This is an exciting day: the new PLOS Collection on sauropod gigantism is published to coincide with the start of this year’s SVP meeting! Like all PLOS papers, the contents are free to the world: free to read and to re-use.  (What is a Collection? It’s like an edited volume, but free online instead of printed on paper.)

There are fourteen papers in the new Collection, encompassing neck posture (yay!), nutrition (finally putting to bed the Nourishing Vomit Of Eucamerotus hypothesis), locomotion, physiology and evolutionary ecology. Lots every sauropod-lover to enjoy.

x

Taylor and Wedel (2013c: Figure 12). CT slices from fifth cervical vertebrae of Sauroposeidon. X-ray scout image and three posterior-view CT slices through the C5/C6 intervertebral joint in Sauroposeidon OMNH 53062. In the bottom half of figure, structures from C6 are traced in red and those from C5 are traced in blue. Note that the condyle of C6 is centered in the cotyle of C5 and that the right zygapophyses are in articulation.

Matt and I are particularly excited that we have two papers in this collection: Taylor and Wedel (2013c) on intervertebral cartilage in necks, and Wedel and Taylor (2013b) on pneumaticity in the tails of (particularly) Giraffatitan and Apatosaurus. So we have both ends of the animal covered. It also represents a long-overdue notch on our bed-post: for all our pro-PLOS rhetoric, this is the first time either of has had a paper published in a PLOS journal.

Wedel and Taylor (2013b: Figure 4). Giraffatitan brancai tail MB.R.5000 (‘Fund no’) in right lateral view. Dark blue vertebrae have pneumatic fossae on both sides, light blue vertebrae have pneumatic fossae only on the right side, and white vertebrae have no pneumatic fossae on either side. The first caudal vertebra (hatched) was not recovered and is reconstructed in plaster.

It’s a bit of a statistical anomaly that after a decade of collaboration in which there was never a Taylor & Wedel or Wedel & Taylor paper, suddenly we have five of them out in a single year (including the Barosaurus preprint, which we expect to eventually wind up as Taylor and Wedel 2014). Sorry about the alphabet soup.

Since Matt is away at SVP this week, I’ll be blogging mostly about the Taylor and Wedel paper this week. When Matt returns to civilian life, the stage should be clear for him to blog about pneumatic caudals.

Happy days!

References

Here is Tataouinea, named by Fanti et al. (2013) last week — the first sauropod to be named after a locality from Star Wars (though, sadly, that is accidental — the etymology refers to the Tataouine Governatorate of Tunisia).

FantiEtAl2013-tataouinea-fig3

Fanti et al. (2013: figure 3) T. hannibalis selected elements and reconstruction. (a) Sacral neural arches 1-3, right lateral view; (b) sacral neural spine 4, right lateral view; (c) sacral neural spine 5, right lateral view; (d) caudal vertebra 2 and fragment of caudal 1 postzygapophyses, left lateral view; (e) caudal vertebra 1, left lateral view; (f) sacral centrum 1, ventral view; (g) sacral centra 2-5, ventral view; (h-j) caudal vertebra 3, anterior (h), left lateral (i), posterior (j) views; (k) left ilium, lateral view; (l) right ischium, medial view; and (m) skeletal reconstruction of T. hannibalis. Missing elements based on other nigersaurines. Scale bar: 10 cm (a-l), 1 m (m). a, acetabulum; f, fossa; hr, hyposphenal ridge; ip, ischial peduncle; ll, lateral lamina; pf, pneumatic foramen; pl, pleurocoel; poz, postzygapophysis; pp, pubic peduncle; psdf, prezygospinodiapophyseal foramen; sdl, spinodiapophyseal lamina; spol, spinopostzygapophyseal lamina; spzl, spinoprezygapophyseal lamina; sr, sacral rib; tp, transverse process. The asterisk indicates the fossa bounded by the spzl and the sdl.

No doubt Matt willl have much more to say about this animal, and especially its pneumatic features. I just thought it was time for a picture-of-the-week post.

UPDATE: Matt here, just a few quick thoughts (I’m in the middle of my summer anatomy lectures so they will be less extensive than this animal deserves). First, it’s awesome to see so much pneumaticity, and in elements that have not previously been reported as pneumatic in sauropods. The authors make a good case that we’re looking at actual pneumaticity here, for example in the pelvic elements, and not something else. So that’s cool.

