A few bits and pieces about the PLOS Collection on sauropod gigantism that launched yesterday.

2013-10-29-SauropodEbook1-thumb

First, there’s a nice write-up of one of our papers (Wedel and Taylor 2013b on pneumaticity in sauropod tails) in the Huffington Post today. It’s the work of PLOS blogger Brad Balukjian, a former student of Matt’s from Berkeley days. The introduction added by the PLOS blogs manager is one of those where you keep wanting to interrupt, “Well, actually it’s not quite like that …” but the post itself, once it kicks in, is good. Go read it.

Brad also has a guest-post on Discover magazine’s Crux blog: How Brachiosaurus (and Brethren) Became So Gigantic. He gives an overview of the sauropod gigantism collection as a whole. Well worth a read to get your bearings on the issue of sauropod gigantism in general, and the new collection in particular.

PLOS’s own community blog EveryONE also has its own brief introduction to the collection.

And PLOS and PeerJ editor Andy Farke, recently in these pages because of his sensational juvenile Parasaurolophus paper, contributes his own overview of the collection, How Big? How Tall? And…How Did It Happen?

Finally, if you’re at SVP, go and pick up your free copy of the collection. Matt was somehow under the impression that the PLOS USB drives with the sauropod gigantism collection would be distributed with the conference packet when people registered. In fact, people have to go by the PLOS table in the exhibitor area (booth 4 in the San Diego ballroom) to pick them up. There are plenty of them, but apparently a lot of people don’t know that they can get them.

References

This is an exciting day: the new PLOS Collection on sauropod gigantism is published to coincide with the start of this year’s SVP meeting! Like all PLOS papers, the contents are free to the world: free to read and to re-use.  (What is a Collection? It’s like an edited volume, but free online instead of printed on paper.)

There are fourteen papers in the new Collection, encompassing neck posture (yay!), nutrition (finally putting to bed the Nourishing Vomit Of Eucamerotus hypothesis), locomotion, physiology and evolutionary ecology. Lots every sauropod-lover to enjoy.

x

Taylor and Wedel (2013c: Figure 12). CT slices from fifth cervical vertebrae of Sauroposeidon. X-ray scout image and three posterior-view CT slices through the C5/C6 intervertebral joint in Sauroposeidon OMNH 53062. In the bottom half of figure, structures from C6 are traced in red and those from C5 are traced in blue. Note that the condyle of C6 is centered in the cotyle of C5 and that the right zygapophyses are in articulation.

Matt and I are particularly excited that we have two papers in this collection: Taylor and Wedel (2013c) on intervertebral cartilage in necks, and Wedel and Taylor (2013b) on pneumaticity in the tails of (particularly) Giraffatitan and Apatosaurus. So we have both ends of the animal covered. It also represents a long-overdue notch on our bed-post: for all our pro-PLOS rhetoric, this is the first time either of has had a paper published in a PLOS journal.

Wedel and Taylor (2013b: Figure 4). Giraffatitan brancai tail MB.R.5000 (‘Fund no’) in right lateral view. Dark blue vertebrae have pneumatic fossae on both sides, light blue vertebrae have pneumatic fossae only on the right side, and white vertebrae have no pneumatic fossae on either side. The first caudal vertebra (hatched) was not recovered and is reconstructed in plaster.

It’s a bit of a statistical anomaly that after a decade of collaboration in which there was never a Taylor & Wedel or Wedel & Taylor paper, suddenly we have five of them out in a single year (including the Barosaurus preprint, which we expect to eventually wind up as Taylor and Wedel 2014). Sorry about the alphabet soup.

Since Matt is away at SVP this week, I’ll be blogging mostly about the Taylor and Wedel paper this week. When Matt returns to civilian life, the stage should be clear for him to blog about pneumatic caudals.

Happy days!

References

Yesterday I announced that our new paper on Barosaurus was up as a PeerJ preprint and invited feedback.

I woke up this morning to find its third substantial review waiting for me.

