool; and no, it’s not doable.

The thing is, I think that’s … kind of OK. The upshot is that we end up writing reasonably substantial papers, which is after all what we’re meant to be trying to do. If the reasonably substantial papers that end up getting written aren’t necessarily the ones we thought they were going to be, well, that’s not a problem. After all, as I’ve noted before, my entire Ph.D dissertation was composed of side-projects, and I never got around to doing the main project. That’s fine.

In 2011, Matt’s tutorial on how to find problems to work on discussed in detail how projects grow and mutate and anastamose. I’m giving up on thinking that this is a bad thing, abandoning the idea that I ought to be in control of my own research program. I’m just going to keep chasing whatever rabbits look good to me at the time, and see what happens.


I found myself needing a checklist so that I could make sure I’d updated all the various web-pages that needed tweaking after the Haestasaurus paper came out. Then I thought others might find it useful for when they have new papers. So here it is.

  • Write a blog-post on SV-POW!
  • Create a new page about paper in the SV-POW! sidebar.
  • Add the full-resolution figures to the sidebar page.
  • Update my online publications list.
  • Update my University of Bristol IR page.
  • Update my ORCID page.
  • Update my LinkedIn page.
  • Mendeley, if you do it (I don’t).
  • ResearchGate, if you do it (I don’t).
  • Academia.edu, if you do it (I don’t).
  • Keep an eye on the new taxon’s Wikipedia page (once it exists).
  • Add the paper to the Paleobiology Database (or ask someone to do it for you if you’re not authorised). [Credit: Jon Tennant]
  • Tweet about it! [Credit: Matt Hodgkinson]
  • Update Google Scholar, if it doesn’t pick up on the publication on its own [Credit: Christopher Taylor]
  • Post on Facebook [Credit: Andy Farke]
  • Send PDF to the institution that hosts the material [Credit: Andy Farke]
  • Email colleagues who might be interested [Credit: Andy Farke]
  • Write short popular language account for your institution if applicable [Credit: Andy Farke]
  • Submit any silhouettes to PhyloPic [Credit: Mike Keesey]

Have I forgotten any?

I think I have now completed all these tasks for the Haestasaurus paper. And a right pain it was, entering the same new paper in SV-POW!, my own list, the Bristol IR, the ORCID page and LinkedIn.

The IR was definitely by far the clumsiest — it took ages, and many different screens, before I was done. I kind of expected that (it turns out that PURE, which is what Bristol’s IR uses, is supplied by Elsevier, so supply your own punchline). But what really disappointed me was the clumsiness of having to enter all the details by hand yet again when I got to ORCID. Why couldn’t I just enter the DOI and let it fill in the rest?

You would think that ORCID, of all people, would appreciate the value of referring to things by unique IDs!

arborization of science

Modified from an original SEM image of branching blood vessels, borrowed from http://blogs.uoregon.edu/artofnature/2013/12/03/fractal-of-the-week-blood-vessels/.

I was reading a rant on another site about how pretentious it is for intellectuals and pseudo-intellectuals to tell the world about their “media diets” and it got me thinking–well, angsting–about my scientific media diet.

And then almost immediately I thought, “Hey, what am I afraid of? I should just go tell the truth about this.”

And that truth is this: I can’t tell you what forms of scientific media I keep up with, because I don’t feel like I am actually keeping up with any of them.

Papers – I have no systematic method of finding them. I don’t subscribe to any notifications or table of contents updates. Nor, to be honest, am I in the habit of regularly combing the tables of contents of any journals.

Blogs – I don’t follow any in a timely fashion, although I do check in with TetZoo, Laelaps, and a couple of others every month or two. Way back when we started SV-POW!, we made a command decision not to list any sites other than our own on the sideboard. At the time, that was because we didn’t want to have any hurt feelings or drama over who we did and didn’t include. But over time, a strong secondary motive to keep things this way is that we’re not forced to keep up with the whole paleo blogosphere, which long ago outstripped my capacity to even competently survey. Fortunately, those overachievers at Love in the Time of Chasmosaurs have a pretty exhaustive-looking set of links on their sidebar, so globally speaking, someone is already on that.