What’s even cooler is that we’re seeing this in a diplodocoid:  Tataouinea is a rebbachisaurid. We’ve seen extreme pneumaticity in saltasaurines, and now we’ve got a parallel evolution of this character complex in diplodocoids. That’s cool by itself, and it’s further evidence that the underlying generating mechanism–the air sacs and their diverticula–were all in place long before they started leaving traces on the skeleton. The case for a birdlike lung-air sac system in sauropods, in saurischians, and in ornithodirans generally only keeps getting stronger. That is, we’re seeing more evidence not just that air sacs were there, but that they were bird-like in their layout, e.g., pneumatization of the pectoral girdle by clavicular air sacs, in both saltasaurines and theropods (avian and otherwise), and now extensive pelvic pneumatization (i.e., going beyond what we’ve seen previously in saltasaurines) by abdominal air sacs in rebbachisaurids and theropods (and pterosaurs, can’t forget about them). Happy times.

Reference

Fanti, Federico, Andrea Cau, Mohsen Hassine and Michela Contessi. 9 July 2013. A new sauropod dinosaur from the Early Cretaceous of Tunisia with extreme avian-like pneumatization. Nature Communications 4:2080. doi:10.1038/ncomms3080

Currey Alexander 1985 fig 1

Figure 1 from Currey and Alexander (1985)

This post pulls together information on basic parameters of tubular bones from Currey & Alexander (1985), on ASP from Wedel (2005), and on calculating the densities of bones from Wedel (2009: Appendix). It’s all stuff we’ve covered at one point or another, I just wanted to have it all in one convenient place.

Definitions:

  • R = outer radius = r + t
  • r = inner radius = R – t
  • t = bone wall thickness = R – r

Cross-sectional properties of tubular bones are commonly expressed in R/t or K (so that r = KR). K is defined as the inner radius divided by the outer radius (r/R). For bones with elliptical or irregular cross-sections, it’s best to measure two radii at right angles to each other, or use a different measure of cross-sectional geometry (like second moment of area, which I’m not getting into here).

R/t and K can be converted like so:

  • R/t = 1/(1-K)
  • K = 1 – (1/(R/t))

ASP (air space proportion) and MSP (marrow space proportion) measure the cross-sectional area of an element not taken up by bone tissue. ASP and MSP are the same measurement–the amount of non-bone space in a bony element divided by the total–we just use ASP for air-filled bones and MSP for marrow-filled bones. See Tutorial 6 and these posts: one, two, three.

For tubular bones, ASP (or MSP) can be calculated from K:

  • ASP = πr^2/πR^2 = r^2/R^2 = (r/R)^2 = K^2

Obviously R/t and K don’t work for bones like vertebrae that depart significantly from a tubular shape. But if you had a vertebra or other irregular bone with a given ASP and you wanted to see what the equivalent tubular bone would look like, you could take the square root of ASP to get K and then use that to draw out the cross-section of that hypothetical tubular bone.

To estimate the density of an element (at least near the point of a given cross-section), multiply the proportional areas of bone and air, or bone and marrow, by the specific gravities of those materials. According to Currey and Alexader (1985: 455), the specific gravities of fatty marrow and bone tissue are 0.93 and 2.1, respectively.

For a marrow-filled bone, the density of the element (or at least of the part of the shaft the section goes through) is:

  • 0.93MSP + 2.1(1-MSP)

Air is matter and therefore has mass and density, but it is so light (0.0012-0.0013 g/mL) that we can effectively ignore it in these calculations. So the density of a pneumatic element is: 2.1(1-ASP) For the three examples in the figure at the top of the post, the ASP/MSP values and densities are:

  • (b) alligator femur (marrow-filled), K = 0.35, MSP = K^2 = 0.12, density = (0.93 x 0.12) + (2.1 x 0.88) = 1.96 g/mL
  • (c) camel tibia (marrow-filled), K = 0.57, MSP = K^2 = 0.32, density = (0.93 x 0.32) + (2.1 x 0.68) = 1.73 g/mL
  • (d) Pteranodon first phalanx (air-filled), K = 0.91, ASP = K^2 = 0.83, density = (2.1 x 0.17) = 0.36 g/mL

What if we switched things up, and imagined that the alligator and camel bones were pneumatic and the Pteranodon phalanx was marrow-filled? The results would then be:

  • (b) alligator femur (hypothetical air-filled), K = 0.35, ASP = K^2 = 0.12, density = (2.1 x 0.88) = 1.85 g/mL
  • (c) camel tibia (hypothetical air-filled), K = 0.57, ASP = K^2 = 0.32, density = (2.1 x 0.68) = 1.43 g/mL
  • (d) Pteranodon first phalanx (hypothetical marrow-filled), K = 0.91, MSP = K^2 = 0.83, density = (0.93 x 0.83) + (2.1 x 0.17) = 1.13 g/mL

In the alligator femur, the amount of non-bone space is so small that it does much matter whether that space is filled by air or marrow–replacing the marrow with air only lowers the density of the element by 5-6%. The Pteranodon phalanx is a lot less dense than the alligator femur for two reasons. First, there is much less bony tissue–the hypothetical marrow-filled phalanx is 42% less dense as the alligator femur. Second, the marrow is replaced by air, which reduces the density by an additional 40% relative to the alligator.