That means that this paper has now accumulated as much useful feedback in the twenty-seven hours since I submitted it as any previous submission I’ve ever made.

xx

Taylor and Wedel (2013b: figure 7). Barosaurus lentus holotype YPM 429, Vertebra S (C?12). Left column from top to bottom: dorsal, right lateral and ventral views; right column: anterior view. Inset shows displaced fragment of broken prezygapophysis. Note the narrow span across the parapophyses in ventral view, and the lack of damage to the ventral surface of the centrum which would indicate transverse crushing.

It’s worth reviewing the timeline here:

  • Monday 23rd September, 1:19 am: I completed the submission process.
  • 7:03 am: the preprint was published. It took less than six hours.
  • 10:52 am: received a careful, detailed review from Emanuel Tschopp. It took less than four hours from publication, and so of course less than ten from submission.
  • About 5:00 pm: received a second review, this one from Mark Robinson. (I don’t know the exact time because PeerJ’s page doesn’t show an actual timestamp, just “21 hours ago”.)
  • Tuesday 24th September, about 4:00 am: received a third review, this from ceratopsian-jockey and open-science guru Andy Farke.

Total time from submission to receiving three substantial reviews: about 27 hours.

It’s worth contrasting that with the times taken to get from submission to the receipt of reviews — usually only two of them — when going through the traditional journal route. Here are a few of mine:

  • Diplodocoid phylogenetic nomenclature at the Journal of Paleontology, 2004-5 (the first reviews I ever received): three months and 14 days.
  • Revised version of the same paper at PaleoBios, 2005 (my first published paper): one month and 10 days.
  • Xenoposeidon description at Palaeontology, 2006: three months and 19 days, although that included a delay as the handling editor sent it to a third, tie-breaking, reviewer.
  • Brachiosaurus revision at the Journal of Vertebrate Paleontology, 2008: one month and 11 days.
  • Sauropod neck anatomy (eventually to be published in a very different form in PeerJ) at Paleobiologyfive months and two days.
  • Trivial correction to the Brachiosaurus revision at the Journal of Vertebrate Paleontology, 2010: five months and 11 days, bizarrely for a half-page paper.

Despite the wide variations in submission-to-review time at these journals, it’s clear that you can expect to wait at least a month before getting any feedback at all on your submission at traditional journals. Even PeerJ took 19 days to get the reviews of our neck-anatomy paper back to us.

So I am now pretty such sold on the pre-printing route. As well as getting this early version of the paper out there early so that other palaeontologists can benefit from it (and so that we can’t be pre-emptively plagiarised), issuing a preprint has meant that we’ve got really useful feedback very quickly.

I highly recommend this route.

By the way, in case anyone’s wondering, PeerJ Preprints is not only for manuscripts that are destined for PeerJ proper. They’re perfectly happy for you to use their service as a place to gather feedback for your work before submitting it elsewhere. So even if your work is destined for, say, JVP, there’s a lot to be gained by preprinting it first.

I was very pleased, on checking my email this morning, to see that my and Matt’s new paper, The neck of Barosaurus was not only longer but also wider than those of Diplodocus and other diplodocines, is now up as a PeerJ preprint!

Figure6-vertebra-q-composite

Taylor and Wedel (2013b: figure 6). Barosaurus lentus holotype YPM 429, Vertebra Q (C?13). Top row: left ventrolateral view. Middle row, from left to right: anterior view, with ventral to the right; ventral view; posterior view, with ventral to the left. Bottom row: right lateral view, inverted. Inset shows diapophyseal facet on right side of vertebra, indicating that the cervical ribs were unfused in this individual despite its great size. Note the broad, flat prezygapophyseal facet visible in anterior view.

I was pleased partly because of the very quick work on PeerJ’s part. I submitted the preprint at 1:22am last night, then went to bed. Almost immediately I got an automatic email from PeerJ saying:

Thank you for submitting your manuscript, “The neck of Barosaurus was not only longer but also wider than those of Diplodocus and other diplodocines” (#2013:09:838:0:0:CHECK:P) – it has now been received by PeerJ PrePrints.