The contraction in my blog reading is a fairly recent thing. When TetZoo was on ScienceBlogs, I was over there all the time, and there were probably half a dozen SciBlogs that I followed pretty regularly and another dozen or so that I at least kept tabs on. But ScienceBlogs burned down the community I was interested in, and the Scientific American Blog Network is sufficiently ugly (in the UI sense) and reader-unfriendly to not be worth my dealing with it. So I am currently between blog networks–or maybe past my last one.

Social Media – I’m not on Twitter, and I tend to only log into Facebook when I get an interesting notice in my Gmail “Social” folder. Sometimes I’m not on FB for a week or two at a time. So I miss a lot of stuff that goes down there, including notices about new papers. I could probably fix that if I just followed Andy Farke more religiously.

What ends up happening – I mainly find papers relevant to specific projects as I execute those projects; each new project is a new front in my n-dimensional invasion of the literature. My concern is that in doing this, I tend to find the papers that I’m looking for, whereas the papers that have had the most transformative effect on me are the ones I was not looking for at the time.

Beyond that, I find out about new papers because the authors take it on themselves to include me when they email the PDF out to a list of potentially interested colleagues (and many thanks to all of you who are doing that!), or Mike, Darren, or Andy send it to me, or it turns up in the updates to my Google Scholar profile.

So far, this combination of ad hoc and half-assed methods seems to be working, although it does mean that I have unfairly outsourced much of my paper discovery to other people without doing much for them in return. When I say that it’s working, I mean that I don’t get review comments pointing out that I have missed important recent papers. I do get review comments saying that I need to cite more stuff,* but these tend to be papers that I already know of and maybe even cited already, just not in the right ways to satisfy the reviewers.**

* There is a sort of an arrow-of-inevitability thing here, in that reviewers almost always ask you to cite more papers rather than fewer. Only once ever have I been asked to cite fewer sources, and that is when I had submitted my dinosaur nerve paper (Wedel 2012) to a certain nameless anatomy journal that ended up not publishing it. One of the reviewers said that I had cited several textbooks and popular science books and that was poor practice, I should have cited primary literature. Apparently this subgenius did not realize that I was citing all of those popular sources as examples of publications that held up the recurrent laryngeal nerve of giraffes as evidence for evolution, which was part of the point that I was making: giraffe RLNs are overrated.

** My usual sin is that I mentally categorize papers in one or two holes and forget that a given paper also mentioned C and D in addition to saying a lot about A and B. It’s something that vexes me about some of my own papers. I put so much stuff into the second Sauroposeidon paper (Wedel et al. 2000b) that some it has never been cited–although that paper has been cited plenty, it often does not come up in discussions where some of the data presented therein is relevant, I think because there’s just too much stuff in that paper for anyone (who cares about that paper less than I do) to hold in their heads. But that’s a problem to be explored in another post.

The arborization of science

Part of the problem with keeping up with the literature is just that there is so much more of it than there was even a few years ago. When I first got interested in sauropod pneumaticity back in the late 90s, you were pretty much up to speed if you’d read about half a dozen papers:

  • Seeley (1870), who first described pneumaticity in sauropods as such, even if he didn’t know what sauropods were yet;
  • Longman (1933), who first realized that sauropod vertebrae could be sorted into two bins based on their internal structures, which are crudely I-beam-shaped or honeycombed;
  • Janensch (1947), who wrote the first ever paper that was primarily about pneumaticity in dinosaurs;
  • Britt (1993), who first CTed dinosaur bones looking for pneumaticity, independently rediscovered Longman’s two categories, calling them ‘camerate’ and ‘camellate’ respectively, and generally put the whole investigation of dinosaur pneumaticity on its modern footing;
  • Witmer (1997), who provided what I think is the first compelling explanation of how and why skeletal pneumaticity works the way it does, using a vast amount of evidence culled from both living and fossil systems;
  • Wilson (1999), who IIRC was the first to seriously discuss the interplay of pneumaticity and biomechanics in determining the form of sauropod vertebrae.

