In 2012, Matt and I spent a week in New York, mostly working at the AMNH on Apatosaurusminimus and a few other specimens that caught our eye. But we were able to spend a day at the Yale Peabody Museum up in New Haven, Connecticut, to check out the caudal pneumaticity in the mounted Apatosaurus (= “Brontosaurus“) excelsus, YPM 1980, and the bizarrely broad cervicals of the Barosaurus lentus holotype YPM 429.

While we there, it would have been churlish not to pay some attention to the glorious and justly famous Age of Reptiles mural, painted by Rudolph F. Zallinger from 1944-1947.

So here it is, with the Brontosaurus neck for scale:

IMG_0501-zallinger-mural

Click through for high resolution (3552 × 2664).

And here is a close-up of the most important, charismatic, part of the mural:

IMG_0500-zallinger-mural

Again, click through for high resolution (3552 × 2664).

That’s your lot for now. We’ve long promised a proper photo post of the Brontosaurus mount itself, and I’ll try to get that done soon. For now, it’s just scenery.

There’s a new mamenchisaurid in town! It’s called Qijianglong (“dragon of Qijiang”), and it’s the work of Xing et al. (2015).

Life restoration of Qijianglong, apparently by lead author Xing Lidar.

Life restoration of Qijianglong, by Cheung Chungtat.

As far as I can make out, the life restoration is also due to Xing Lida: at least, every instance of the picture I’ve seen says “Credit: Xing Lida”. If that’s right, it’s an amazing display of dual expertise to produce both the science and the art! We could quibble with details, but it’s a hundred times better than I could ever do. [Update: no, it’s by Cheung Chungtat, but being uniformly mis-attributed in the media. Thanks to Kevin for the correction in the comment below.]

There’s a mounted skeleton of this new beast in the museum local to where it was found, though I don’t know how much of the material is real, or cast from the real material. Here it is:

A reconstructed skeleton of Qijianglong now on display in Qijiang Museum

A reconstructed skeleton of Qijianglong now on display in Qijiang Museum

A new sauropod is always great news, of course, and it’s a source of shame to us that we cover so few of them here on SV-POW!. (Just think of some of the ones we’ve missed recently … Leikupal, for example.)

But as is so often the case, the most interesting thing about this new member of the club is its vertebrae — specifically the cervicals. Here they are:

FIGURE 11. Anterior cervical series of Qijianglong guokr (QJGPM 1001) in left lateral views unless otherwise noted. A, axis; B, cervical vertebra 3; C, cervical vertebra 4; D, cervical vertebrae 5 and 6; E, cervical vertebra 7 and anterior half of cervical vertebra 8 (horizontally inverted; showing right side); F, posterior half of cervical vertebra 8 and cervical vertebra 9; G, cervical vertebra 10; H, cervical vertebra 11; I, close-up of the prezygapophy- sis-postzygapophysis contact between cervical vertebrae 3 and 4 in dorsolateral view, showing finger-like process lateral to postzygapophysis; J, close- up of the postzygapophysis of cervical vertebra 5 in dorsal view, showing finger-like process lateral to postzygapophysis. Arrow with number indicates a character diagnostic to this taxon (number refers to the list of characters in the Diagnosis). All scale bars equal 5 cm. Abbreviations: acdl, anterior centrodiapophyseal lamina; cdf, centrodiapophyseal fossa; plc, pleurocoel; pocdl, postcentrodiapophyseal lamina; poz, postzygapophysis; pozcdf, post- zygapophyseal centrodiapophyseal fossa; pozdl, postzygodiapophyseal lamina; ppoz, finger-like process lateral to postzygapophysis; ppozc, groove for contact with finger-like process; przdl, prezygodiapophyseal lamina; sdf, spinodiapophyseal fossa.