Next, it will be checked by PeerJ staff, who will notify you if any alterations are required to the manuscript or accompanying files.

If the PrePrint successfully passes these checks, it will be made public.

You will receive notification by email at each stage of this process; you can also check the status of your manuscript at any time.

Lots to like here: the quickness of the response, the promise of automatic email updates, and the one-click link to check on progress (as opposed to the usual maze of Manuscript Central options to navigate).

Sure enough, a couple of hours later the next automatic email arrived, telling me that Matt had accepted PeerJ’s email invitation to be recognised as the co-author of the submission.

And one hour ago, just as I was crawling out of bed, I got the notification that the preprint is up. That simple.

xx

Taylor and Wedel (2013b: Figure 9). Partial reconstruction of the Barosaurus lentus holotype YPM 429, cervical vertebra R, approximating its undamaged state by allowing for dorsoventral crushing, shearing and loss of some extremities. Anterior and posterior views scaled to 125% of uncorrected width and 80% of uncorrected height. Dorsal view scaled to 80% of uncorrected height; condyle moved forward and cotyle scaled to 50% of uncorrected width to allow for shearing. Lateral view scaled to 125% of uncorrected height, and sheared backwards 15 degrees. Metapophyses and postzygapophyses drawn in multiple views based on vertebrae Q and S and AMNH 6341 material.

I’m also pleased because we managed to get this baby written so quickly. It started life as our talk at SVPCA in Edinburgh (Taylor and Wedel 2013a), which we delivered 25 days ago having put it together mostly in a few days running up to the conference — so it’s zero to sixty in less than a month. Every year we promise ourselves that we’ll write up our talks, and we never seem to get around to it, but this year I started writing on the train back from Edinburgh. By the time I got home I had enough of a hunk of text to keep me working on it, and so we were able to push through in what, for us, is record time.

Now here’s what we’d like:

We want this paper’s time as a preprint to be time well spent — which means that we want to improve it. To do that, we need your reviews. Assuming we get some useful comments, we plan to release an updated version pretty soon; and after some number of iterations, we’ll submit the resulting paper as a full-fledged PeerJ paper.

So if you know anything about sauropods, about vertebra, about deformation, about ecology, or even about grammar or punctuation, please do us a favour: read the preprint, then get over to its PeerJ page and leave your feedback. You’ll be helping us to improve the scientific record. We’ll acknowledge substantial comments in the final paper, but even the pickiest comments are appreciated.

Because we want to encourage this approach to bringing papers to publication, we’d ask you please do not post comments about the paper here on SV-POW!. Please post them on the PeerJ preprint page. We’ve leaving comments here open for discussion of the preprinting processes, but not the scientific content.

References

  • Taylor, Michael P., and Mathew J. Wedel. 2013a. Barosaurus revisited: the concept of Barosaurus (Dinosauria: Sauropoda) is based on erroneously referred specimens. (Talk given as: Barosaurus revisited: the concept of Barosaurus (Dinosauria: Sauropoda) is not based on erroneously referred specimens.) pp. 37-38 in Stig Walsh, Nick Fraser, Stephen Brusatte, Jeff Liston and Vicen Carrió (eds.), Programme and Abstracts, 61st Symposium on Vertebrae Palaeontology and Comparative Anatomy, Edinburgh, UK, 27th-30th August 2013. 33 pp.
  • Taylor, Michael P., and Mathew J. Wedel. 2013b. The neck of Barosaurus was not only longer but also wider than those of Diplodocus and other diplodocines. PeerJ PrePrints 1:e67v1 http://dx.doi.org/10.7287/peerj.preprints.67v1

What is an ad-hominem attack?

September 4, 2013

I recently handled the revisions on a paper that hopefully will be in press very soon. One of the review comments was “Be very careful not to make ad hominem attacks”.

I was a bit surprised to see that — I wasn’t aware that I’d made any — so I went back over the manuscript, and sure enough, there were no ad homs in there.

There was criticism, though, and I think that’s what the reviewer meant.