Yeah, there you go: up until the year 2000, you could learn pretty much everything important that had been published on pneumaticity in dinosaurs by reading five papers and one dissertation. “Dinosaur pneumaticity” wasn’t a field yet. It feels like it is becoming one now. To get up to speed today, in addition to the above you’d need to read big swaths of the work of Roger Benson, Richard Butler, Leon Claessens, Pat O’Connor (including a growing body of work by his students), Emma Schachner (not on pneumaticity per se, but too closely related [and too awesome] to ignore), Daniela Schwarz, and Jeff Wilson (and his students), plus important singleton papers like Woodward and Lehman (2009), Cerda et al. (2012), Yates et al. (2012), and Fanti et al. (2013). Not to mention my own work, and some of Mike’s and Darren’s. And Andy Farke and the rest of Witmer, if you’re into cranial pneumaticity. And still others if you care about pneumaticity in pterosaurs, which you should if you want to understand how–and, crucially, when–the anatomical underpinnings of ornithodiran pneumaticity evolved. Plus undoubtedly some I’ve forgotten–apologies in advance to the slighted, please prod me in the comments.

You see? If I actually listed all of the relevant papers by just the authors I named above, it would probably run to 50 or so papers. So someone trying to really come to grips with dinosaur pneumaticity now faces a task roughly equal to the one I faced in 1996 when I was first trying to grokk sauropods. This is dim memory combined with lots of guesswork and handwaving, but I probably had to read about 50 papers on sauropods before I felt like I really knew the group. Heck, I read about a dozen on blood pressure alone.

(Note to self: this is probably a good argument for writing a review paper on dinosaur pneumaticity, possibly in collaboration with some of the folks mentioned above–sort of a McIntosh [1990] for the next generation.)

When I wrote the first draft of this post, I was casting about for a word to describe what is going on in science, and the first one that came to mind is “fragmentation”. But that’s not the right word–science isn’t getting more fragmented. If anything, it’s getting more interconnected. What it’s really doing is arborizing–branching fractally, like the blood vessels in the image at the top of this post. I think it’s pointless to opine about whether this is a good or bad thing. Like the existence of black holes and fuzzy ornithischians, it’s just a fact now, and we’d better get on with trying to make progress in this new reality.

How do I feel about all this, now that my little capillary of science has grown into an arteriole and threatens to become a full-blown artery? It is simultaneously exhilarating and worrying. Exhilarating because lots of people are discovering lots of cool stuff about my favorite system, and I have a lot more people to bounce ideas around with than I did when I started. Worrying because I feel like I am gradually losing my ability to keep tabs on the whole thing. Sound familiar?

Conclusion: Help a brother out

Having admitted all of this, it seems imperative that I get my act together and establish some kind of systematic new-paper-discovery method, beyond just sponging off my friends and hoping that they’ll continue to deliver everything I need. But it seems inevitable that I am either going to have to be come more selective about what I consume–which sounds both stupid and depressing–or lose all of my time just trying to keep up with things.

Hi, I’m Matt. I just arrived here in Toomuchnewscienceistan. How do you find your way around?


Five conversations

April 22, 2014

2007-01-07 Big Bend 142 small

5. Brian Kraatz, 2004

In the spring of 2004, I was killing time over in Tony Barnosky’s lab at Berekeley, talking to Brian Kraatz about something–mammals, probably. Brian told me that I should consider going to the International Congress of Zoology that was happening in Beijing that fall. He’d actually told me about it several times, but I kept forgetting about it. It seemed remote from my concerns. Finally, though, the day before the abstracts were due, I thought, “Why not?” I could get travel money from the department and it would get me over there to see a lot of Asian dinosaurs in person.

I was also intrigued because presenters could submit either abstracts or short papers, and I had an idea for a short paper. I had been thinking a lot about how pneumaticity got started in dinosaurs and how much we could infer about that, so that evening I stayed up until about 3 AM banging out what would become Wedel (2006), pretty much as it was published, except for the figure, which was added later.

That got me to Beijing, where I spent a lot of time talking with Paul Barrett, who saw my talk and later invited me to contribute a talk to an SVP symposium on prosauropods, which grew into Wedel (2007) and became a chapter of my dissertation. And that got me an invite from Adam Yates and Matt Bonnan to join them in writing up the first really solid evidence of pneumaticity in prosauropods (Yates et al. 2012).