Xing et al. (2015), FIGURE 11. Anterior cervical series of Qijianglong guokr (QJGPM 1001) in left lateral views unless otherwise noted. A, axis; B, cervical vertebra 3; C, cervical vertebra 4; D, cervical vertebrae 5 and 6; E, cervical vertebra 7 and anterior half of cervical vertebra 8 (horizontally inverted; showing right side); F, posterior half of cervical vertebra 8 and cervical vertebra 9; G, cervical vertebra 10; H, cervical vertebra 11; I, close-up of the prezygapophy- sis-postzygapophysis contact between cervical vertebrae 3 and 4 in dorsolateral view, showing finger-like process lateral to postzygapophysis; J, close- up of the postzygapophysis of cervical vertebra 5 in dorsal view, showing finger-like process lateral to postzygapophysis. Arrow with number indicates a character diagnostic to this taxon (number refers to the list of characters in the Diagnosis). All scale bars equal 5 cm. Abbreviations: acdl, anterior centrodiapophyseal lamina; cdf, centrodiapophyseal fossa; plc, pleurocoel; pocdl, postcentrodiapophyseal lamina; poz, postzygapophysis; pozcdf, post- zygapophyseal centrodiapophyseal fossa; pozdl, postzygodiapophyseal lamina; ppoz, finger-like process lateral to postzygapophysis; ppozc, groove for contact with finger-like process; przdl, prezygodiapophyseal lamina; sdf, spinodiapophyseal fossa.

(At first, I couldn’t figure out what this pocdl abbreviation meant. Then I realised it was a vanilla posterior centrodiapophyseal lamina. Come on, folks. That element has had a standard abbreviation since 1999. Let’s use our standards!)

The hot news in these cervicals is the presence of what the authors call “a distinct finger-like process extending from the postzygapophyseal process beside a zygapophyseal contact”. They don’t give a name to these things, but I’m going to call them parapostzygapophyses since they’re next to the postzygapophyses. [Update: see the comment from Matt below.]

You can get some sense of this morphology from the figure above — although it doesn’t help that we’re looking at tiny greyscale images which really don’t convey 3d structure at all. The best illustration is part J of the figure:

XingEtA2015-qijianglong-fig11J

What are these things? The paper itself says disappointingly little about them. I quote from page 9:

From the axis to at least the 14th cervical vertebra, a finger- like process extends posteriorly above the postzygapophysis and overlaps onto the dorsolateral surface of the prezygapophysis of the next vertebra (Fig. 11I, J). These processes are unique to Qijianglong, unlike all previously known mamenchisaurids that are preserved with cervical vertebrae (e.g., Chuanjiesaurus, Mamenchisaurus spp., Omeisaurus spp., Tonganosaurus). Therefore, the neck of Qijianglong presumably had a range of motion restricted in sideways.

That’s it.

So what are these things? The authors — who after all have seen the actual fossils, not just the rather inadequate pictures — seem to assume that they are a stiffening adaptation, but don’t discuss their reasoning. My guess — and it’s only a guess — it that they assumed that this is what was going on with these processes because it’s what people have assumed about extra processes on xenarthrous vertebrae. But as best as I can determine, that’s not been demonstrated either, only assumed. Funny how these things seem to get a pass.

Armadillo lumbar vertebrae in posterior, anterior and right lateral views.

Armadillo lumbar vertebrae in posterior, anterior and right lateral views.

So what are these processes? It’s hard to say for sure without having seen the fossils, or at least some better multi-view photos, but the obvious guess is that they are our old friends epipophyses, in extreme form. That is, they are probably enlarged attachment points for posteriorly directed dorsal muscles, just as the cervical ribs are attachment points for posteriorly directly ventral muscles.

It’s a shame that Xing et al. didn’t discuss this (and not only because it would probably have meant citing our paper!) Their new beast seems to have some genuinely new and interesting morphology which is worthy of a bit more attention than they gave it, and whose mechanical implications could have been discussed in more detail. Until more is written about these fossils (or better photographs published) I think I am going to have to suspend judgement on the as-yet unjustified assumption that the parapostzygs were there to make the neck rigid against transverse bending.

A final thought: doesn’t JVP seem terribly old-fashioned now? It’s not just the paywall — apologies to those many of you who won’t be able to read the paper. The greyscaling of the figures is part of it — something that makes no sense at all in 2015. The small size and number of the illustrations is also a consequence of the limited page-count of a printed journal — it compares poorly with, for example, the glorious high-resolution colour multiview illustrations in Farke et al.’s (2013) hadrosaur description in PeerJ. Seems to me that, these days, all the action is over at the OA journals with infinite space — at least when it comes to descriptive papers.