Next time: how to write punchier endings for tutorial posts.

References

DSCN1178

Another raw photo from the road.

The Morrison fossils from the Oklahoma panhandle were dug up and prepped out by  WPA workers in the 1930s, and their preparation toolkit consisted of hammers, chisels, pen-knives, and sandpaper. (Feel free to take a minute if you need to get your nausea under control.) And whereas most Morrison fossils are much darker than the surrounding matrix, in the Oklahoma panhandle the bone and matrix are about the same color. Sometimes the prep guys didn’t know they’d gone too deep until they sanded into the trabecular bone. Or in this case, into the air spaces in the condyle of this anterior dorsal of Apatosaurus.

Still, we have lots of anterior dorsals of Apatosaurus, and very few we can see inside, and they’re too darned big to scan, so this gives us useful information that a more perfect specimen would not. So I salute you, underemployed dude from eighty-odd years ago. Thanks for showing me something cool.

No time for anything new, so here’s a post built from parts of other, older posts.

The fourth sacral centrum of Haplocanthosaurus CM 879, in left and right lateral view. This is part of the original color version of Wedel (2009: figure 8), from this page. (Yes, I know I need to get around to posting the full-color versions of those figures. It’s on my To Do list.)

Note the big invasive fossa on the right side of the centrum. The left side is waisted (narrower at the middle than the ends) like most vertebrae of most animals, but has no distinct fossa on lateral face of the centrum. What’s up with that? Here’s an explanation from an old post (about another sauropod) that still fits:

Now, this asymmetry is also weird, but it’s expected weirdness. Pneumaticity seems to just be inherently variable, whether we’re talking about human sinuses or the facial air sacs of whales or the vertebrae of chickens. It appears that the form of pneumatic features is entirely determined by local tissue interactions, with little or no genetic control of the specific form. Think of it this way: genes prescribe certain developmental events, and those events bring tissues into contact–such as pneumatic epithelium and bone. The morphology of the bone arises out of that interaction, and each interaction of bone and pneumatic epithelium has the potential to produce something new. In this case, the diverticula on the left side of the vertebral column come from the lungs or air sacs on the left, and those on the right side come from the lungs or airs sacs on the right, so it’s really two sets of diverticula contacting the bone independently. The wonder, then, is not that pneumatic bones are so variable, but that we see any regularities at all.

Caudal pneumaticity in saltasaurines. Cerda et al. (2012: fig. 1).

Earlier this month I was amazed to see the new paper by Cerda et al. (2012), “Extreme postcranial pneumaticity in sauropod dinosaurs from South America.” The title is dramatic, but the paper delivers the promised extremeness in spades. Almost every figure in the paper is a gobsmacker, starting with Figure 1, which shows pneumatic foramina and cavities in the middle and even distal caudals of Rocasaurus, Neuquensaurus, and Saltasaurus. This is most welcome. Since the 1990s there have been reports of saltasaurs with “spongy bone” in their tail vertebrae, but it hasn’t been clear until now whether that “spongy bone” meant pneumatic air cells or just normal marrow-filled trabecular bone. The answer is air cells, loads of ‘em, way farther down the tail than I expected.

Caudal pneumaticity in diplodocines. Top, transverse cross-section through an anterior caudal of Tornieria, from Janensch (1947: fig. 9). Bottom, caudals of Diplodocus, from Osborn (1899: fig. 13).

Here’s why this is awesome. Lateral fossae occur in the proximal caudals of lots of neosauropods, maybe most, but only a few taxa go in for really invasive caudal pneumaticity with big internal chambers. In fact, the only other sauropod clade with such extensive pneumaticity so far down the tail are the diplodocines, including Diplodocus, Barosaurus, and Tornieria. But they do things differently, with BIG, “pleurocoel”-type foramina on the lateral surfaces of the centra, leading to BIG–but simple–camerae inside, and vertebral cross-sections that look like I-beams. In contrast, the saltasaurines have numerous small foramina on the centrum and neural arch that lead to complexes of small pneumatic camellae, giving their vertebrae honeycomb cross-sections. So caudal pneumaticity in diplodocines and saltsaurines is convergent in its presence and extent but clade-specific in its development. Pneumaticity doesn’t get much cooler than that.

Pneumatic ilia in saltasaurines. Cerda et al. (2012: fig. 3).