When I wandered over to the Barnosky lab to kill time that day,  Brian wasn’t in. Instead I got to talking with Alan Shabel about food webs in East African riparian ecosystems. The habitats and faunas he was talking about put me in mind of the Morrison Formation of the American West. I wondered if the quantitative ecological analysis that Alan was working on would yield any insights into how Late Jurassic ecosystems worked. And that fired a few neutrons at the Van Valen papers I’d been reading for Kevin Padian’s paleobiology seminar, and precipitated a chain reaction. The paper that came out of that, “Sauropod dinosaurs as Van Valen’s energy maximizers”, was published in Paleobiology in 2007. That’s how I got into quantifying energy flow through dinosaur-dominated ecosystems.

I was presenting some of that work at an ecology conference in 2008 when I got invited to join a team of biologists going to the Galapagos. I was particularly interested in the role of extant dinosaurs (i.e., birds) in ecosystems dominated by bradymetabolic reptiles. Some of the data from that trip and one subsequent  expedition went into my 2013 paper on the rise of dinosaurs during the Triassic. But most importantly, it got me working in the Galapagos, which I had wanted to do ever since I was a kid.

Oakland Zoo Tortoise - resting

4. Mike Taylor, 2000

My first paper came out in the first issue of the Journal of Vertebrate Paleontology in 2000. It was the one in which Rich Cifelli and Kent Sanders and I designated OMNH 53062, a string of four sauropod vertebrae from southeast Oklahoma, as the type specimen of a new dinosaur, Sauroposeidon proteles. I had been collecting business cards and mailing addresses from people at SVP since 1997, and I had a list of about 100 people that I thought would appreciate a reprint of the paper. So when the reprints arrived from the publisher, I printed out a bunch of form letters, made an assembly line of reprints, letters, and envelopes on the big table in the OMNH vert paleo library, and killed an afternoon getting everything assembled and ready to ship out.

Also about this time I received a polite email from some English guy named Mike Taylor, asking for a reprint. I wrote back and said that I’d be happy to send him one. I don’t know what he wrote back next, but it was sufficiently interesting that it kicked off a conversation that has now been going on for 14  years. When Vicki and I went to England on spring break in 2004, we stayed with Mike and Fiona in London. I went back over for SVPCA in London in 2005, and after 2009, I started going to SVPCA every year instead of SVP. That’s how I got to know Dave Hone. I got acquainted with Darren separately–we were sending each other reprints in 2001, I think, and talking sporadically about brachiosaurs. I think that Mike and Darren also met separately, and possibly if I hadn’t been around, they still would have ended up working together. But my papers with Mike–which account for seven of the nine I’ve published since my dissertation–wouldn’t have happened, or would have come out very differently. And you wouldn’t be reading this blog.

Darren & Mike with Dippy


I first met Mike Taylor at the SVP meeting in Bristol in 2009. He had done that paper on that weird vertebra with Darren a couple of years before. We got together over a few pints and discovered that we had a lot of interests in common–Star Wars, Tolkien, C.S. Lewis–but c’mon, who can’t you say that about in this geek-infested business? He’s a nice guy, and we’re friends, but we’re not what you’d call close.

I spent most of my time at that meeting catching up with Matt Bonnan. We’d been friends since the late 90s, and we’d written the paper on the probable brachiosaurid metacarpal in 2004, but we hadn’t collaborated much. Well, we were both out of grad school and into stable jobs, and we really put our heads together that meeting. Two streams of papers came out of that: first, the sauropod biomechanics papers, which merged his limb development stuff with my pneumaticity stuff, and secondly, all of our work on quantifying serial variation using geometric morphometrics.

Although the first set of papers has attracted more attention–certainly more media attention–it’s the second set that give me more satisfaction. I’ve always been interested in serial homology, I just didn’t have a novel approach. But with Matt’s help I was able to combine morphometrics and phylogenetics to produce developmental phylogenies of serially repeated structures. That by itself is pretty cool, but when you bring it into the extant realm you can put the gene expression patterns right into the analysis. The stuff we’re doing with axial development in chickens right now–man, I don’t know if I’ll ever find the time to write another paper about extinct dinosaurs, when there’s so much fun to be had with the living ones.

Matt with chicken

3. Brooks Britt, 1997

In the summer of 1997, I was on a multi-thousand-mile quest to determine whether OMNH 53062 was a new dinosaur, or just a big example of something already known. Vicki and I had been to D.C. that spring, partly as our first vacation as a married couple, and partly so that I could see the Astrodon/Pleurocoelus material at the Smithsonian. That summer, I mapped out an epic tour of museums in the West. With our friend Tyson Davis, Vicki and I went to Dinosaur National Monument, the Utah Museum of Natural History in Salt Lake, the BYU Earth Sciences Museum in Provo, and the Museum of Western Colorado in Grand Junction.