Folks, “ad hominem” has a specific meaning. An “ad hominem attack” doesn’t just mean criticising something strongly, it means criticising the author rather than the work. The phrase is Latin for “to the man”. Here’s a pair of examples:

  • “This paper by Wedel is terrible, because the data don’t support the conclusion” — not ad hominem.
  • “Wedel is a terrible scientist, so this paper can’t be trusted” – ad hominem.

What’s wrong with ad hominem criticism? Simply, it’s irrelevant to evaluation of the paper being reviewed. It doesn’t matter (to me as a scientist) whether Wedel strangles small defenceless animals for pleasure in his spare time; what matters is the quality of his work.

Note that ad hominems can also be positive — and they are just as useless there. Here’s another pair of examples:

  • “I recommend publication of Naish’s paper because his work is explained carefully and in detail” — not ad hominem.
  • “I recommend publication of Naish’s paper because he is a careful and detailed worker” — ad hominem.

It makes no difference whether Naish is a careful and detailed worker, or if he always buys his wife flowers on their anniversary, or even if he has a track-record of careful and detailed work. What matters is whether this paper, the one I’m reviewing, is good. That’s all.

As it happens the very first peer-review I ever received — for the paper that eventually became Taylor and Naish (2005) on diplodocoid phylogenetic nomenclature — contained a classic ad hominem, which I’ll go ahead and quote:

It seems to me perfectly reasonable to expect revisers of a major clade to have some prior experience/expertise in the group or in phylogenetic taxonomy before presenting what is intended to be the definitive phylogenetic taxonomy of that group. I do not wish to demean the capabilities of either author – certainly Naish’s “Dinosaurs of the Isle of Wight” is a praiseworthy and useful publication in my opinion – but I question whether he and Taylor can meet their own desiderata of presenting a revised nomenclature that balances elegance, consistency, and stability.

You see what’s happening here? The reviewer was not reviewing the paper, but the authors. There was no need for him or her to question whether we could meet our desiderata: he or she could just have read the manuscript and found out.

(Happy ending: that paper was rejected at the journal we first sent it to, but published at PaleoBios in revised form, and bizarrely is my equal third most-cited paper. I never saw that coming.)

Wedel and Taylor 2013 bifurcation Figure 4 - classes of bifurcation

Figure 4. Cervical vertebrae of Camarasaurus supremus AMNH 5761 cervical series 1 in anterior view, showing different degrees of bifurcation of the neural spine. Modified from Osborn & Mook (1921: plate 67).

Today sees the publication of my big paper with Mike on neural spine bifurcation, which has been in the works since last April. It’s a free download here, and as usual we put the hi-res figures and other supporting info on a sidebar page.

Navel-gazing about the publication process

This paper is a departure for us, for several reasons.

For one thing, it’s a beast: a little over 13,000 words, not counting tables, figure captions, and the bibliography. I was all geared up to talk about how it’s my longest paper after the second Sauroposeidon paper (Wedel et al. 2000), but that’s not true. It’s my longest paper, period (13192 vs 12526 words), and the one with the most figures (25 vs 22).

It’s the first time we’ve written the paper in the open, on the blog, and then repackaged it for submission to a journal. I have several things to say about that. First, it was more work than I expected. It turns out that I definitely do have at least two “voices” as a writer, and the informal voice I used for the initial run of blog posts (linked here) was not going to cut it for formal publication. So although there is very little new material in the paper that was not in the blog posts, a lot of the prose is new because I had to rewrite almost the whole thing.

I have mixed feelings about this. On one hand, last May kinda sucked, because just about every minute that wasn’t spent eclipse chasing was spent rewriting the paper. On the other hand, as Mike has repeatedly pointed out to me, it was a pretty fast way to generate a big paper quickly, even with the rewriting. It was just over two months from the first post in the destined-to-become-a-paper series on April 5, to submission on June 14 (not June 24 as it says on the last page of the PDF), and if you leave out the 10 days in late May that I was galavanting around Arizona, the actual time spent working on the paper was a bit under two months. It would be nice to be that productive all the time (it helped that we were basically mining everything from previously published work; truly novel work usually needs more time to get up and going).