But it does get a little cooler. Because the stuff in the rest of the paper is even more mind-blowing. Cerda et al. (2012) go on to describe and illustrate–compellingly, with photos–pneumatic cavities in the ilia, scapulae, and coracoids of saltasaurines. And, crucially, these cavities are connected to the outside by pneumatic foramina. This is important. Chambers have been reported in the ilia of several sauropods, mostly somphospondyls but also in the diplodocoid Amazonsaurus. But it hasn’t been clear until now whether those chambers connected to the outside. No patent foramen, no pneumaticity. It seemed unlikely that these sauropods had big marrow-filled vacuities in their ilia–as far as I know, all of the non-pneumatic ilia out there in Tetrapoda are filled with trabecular bone, and big open marrow spaces only occur in the long bones of the limbs. And, as I noted in my 2009 paper, the phylogenetic distribution of iliac chambers is consistent with pneumaticity, in that the chambers are only found in those sauropods that already have sacral pneumaticity (showing that pneumatic diverticula were already loose in their rear ends). But it’s nice to have confirmation.

So, the pneumatic ilia in Rocasaurus, Neuquensaurus, and Saltasaurus are cool because they suggest that all the other big chambers in sauropod ilia were pneumatic as well. And for those of you keeping score at home, that’s another parallel acquisition in Diplodocoidea and Somphospondyli (given the apparent absence of iliac chambers in Camarasaurus and the brachiosaurids, although maybe we should bust open a few brachiosaur ilia just to be sure*).

* I kid, I kid.**

** Seriously, though, if you “drop” one and find some chambers, call me!

Pectoral pneumaticity in saltasaurines. Cerda et al. (2012: fig. 2).

But that’s not all. The possibility of pneumatic ilia has been floating around for a while now, and most of us who were aware of the iliac chambers in sauropods probably assumed that eventually someone would find the specimens that would show that they were pneumatic. At least, that was my assumption, and as far as I know no-one ever floated an alternative hypothesis to explain the chambers. But I certainly did not expect pneumaticity in the shoulder girdle. And yet there they are: chambers with associated foramina in the scap and coracoid of Saltasaurus and in the coracoid of Neuquensaurus. Wacky. And extremely important, because this is the first evidence that sauropods had clavicular air sacs like those of theropods and pterosaurs. So either all three clades evolved a shedload of air sacs independently, or the basic layout of the avian respiratory system was already present in the ancestral ornithodiran. I know where I’d put my money.

There’s loads more interesting stuff to talk about, like the fact that the ultra-pneumatic saltasaurines are among the smallest sauropods, or the way that fossae and camerae are evolutionary antecedent to camellae in the vertebrae of sauropods, so maybe we should start looking for fossae and camerae in the girdle bones of other sauropods, or further macroevolutionary parallels in the evolution of pneumaticity in pterosaurs, sauropods, and theropods. Each one of those things could be a blog post or maybe a whole dissertation. But my mind is already thoroughly blown. I’m going to go lie down for a while. Congratulations to Cerda et al. on what is probably the most important paper ever written on sauropod pneumaticity.

References

  • Cerda, I.A., Salgado, L., and Powell, J.E. 2012. Extreme postcranial pneumaticity in sauropod dinosaurs from South America. Palaeontologische Zeitschrift. DOI 10.1007/s12542-012-0140-6
  • Janensch, W. 1947. Pneumatizitat bei Wirbeln von Sauropoden und anderen Saurischien. Palaeontographica, Supplement 7, 3:1–25.
  • Osborn, H. F. 1899. A skeleton of Diplodocus. Memoirs of the American Museum of Natural History 1:191–214.

Those ostrich necks I went to Oro Grande to get last Thursday? Vanessa and I started dissecting them last Friday. The necks came to us pre-cut into segments with two to three vertebrae per segment. The transverse cuts were made without regard for joints so we got a bunch of cross sections at varying points through the vertebrae. This was fortuitous; we got to see a bunch of cool stuff at the cut faces, and those cut faces gave us convenient avenues for picking up structures and dissecting them out further.

In particular, the pneumatic diverticula in the neck of this ostrich were really prominent and not hard at all to see and to follow. The photo above shows most of the external diverticula; click through for the full-resolution, unlabeled version. The only ones that aren’t shown or labeled are the diverticula around the esophagus and trachea (which had already been stripped off the neck segments, so those diverticula were simply gone), those around carotid arteries, which are probably buried in the gloop toward the bottom of the photo, and the intermuscular diverticula, of which we found a few in parting out the dorsal and lateral neck muscles.

There is one final group of diverticula that are shown in the photo but not labeled: the interosseous diverticula that fill the air spaces inside the bone.

We have tons of cool photos from this dissection, so expect more posts on this stuff in the future.

For previous posts showing diverticula in bird neck dissections, see:

Things to Make and Do, part 7: fun with rhea necks

Things to Make and Do, part 7b: more fun with rhea necks (admittedly, not the most creative title ever)

Follow

Get every new post delivered to your Inbox.

Join 396 other followers