The main reason we went to Grand Junction was because at the time, the MWC had some of the BYU Brachiosaurus material from Dry Mesa Quarry on exhibit. Rich Cifelli and I weren’t sure what OMNH 53062 was yet, but we thought it looked an awful lot like Brachiosaurus. Brooks Britt was the curator there at the time, and he took us down to the basement and showed us some of the sauropod material from the Lower Cretaceous Dalton Wells Quarry. Brooks was particularly excited to show us the pneumatic features in the vertebrae. I told him about the big vertebrae from Oklahoma that I was working on, and he said, “You should get those vertebrae CT scanned, to get a look at the pneumatic spaces inside.” I smiled and nodded and thought to myself, “Dude, you are completely crazy. I am an undergrad on an independent study. No way do I have the juice to get giant dinosaur bones CT scanned.” But I didn’t forget about what he’d said. When we got back to Oklahoma, I mentioned it to Rich–and then I forgot about it.

Ridem dino

Happily for me, Rich did not forget about it. A few months later, he was at a university function with the director of OU’s University Hospital, and he mentioned the idea of CT scanning the dinosaur bones. The hospital director was all for it–the CT machines frequently had down time on Saturdays, and the hospital would trade time on the machines for publicity when we published our results. That December, I was in Rich’s office for one of our weekly meetings when he said, “Hey, are you still interested in CT scanning the vertebrae? Because if you want to, we can make it happen.” I don’t remember what I said, but I assume it was some variant of “Hell yeah!”

We took the first jacket up to the hospital in January, 1998. We got decent results. The vertebrae were so big and dense that the scans were plagued by beam-hardening artifacts, but we could see that internal structure was honeycombed by dozens or hundreds of thin-walled cavities. The problem was, we had no idea what that meant–a few physical cross-sections of sauropod vertebrae had been published over the years, most notably by Heber Longman in 1933 and Werner Janensch in 1947–but to my knowledge no CT scans of sauropod vertebrae had ever been published, and you could probably count on your fingers the number of published CT scans of fossils of any kind. Brooks had a bunch in his 1993 dissertation, but that was unpublished, and I wouldn’t get a copy for several more months. So we had no baseline.

Utah 2008 05 Kent in reading room

But we did have Kent Sanders, a radiologist at the hospital who was hot on this stuff and helped us read the films. And we had a museum full of dinosaur bones and access to a CT scanner on the weekends. So that’s how I spent most of the Saturdays in 1998–drive to the museum, fill the trunk of the car with dinosaur bones, drive up to Oklahoma City and spend the day scanning with Kent. I wasn’t supposed to do my MS thesis on pneumaticity, but when the primary project I had been working on didn’t look like it was going to pan out, I realized that I had enough CT scans of sauropod vertebrae that with a little selective hole-filling I could describe the evolution of vertebral pneumaticity in sauropods. So that became my Master’s thesis.


That conversation with Brooks Britt in the summer of 1997 was a turning point for me. Until then I’d been interested in OMNH 53062 for what it could tell us about the animal that it had once been part of. But when Brooks started telling me about the taphonomy of the Dalton Wells Quarry, I realized that the Oklahoma vertebrae were telling another story, too: the story of what had happened to that animal. So that’s the angle we played up in the paper–how did these vertebrae get separated from the rest of the critter? Mesozoic murder mystery!

Then the next summer I was out with Rich’s crew in Montana, working in the Cloverly Formation. I actually spent most of my time with Des Maxwell and his group at the Wolf Creek quarry, which was a sauropod bonebed. I did a poster on that quarry for SVP in 2000, and I wrote my MS thesis on the taphonomy of the quarry.