Wedel and Taylor 2013 bifurcation Figure 18 - Barosaurus and Supersaurus cervicals

Figure 18. Middle cervical vertebrae of Barosaurus AMNH 6341 (top) and Supersaurus BYU 9024 (bottom) in left lateral view, scaled to the same centrum length. The actual centrum lengths are 850 mm and 1380 mm, respectively. BYU 9024 is the longest single vertebra of any known animal.

You may fairly wonder why, if almost all the content was already available on the blog, we went to the trouble of publishing it in a journal. Especially in light of sentiments like this. For my part, it’s down to two things. First, to paraphrase C.S. Lewis, what I wrote in that post was a yell, not a thought. I never intended to stop publishing in journals, I was just frustrated that traditional journals do so many stupid things that actually hurt science, like rejecting papers because of anticipated sexiness or for other BS reasons, not publishing peer reviews, etc. Happily, now there are better options.

Second, although in a sane world the quality of an argument or hypothesis would matter more than its mode of distribution, that’s not the world we live in. We’re happy enough to cite blog posts, etc. (they’re better than pers. comms., at least), but not everyone is, and the minimum bound of What Counts is controlled by people at the other end of the Overton window. So, bottom line, people are at least theoretically free to ignore stuff that is only published on blogs or other informal venues (DML, forums, etc.). If you want to force someone to engage with your ideas, you have to publish them in journals (for now). So we did.

Finally, ever since Darren’s azhdarchids-were-storks post got turned into a paper, it has bothered me that there is an icon for “Blogging on Peer-Reviewed Research” (from ResearchBlogging.org), but not one (that I know of) for “Blogging Into Peer-Reviewed Research”. If you have some graphic design chops and 10 minutes to kill, you could do the world a favor by creating one.

Hey, you! Want a project?

One of the few things in the paper that is not in any of the blog posts is the table summarizing the skeletal fusions in a bunch of famous sauropod specimens, to show how little consistency there is:

Wedel and Taylor 2013 NSB Table 1 - sauropod skeletal fusions

(Yes, we know that table legends typically go above, not below; this is just how they roll at PJVP.)

I want this to not get overlooked just because it’s in a long paper on neural spine bifurcation; as far as I’m concerned, it’s the most important part of the paper. I didn’t know that these potential ontogenetic indicators were all mutually contradictory across taxa before I started this project. Not only is the order of skeletal fusions inconsistent among taxa, but it might also be inconsistent among individuals or populations, or at least that’s what the variation among the different specimens of Apatosaurus suggests.

This problem cries out for more attention. As we say at the end of the paper:

To some extent the field of sauropod paleobiology suffers from ‘monograph tunnel vision’, in which our knowledge of most taxa is derived from a handful of specimens described decades ago (e.g. Diplodocus carnegii CM 84/94). Recent work by McIntosh (2005), Upchurch et al. (2005), and Harris (2006a, b, c, 2007) is a welcome antidote to this malady, but several of the taxa discussed herein are represented by many more specimens that have not been adequately described or assessed. A comprehensive program to document skeletal fusions and body size in all known specimens of, say, Camarasaurus, or Diplodocus, could be undertaken for relatively little cost (other than travel expenses, and even these could be offset through collaboration) and would add immeasurably to our knowledge of sauropod ontogeny.

So if you’re looking for a project on sauropod paleobiology and you can get around to a bunch of museums*, here’s work that needs doing. Also, you’ll probably make lots of other publishable observations along the way.

* The more the better, but for Morrison taxa I would say minimally: Yale, AMNH, Carnegie, Cleveland Museum of Natural History, Field Museum, Dinosaur National Monument, BYU, University of Utah, and University of Wyoming, plus Smithsonian, University of Kansas, OMNH, Denver Museum, Wyoming Dinosaur Center, and a few others if you can swing it. Oh, and Diplodocus hayi down in Houston. Check John Foster’s and Jack McIntosh’s publications for lists of specimens–there are a LOT more out there than most people are familiar with.