References

  • Farke, Andrew A., Derek J. Chok, Annisa Herrero, Brandon Scolieri and Sarah Werning. (2013) Ontogeny in the tube-crested dinosaur Parasaurolophus (Hadrosauridae) and heterochrony in hadrosaurids. PeerJ 1:e182. doi:10.7717/peerj.182
  • Xing Lida, Tetsuto Miyashita, Jianping Zhang, Daqing Li, Yong Ye, Toru Sekiya, Fengping Wang & Philip J. Currie. 2015. A new sauropod dinosaur from the Late Jurassic of China and the diversity, distribution, and relationships of mamenchisaurids. Journal of Vertebrate Paleontology. doi:10.1080/02724634.2014.889701

 

Arriving as an early Christmas present, and coming in just a week before the end of what would otherwise have been a barren 2014, my paper Quantifying the effect of intervertebral cartilage on neutral posture in the necks of sauropod dinosaurs is out! You can read it on PeerJ (or download the PDF).

Figure 4. Effect of adding cartilage to the neutral pose of the neck of Diplodocus carnegii CM 84. Images of vertebra from Hatcher (1901:plate III). At the bottom, the vertebrae are composed in a horizontal posture. Superimposed, the same vertebrae are shown inclined by the additional extension angles indicated in Table 2.

Figure 4: Effect of adding cartilage to the neutral pose of the neck of Diplodocus carnegii CM 84. Images of vertebra from Hatcher (1901:plate III). At the bottom, the vertebrae are composed in a horizontal posture. Superimposed, the same vertebrae are shown inclined by the additional extension angles indicated in Table 2.

Yes, that posture is ludicrous — but the best data we currently have says that something like this would have been neutral for Diplodocus once cartilage is taken into account. (Remember of course that animals do not hold their necks in neutral posture.)

The great news here is that PeerJ moved quickly. In fact here’s how the time breaks down since I submitted the manuscript (and made it available as a preprint) on 4 November:

28 days from submission to first decision
3 days to revise and resubmit
3 days to accept
15 days to publication

TOTAL 49 days

Which of course is how it ought to be! Great work here from handling editor Chris Noto and all three reviewers: Matt Bonnan, Heinrich Mallison and Eric Snively. They all elected not to be anonymous, and all gave really useful feedback — as you can see for yourself in the published peer-review history. When editors and reviewers do a job this good, they deserve credit, and it’s great that PeerJ’s (optional) open review lets the world see what they contributed. Note that you can cite, or link to, individual reviews. The reviews themselves are now first-class objects, as they should be.

At the time of writing, my paper is top of the PeerJ home-page — presumably just because it’s the most recent published paper, but it’s a nice feeling anyway!

Screenshot from 2014-12-23 10:39:34

 

A little further down the front-page there’s some great stuff about limb function in ratites — a whole slew of papers.

Well, I’m off to relax over Christmas. Have a good one, y’all!

Last night, I submitted a paper for publication — for the first time since April 2013. I’d almost forgotten what it felt like. But, because we’re living in the Shiny Digital Future, you don’t have to wait till it’s been through review and formal publication to read it. I submitted to PeerJ, and at the same time, made it available as a preprint (Taylor 2014).

It’s called “Quantifying the effect of intervertebral cartilage on neutral posture in the necks of sauropod dinosaurs”, and frankly the results are weird. Here’s a taste:

Taylor (2014:figure 3). Effect of adding cartilage to the neutral pose of the neck of Apatosaurus louisae CM 3018. Images of vertebra from Gilmore (1936:plate XXIV). At the bottom, the vertebrae are composed in a horizontal posture. Superimposed, the same vertebrae are shown inclined by the additional extension angles indicated in Table 1. If the slightly sub-horizontal osteological neutral pose of Stevens and Parrish (1999) is correct, then the cartilaginous neutral pose would be correspondingly slightly lower than depicted here, but still much closer to the elevated posture than to horizontal. (Note that the posture shown here would not have been the habitual posture in life: see discussion.)

Taylor (2014:figure 3). Effect of adding cartilage to the neutral pose of the neck of Apatosaurus louisae CM 3018. Images of vertebra from Gilmore (1936:plate XXIV). At the bottom, the vertebrae are composed in a horizontal posture. Superimposed, the same vertebrae are shown inclined by the additional extension angles indicated in Table 1. If the slightly sub-horizontal osteological neutral pose of Stevens and Parrish (1999) is correct, then the cartilaginous neutral pose would be correspondingly slightly lower than depicted here, but still much closer to the elevated posture than to horizontal. (Note that the posture shown here would not have been the habitual posture in life: see discussion.)