While all of this was going on, I was spending more and more time talking with Brooks Britt. He had done his dissertation on pneumaticity in fossil archosaurs, but he had all kinds of interesting things going on related to taphonomy, including modification of dinosaur bones by termities, and evidence of fungal hyphae in dinosaur bones. Brooks had done his Bachelor’s and Master’s work at BYU before going to Calgary for his dissertation. He encouraged me to think about going to BYU for my PhD work. The more I thought about it, the more sense it made–I freaking love Utah, and the chance to go live and work there was too good to pass up. I started out as one of Ken Stadtman’s grad students, but when Brooks got the job at BYU in 2002, he agreed to come on as my co-advisor. I’m mainly interested in what you can infer about terrestrial ecosystems from tracks left on bones, so that’s what I did my dissertation on. Most of the chapters were on sauropods, naturally, but I did have that one project looking at invertebrates, fungi, and microbes–or their traces–in faunal bone I collected from Capitol Reef National Forest in the summer of 2005. Now that was a fun project.

While I was working at BYU, Vicki got her PhD in anthropology from the University of Utah. Both of us had field sites in southern Utah, and we really fell in love with that part of the state. After we finished our degrees we moved to St. George, which is just gorgeous. Vicki coordinates the excavation and repatriation of Native American remains and artifacts from Utah federal lands, and I teach geology at Dixie State University. When I’m not digging, teaching, or hiking, I blog about sauropod taphonomy. My friends tease me because it’s such a geeky niche thing, but it makes me happy.

Matt in the field

2. Rich Cifelli, 1996

You know how sometimes you end up working on something just because it’s there? That’s how I started working on sauropods.

Immediately after I left Trish Schwagmeyer’s office, I marched down to the museum, barged into Rich’s office, threw myself in a chair, and asked him if he’d sponsor me on an independent study. He said that he’d be delighted to–what did I want to work on? Dinosaurs, I said, dinosaurs! “Well, we have these big sauropod vertebrae from southeastern Oklahoma that need to be identified.” We went and had a look. It wasn’t my dream project–I was more interested in big theropods and ceratopsians–but I said I’d take the job. There was a little paperwork to fill out. We conceived a one-semester project, to be completed in the fall of 1996, to identify the specimen, OMNH 53062, to the family level. Rich loaned me some of his sauropod papers to photocopy so that I could get up to speed on the anatomy. I spent the fall of 1996 grokking sauropod vertebral morphology and trying to figure out what this thing was.


Immediately after I left Trish Schwagmeyer’s office, I marched down to the museum, barged into Rich’s office, threw myself in a chair, and asked him if he’d sponsor me on an independent study. He said that he’d be delighted to–what did I want to work on? Dinosaurs, I said, dinosaurs–especially big theropods or ceratopsians! “Well, we have these ceratopsian odds and ends that Stovall collected back in the 30s and 40s. They’ve been catalogued all this time as Pentaceratops and Triceratops, but someone should probably check on those IDs.” Wow, my dream project–of course I pounced on it! There was a little paperwork to fill out. We conceived a one-semester project, to be completed in the fall of 1996, to identify the specimens to the genus level. Rich loaned me some of his ceratopsian papers to photocopy so that I could get up to speed on the anatomy. I spent the fall of 1996 grokking ceratopsian cranial morphology and trying to figure out what those things were.

Well, it turns out that they were Pentaceratops and Triceratops after all. So no big news, but I did learn a lot on that project: how to photograph and measure fossils, how to read scientific papers. Mostly it just got me back in the museum.

You know how sometimes you end up working on something just because it’s there? That’s how I started working on Tenontosaurus. I’ll confess, at first I didn’t have any deep, abiding love for “Tonto”. I scorned it as the world’s most boring dinosaur–no horns, spikes, frills, claws, or sails, basically just a scaly cow with a longer tail. But, man, these things were pouring out of the Antlers Formation like water out of a tap. We had adults, subadults, big juveniles, little  juveniles, even a few bones from individuals so small they must have been yearlings. I started working on them in my spare time, and got a little project going on the post-hatching ontogeny of Tenontosaurus. When I graduated with my BS in the fall of 1997, it just made sense to stick around and keep working on Tenontosaurus for my MS.