References

If you’ll forgive me a rather self-indulgent post, the neck-anatomy paper that I and Matt recently had published in PeerJ is important to me for three reasons beyond the usual satisfaction of getting a piece of work out in a good journal.

fig4

Taylor and Wedel (1023:figure 4). Extent of soft tissue on ostrich and sauropod necks. 1, ostrich neck in cross section from Wedel (2003, figure 2). Bone is white, air-spaces are black, and soft tissue is grey. 2, hypothetical sauropod neck with similarly proportioned soft-tissue. (Diplodocus vertebra silhouette modified from Paul 1997, figure 4A). The extent of soft tissue depicted greatly exceeds that shown in any published life restoration of a sauropod, and is unrealistic. 3, More realistic sauropod neck. It is not that the soft-tissue is reduced but that the vertebra within is enlarged, and mass is reduced by extensive pneumaticity in both the bone and the soft-tissue.

Three milestones

First, it brings a drought to an end. For one reason and another, I didn’t get a single paper published in 2012 — my last hit was the neck sexual-selection paper in September 2011, and I’d started to feel that I was drifting off into the distance a bit. Good to be back on the horse.

Second, amazing though it may seem, it’s the first Taylor/Wedel paper (in either order). Matt and I have been collaborating in one form or another for more than thirteen years now (even if the first couple of years of that were just me asking dumb questions and him telling me interesting things). Along the way, we’ve shared the authorship of a few papers with other authors (Taylor, Wedel and Naish 2009 on habitual neck posture; Taylor, Wedel and Cifelli 2011 on Brontomerus; and Taylor, Hone, Wedel and Naish 2011 on sexual selection) but of all the many Mike-‘n’-Matt projects we’ve started, this is the first to make it out into the world.

(As it happens — and at the risk of leaving the stadium before the fat lady sings — we should be adding to that tally of one Real Soon Now. Further bulletins as events warrant.)

Third, and most important, it means that my entire Ph.D is now published. Chapter 1 (the sauropod-history review) was in the Geological Society dinosaur-history volume;  chapter 2 (the Brachiosaurus revision) was in JVP; chapter 3 (the Xenoposeidon description) was in Palaeontology; chapter 4 (the Brontomerus description) was in Acta Palaeontologica Polonica, and now chapter 5 (neck anatomy) is in PeerJ. I’m pretty happy with the selection of venues there: I’m pleased to have had papers in JVP and Palaeontology even though I won’t be going back to either until they’re open access.

Figure 1. Necks of long-necked non-sauropods, to scale. The giraffe and Paraceratherium are the longest necked mammals; the ostrich is the longest necked extant bird; Therizinosaurus and Gigantoraptor are the largest representatives of two long-necked theropod clades; Arambourgiania is the longest necked pterosaur; and Tanystropheus has a uniquely long neck relative to torso length. Human head modified from Gray’s Anatomy (1918 edition, fig. 602). Giraffe modified from photograph by Kevin Ryder (CC BY, http://flic.kr/p/cRvCcQ). Ostrich modified from photograph by “kei51” (CC BY, http://flic.kr/p/cowoYW). Paraceratherium modified from Osborn (1923, figure 1). Therizinosaurus modified from Nothronychus reconstruction by Scott Hartman. Gigantoraptor modified from Heyuannia reconstruction by Scott Hartman. Arambourgiania modified from Zhejiangopterus reconstruction by Witton & Naish (2008, figure 1). Tanystropheus modified from reconstruction by David Peters. Alternating blue and pink bars are 1 m tall.