A year back, as I was composing a blog-post about our neck-cartilage paper in PLOS ONE (Taylor and Wedel 2013c), I found myself writing down the rather trivial formula for the additional angle of extension at an intervertebral joint once the cartilage is taken into account. In that post, I finished with the promise “I guess that will have to go in a followup now”. Amazingly it’s taken me a year to get that one-pager written and submitted. (Although in the usual way of things, the manuscript ended up being 13 pages long.)

To summarise the main point of the paper: when you insert cartilage of thickness t between two vertebrae whose zygapophyses articulate at height h above the centra, the more anterior vertebra is forced upwards by t/h radians. Our best guess for how much cartilage is between the adjacent vertebrae in an Apatosaurus neck is about 10% of centrum length: the image above shows the effect of inserting that much cartilage at each joint.

And yes, it’s weird. But it’s where the data leads me, so I think it would be dishonest not to publish it.

I’ll be interested to see what the reviewers make of this. You are all of course welcome to leave comments on the preprint itself; but because this is going through conventional peer-review straight away (unlike our Barosaurus preprint), there’s no need to offer the kind of detailed and comprehensive comment that several people did with the previous one. Of course feel free if you wish, but I’m not depending on it.

References

Gilmore Charles W. 1936. Osteology of Apatosaurus, with special reference to specimens in the Carnegie Museum. Memoirs of the Carnegie Museum 11:175–300 and plates XXI–XXXIV.

Stevens, Kent A., and J. Michael Parrish. 1999. Neck posture and feeding habits of two Jurassic sauropod dinosaurs. Science 284(5415):798–800. doi:10.1126/science.284.5415.798

Taylor, Michael P. 2014. Quantifying the effect of intervertebral cartilage on neutral posture in the necks of sauropod dinosaurs. PeerJ PrePrints 2:e588v1 doi:10.7287/peerj.preprints.588v1

Taylor, Michael P., and Mathew J. Wedel. 2013c. The effect of intervertebral cartilage on neutral posture and range of motion in the necks of sauropod dinosaurs. PLOS ONE 8(10):e78214. 17 pages. doi:10.1371/journal.pone.0078214

Just a quick post to link to all five (so far) installments of the “necks lie” series. I need this because I want to cite all the “necks lie” posts in a paper that I’ll shortly submit, and it seems better to cite a single page than four of them.

I’ll update this post as and when we write more about lying necks.

X-ray of the neck of a seal, from Irish Seal Sanctuary. Note that the vertebral column becomes much more vertical than the fleshy envelope suggests.

X-ray of the neck of a seal, from Irish Seal Sanctuary. Note that the vertebral column becomes much more vertical than the fleshy envelope suggests.

 

A couple of times now, I’ve pitched in an abstract for a Masters project looking at neck cartilage, hoping someone at Bristol will work on it with me co-supervising, but so far no-one’s bitten. Here’s how I’ve been describing it:

Understanding posture and motion in the necks of sauropods: the crucial role of cartilage in intervertebral joints

The sauropod dinosaurs were an order of magnitude bigger than any other terrestrial animal. Much sauropod research has concentrated on their long necks, which were crucial to their success (e.g. Sander et al. 2010). One approach to understanding neck function tries to determine neutral posture and range of motion by modelling the cervical vertebrae as a mechanical system (e.g. Stevens and Parrish 1999).

The raw material of such studies is fossilised vertebrae, but these are problematic for several reasons. The invariable incompleteness and distortion of sauropod neck fossils causes fundamental difficulties; but even given perfect fossils, the lack of preserved cartilage means that the bones are not shaped or sized as they were in life.

Ignoring cartilage has dramatic consequences for neutral posture, range of motion and even length of necks: pilot studies (Cobley 2011, Taylor 2011) found that intact bird necks are 8–12% longer than articulated sequences of their dry bones, and that figure is as high as 24% for a juvenile giraffe neck. A turkey neck postzygapophysis was 26% longer when cartilage was included than after being stripped down to naked bone.

We do not yet know how much articular cartilage sauropods had in their necks, nor even what kind of intervertebral joints they had: crocodilians have fibrocartilaginous discs like those of mammals, while birds have synovial joints, so the extant phylogenetic bracket is uninformative.