Topps - da baby eating sticker

Naturally I was presenting this stuff at SVP every fall, and that’s where I met Jack Horner. He thought my ontogenetic work on Tenontosaurus would be good preparation for tackling hadrosaur ontogeny and diversity. So I went to MSU for my PhD work. After I finished I got the job I have now, teaching geology in Missouri. Even when I was living in Montana, I’d still get into the OMNH collections for  a day or two of research whenever I was back in Oklahoma. Now that I’m just five hours away, I’m back at OMNH all the time. There’s just so much to work on–Eolambia, the small ornithopod material from the Cloverly Formation, and especially the teeth. The OMNH has hundreds of these little ornithopod teeth from the microsites in the Cedar Mountain Formation, the Cloverly Formation, and the Antlers Formation. Nobody wants to work on them, except me. While I was working on Tenontosaurus I had to come up with some size-independent characters that I could use to determine the ontogenetic age of ornithopods based on their teeth. Once I had those, all of those teeth catalogued as “Ornithopoda indet.” became a goldmine.

I certainly never saw myself becoming “the ornithopod tooth guy”–what an oddly specific thing to be an expert on! But to me they are beautiful, intricate, and endlessly fascinating. Who knows, maybe one of these days I’ll take all of my best photographs and start a Tumblr.


1. Trish Schwagmeyer, 1996

Trish: “You’re blowing it. You want to do research, but no-one is going to trust you with a project if you can’t take care of the basic stuff like keeping your grades up.”

Me: [face-burning, fully convicted silence]

Trish: “You are capable of much more than this. I know that these grades are not reflective of your best work. This is your chance to prepare yourself for the career you want. You owe it to yourself to do better than this.”

Me: [sucking it up] “I understand. And I’ll do better. Other than getting my grades up, what else can I do to make myself attractive to graduate programs?”

Trish: “Find a professor that you like and do an independent study. Get some research experience.”

Yow. I will remember that for as long as I live. “You’re blowing it.” Thank God that alone out of everyone in my life, Trish Schwagmeyer had the guts to look me in the eye and call me out.


Trish: “Your grades last semester were a little rough.”

Me: “Yeah. O-chem II was murder.”

Trish: “And biochem.”

Me: “Yeah. Biochem.”

Trish: “Have you noticed that you get As and Bs in your language and history classes, and Cs in your math and science classes?”

Me: “Yeah, of course.  Math and science are hard. Language and history are…”

Trish: “Are what?”

Me: “I dunno. Fun. More like play.”

Trish: “Maybe you’re in the wrong major.”

Yow. I will remember that for as long as I live. “Maybe you’re in the wrong major.” Thank God that alone out of everyone in my life, Trish Schwagmeyer had the guts to look me in the eye and diagnose the problem.

Immediately after I left her office, I marched over to the registrar and changed my major from Zoology to Letters. And breathed a huge sigh of relief. After that, I just cruised. I got my degree, stayed at OU for a Master’s in classical languages, and now I teach Latin at a private high school in Oklahoma City. I should have known that a career in science wasn’t in the cards. The evidence was written all over my transcript. Paleontology is still interesting to me–I doubt if I will ever stop being fascinated by dinosaurs–but it just wasn’t a realistic career option. I’m so glad I found my true calling.

the herd - small.0


Accidental mailbag #1

March 8, 2014

As I noted last time, I had a reason for going through the SV-POW! search logs. Inspired by a feature at Math with Bad Drawings, I’m going to interpret unusual or interesting search terms as questions, and answer them here.

brachiosaurus vs brontosaurus. Brachiosaurus wins on mass, height, not being a junior synonym, general awesomeness and probably length. Brontosaurus wins on date of naming. Despite this imbalance, if it came to a fight, my money would be on the Brontosaurus: it’s just insanely robust compared with pretty much all other sauropods. If they got into a neck-bashing contest (as giraffes sometimes do), it would kick Brachiosaurus‘s butt.

how long is a supersaurus. Lovelace et al. (2008:542) said of the WDC specimen “Jimbo” that “Supersaurus was neither the heaviest nor the longest sauropod, although it is well enough known to place confidence in its estimated length of 33-34 meters, and mass of 35-40 tons.” That rather modest length is only a quarter as long again as Boring Old Diplodocus (hereafter BOD), and doesn’t chime well with Matt’s estimate of 13.3-16.2m for the neck alone of the BYU specimen (Wedel 2007:195-197). That neck is, conservatively, 7 m longer than the neck of BOD, which would make the total body length 34 m even if the torso and tail were identical to those of BOD! Either someone made a mistake, or the two specimens are significantly different sizes.

giraffe skeleton labeled and labeled skeleton of a bird. We’ve never done either of those — but we should, to go with our Camarasaurus, Tyrannosaurus and Triceratops. Skeletal homology for the win!

gross neck bird. We don’t have any of those: all bird necks are beautiful, at least once divested of soft tissue. (Though we’d admit that the neck of a flamingo is weird.)

breviparopus skeleton real. Ha, we wish!