Taylor and Wedel (2013:figure 1). Necks of long-necked non-sauropods, to scale. The giraffe and Paraceratherium are the longest necked mammals; the ostrich is the longest necked extant bird; Therizinosaurus and Gigantoraptor are the largest representatives of two long-necked theropod clades; Arambourgiania is the longest necked pterosaur; and Tanystropheus has a uniquely long neck relative to torso length. Human head modified from Gray’s Anatomy (1918 edition, fig. 602). Giraffe modified from photograph by Kevin Ryder (CC BY, http://flic.kr/p/cRvCcQ). Ostrich modified from photograph by “kei51” (CC BY, http://flic.kr/p/cowoYW). Paraceratherium modified from Osborn (1923, figure 1). Therizinosaurus modified from Nothronychus reconstruction by Scott Hartman. Gigantoraptor modified from Heyuannia reconstruction by Scott Hartman. Arambourgiania modified from Zhejiangopterus reconstruction by Witton & Naish (2008, figure 1). Tanystropheus modified from reconstruction by David Peters. Alternating blue and pink bars are 1 m tall.

Dissertation thoughts

Actually I have strangely conflicted feelings about my Ph.D all being published now. I like the feeling of closure, but I also feel a bit sad that the dissertation itself — by far the most substantial single piece of work I’ve produced in any field — is now wholly obsolete. Really, the only reason anyone would possibly want to read it now would be for the acknowledgements or the laughably incorrect predictions of what I’d be working on next. Happily, I don’t have to lament time wasted on the dissertation: all five chapters were originally written to be papers, and the versions in the dissertation are all formatted as for the journals they were initially submitted to. (Three of them ended up in different venues, having initially been rejected, but that’s another story.)

An oddity of my Ph.D is that all five chapters were side-projects. They’re all things that I worked on when I was supposed to be working on a core project to do with the Archbishop and the mechanics of neck support. Every one of them I thought would be a quick job that I could push out before returning to my main work. And every one of them “grew in the telling” until it was substantial enough to function as a chapter. I am sure there’s a moral to this story, but heck if I can figure out what it is.

For reasons that seemed to make sense to me at the time, I did not post my dissertation on the Internet when it was accepted. I feared scooping myself on the as-yet unpublished material (Brontomerus and neck anatomy). Honestly, I don’t know what I was thinking. If I was doing it today I would certainly make it available from the moment it was okayed. As of just a couple of days ago it is now available — just in time to be of no interest to anyone.

xx

Taylor and Wedel (2013:figure 2). Full skeletal reconstructions of selected long-necked non-sauropods, to scale. 1, Paraceratherium. 2, Therizinosaurus. 3, Gigantoraptor. 4, Elasmosaurus. 5, Tanystropheus. Elasmosaurus modified from Cope (1870, plate II, figure 1). Other image sources as for Fig. 1. Scale bar = 2 m.

Co-authoring dissertation chapters

A final thing worth mentioning: as noted above, three of the chapters of my dissertation (Xenoposeidon, Brontomerus, neck anatomy) were co-authored. I think this is not particularly common, so it’s probably worth commenting on.

How does it work? For one of the papers, the Brontomerus description, I just excised Matt’s and Rich’s contributions, which were quite separate from the core of the paper, and used a sole-authored version as the chapter. For the other two, I put an explicit statement in the front-matter saying who did what:

Chapter 3 (description of Xenoposeidon): I was responsible for the anatomical part of the introduction, the systematic palaeontology section, description, comparisons and interpretation, phylogenetic analysis, length and mass calculations, diversity discussion, references, figures with their captions except figure 2, and both tables. Darren Naish of the University of Portsmouth was responsible for the geological and historical part of the introduction, the historical taxonomy section, and figure 2.

Chapter 5 (evolution of long necks): this chapter was written by me as a consequence of a series of discussions with Mathew J. Wedel. Dr. Wedel also contributed figure 5.

My sense was that the examiners were perfectly happy with this. Arguably it’s a good preparation for functioning as a researcher, since so many papers are co-authored. It’s not really realistic practice to sole-author all your work. That said, I doubt papers where I wasn’t lead author would have been welcomed.

I mention this because co-authoring may be a more widely available option than is recognised. My advice would be simple: check with your own supervisor first!

Follow

Get every new post delivered to your Inbox.

Join 391 other followers