The project will involve dissection and measurement of bird and crocodilian necks, documenting the extent and shape of articular cartilage, identifying osteological correlates of fibrocartilaginous and synovial joints, and applying this data to sauropods to determine the nature of their neck joints and length of their necks, to reconstruct the lost cartilage, and to determine its effect on neutral pose and range of motion.

Following completion, we anticipate publication of the project.

References

Cobley, Matthew J. 2011. The flexibility and musculature of the ostrich neck: implications for the feeding ecology and reconstruction of the Sauropoda (Dinosauria: Saurischia). MSc Thesis, Department of Earth Sciences, University of Bristol. vi+64 pages.

Sander, P. Martin, Andreas Christian, Marcus Clauss, Regina Fechner, Carole T. Gee, Eva-Maria Griebeler, Hanns-Christian Gunga, Jürgen Hummel, Heinrich Mallison, Steven F. Perry, Holger Preuschoft, Oliver W. M. Rauhut, Kristian Remes, Thomas Tütken, Oliver Wings and Ulrich Witzel. 2010. Biology of the sauropod dinosaurs: the evolution of gigantism. Biological Reviews 86:117–155. doi:10.1111/j.1469-185X.2010.00137.x

Stevens, Kent A., and J. Michael Parrish. 1999. Neck Posture and Feeding Habits of Two Jurassic Sauropod Dinosaurs. Science 284:798–800. doi:10.1126/science.284.5415.798

Taylor, Michael P., and Mathew J. Wedel. 2011. Sauropod necks: how much do we really know?. p. 20 in Richard Forrest (ed.), Abstracts of Presentations, 59th Annual Symposium of Vertebrae Palaeontology and Comparative Anatomy, Lyme Regis, Dorset, UK, September 12th–17th 2011. 37 pp. http://www.miketaylor.org.uk/dino/pubs/svpca2011/TaylorWedel2011-what-do-we-really-know.ppt

(Obviously some part of this have since been covered by my and Matt’s first cartilage paper, but plenty has not.)

I now think there are two reasons no-one’s taken up this project: first, because I wrote it as very focussed only on the question of what type of joint was present, whereas there are plenty of related issues to be investigated along the way; and second, because I wrote it as a quest to discover a specific treasure (an osteological correlate), with the implication that if there’s no treasure to be found then the project will have been a failure.

But I do think there is still plenty of important work to be done in this area, and that there’s lots of important information to be got out of comparative dissection of extant critters.

If anyone out there fancies working in this area, I’d be delighted. I’d also be happy to offer whatever advice and help I could.

Update (18 October 2014)

Somehow I’d forgotten, when I wrote this post, that I’d previously written a more detailed post about the discs-in-sauropod-necks problem. If you’re interested in the problem, you should read that.

Folks,

You may know that the inaugral TetZooCon is set to take place next Saturday (12 July) at the London Wetland Centre. It’s an informal convention that’s condensed around occasional SV-POW!sketeer Darren Naish’s absurdly informative blog Tetrapod Zoology, and features a day of talks, a palaeoart workshop and a quiz. At £40 for the day, it’s a bit of a bargain.

Among the speakers is my own good self, and I will be talking about why giraffes are rubbish.

Taylor and Wedel 2013a: Figure 3. Necks of long-necked sauropods, to scale. Diplodocus, modified from elements in Hatcher (1901, plate 3), represents a “typical” long-necked sauropod, familiar from many mounted skeletons in museums. Puertasaurus, Sauroposeidon, Mamenchisaurus and Supersaurus modified from Scott Hartman’s reconstructions of Futalognkosaurus, Cedarosaurus, Mamenchisaurus and Supersaurus respectively. Alternating pink and blue bars are one meter in width. Inset shows Fig. 1 to the same scale.

Taylor and Wedel 2013a: Figure 3. Necks of long-necked sauropods, to scale. Diplodocus, modified from elements in Hatcher (1901, plate 3), represents a “typical” long-necked sauropod, familiar from many mounted skeletons in museums. Puertasaurus, Sauroposeidon, Mamenchisaurus and Supersaurus modified from Scott Hartman’s reconstructions of Futalognkosaurus, Cedarosaurus, Mamenchisaurus and Supersaurus respectively. Alternating pink and blue bars are one meter in width. Inset shows Fig. 1 to the same scale.

If that sounds like your idea of a good time, then you need to move fast! Booking closes at 4pm this evening. Better get on it now!

 

Follow

Get every new post delivered to your Inbox.

Join 471 other followers