гигантораптор. Apparently this is Macedonian for Gigantoraptor. We don’t have a lot of that around here. It does crop up in Figure 1 of Taylor and Wedel (2013a), looking weedy.

cannot login jstor. Yes, it’s a very common problem. Two years ago, we calculated that five people every second are denied access to JSTOR.

images of sauripasidan. Learn to spell. A certain amount of room for error is reasonable, but four incorrect vowels in a single word suggests someone who’s not even trying.

how did a plateosaurus act. You’d need to ask Heinrich Mallison about that.

does a crocodile has eye under his neck. Nuh-uh.

skeleton made from drinking straws. An excellent idea, but not one that we’ve attempted. Perhaps this year when Matt’s over in the UK for SVPCA, we’ll try a drinking-straw-skeleton challenge. Or perhaps we should get a whole bunch of packets, hand them out on the opening night of SVPCA, and let that be the ice-breaker.

cool heart made out of pincel led. This would make a good name for a progressive rock album.


  • Lovelace, David M. Scott A. Hartman and William R. Wahl. 2008. Morphology of a specimen of Supersaurus (Dinosauria, Sauropoda) from the Morrison Formation of Wyoming, and a re-evaluation of diplodocid phylogeny. Arquivos do Museu Nacional, Rio de Janeiro 65(4):527-544.
  • Taylor, Michael P., and Mathew J. Wedel. 2013. Why sauropods had long necks; and why giraffes have short necks. PeerJ 1:e36. doi:10.7717/peerj.36
  • Wedel, Mathew J. 2007. Postcranial pneumaticity in dinosaurs and the origin of the avian lung. Ph.D dissertation, Integrative Biology, University of California, Berkeley, CA. Advisors: Kevin Padian and Bill Clemens. 290 pages.

A while back, Matt mentioned some of the surprising search-terms that lead people to SV-POW!. For reasons that will shortly become clear, I was checking out what’s being searched for now, and I thought I may as well issue this update. Here are the all-time top ten:

Search Views
brachiosaurus 18,484
rabbit 18,274
leopard seal 13,103
basement 12,507
flamingo 12,363
sauroposeidon 11,821
amphicoelias fragillimus 9,841
svpow 9,708
diplodocus 7,203
sv pow 7,053

It’s nice to see good old Brachiosaurus up there at the top: a proper sauropod, and possibly my favourite (not counting the two that I’ve named myself, and which I have an obvious special affection for). But then you have to drop down to number six before you hit another sauropod (Sauroposeidon). Those top two sauropods are reasonable: we’ve written a lot about them here. The third top sauropod is Amphicoelias fragillimus, which is more surprising as we’ve not written that much about it. I guess it just reflects a lot of interest in that beast. Boring old Diplodocus is the fourth and last sauropod in the top ten. The next few are Argentinosaurus (#11), Amphicoelias (#12), Giraffatitan (#16). Apatosaurus (#18)

Unsurprisingly, SV-POW! itself crops up twice in the top ten: once as “svpow” (#8) and once as “sv pow” (#10). It’s also #15 as “sv-pow”.

Meanwhile, four of the top five slots are still held by terms that have nothing to do with sauropods. “Rabbit” can only be due to this post on sauropod neck posture; “Leopard seal” is due to the inclusion of a single sensational (but off-topic) photo in a post on Cetiosaurus nomenclature. “Basement” is another one-hit wonder, thanks to a poorly located Mamenchisaurus cast. “Flamingo” is more of a mystery. I think it must be due to the passing flamingo in the classic Necks Lie post.

Other oddities include “twinkie” at #17, “shish kebab” at #25, “corn” at #34, “corn dog” at #42 and “corn on the cob” at #77 (probably all due to the same post on sauropod neck fatness). Rather sadly, “big ass” comes in at #89. I doubt that the 602 people who came here by searching for that found what they were looking for.


Get every new post delivered to your Inbox.

Join 3,489 other followers