Peggy Sue's Diner-saurs - London with sauropod

A couple of weekends ago, London and I went camping and stargazing at Afton Canyon, a nice dark spot about 40 miles east of Barstow. On the way home, we took the exit off I-15 at Ghost Town Road, initially because we wanted to visit the old Calico Ghost Town. But then we saw big metal dinosaurs south of the highway, and that’s how we came to Peggy Sue’s Diner and in particular the Diner-saur Park.

Peggy Sue's Diner-saurs - spinosaur

The Diner-saur Park is out behind the diner and admission is free. There are pools with red-eared sliders, paved walkways, grass, trees, a small gift shop, and dinosaurs. Here’s a Spinosauruscuriously popular in the Mojave Desert, those spinosaurs.

Peggy Sue's Diner-saurs - stegosaur

Ornithischians are represented by two stegosaurs, this big metal one and a smaller concrete one under a tree.

Peggy Sue's Diner-saurs - turtles

The turtles are entertaining. They paddle around placidly and crawl out to bask on the banks of the pools, and on little islands in the centers.

Peggy Sue's Diner-saurs - sign

The gift shop is tiny and the selection of paleo paraphernalia is not going to blow away any hard-core dinophiles. But it is not without its charm. And, hey, when you find a dinosaur gift shop in the middle of nowhere, you don’t quibble about size. London got some little plastic turtles and I got some cheap and horribly inaccurate plastic dinosaur skeletons to make a NecroDinoMechaLaser Squad for our Dinosaur Island D&D campaign.

Now, about that sauropod. The identification sign on the side of the gift shop notwithstanding, this is not a Brachiosaurus. With the short forelimbs and big back end, this is clearly a diplodocid. The neck is too skinny for Apatosaurus or the newly-resurrected Brontosaurus, and too long for Diplodocus. I lean toward Barosaurus, although I noticed in going back through these photos that with the mostly-straight, roughly-45-degree-angle neck, it is doing a good impression of the Supersaurus from my 2012 dinosaur nerve paper. Compare this:

Peggy Sue's Diner-saurs - sauropod 1

to this:

Wedel RLN fig1 - revised

If I had noticed it sooner, I would have maneuvered for a better, more comparable shot.

Guess I’ll just have to go back.

Reference

Wedel, M.J. 2012. A monument of inefficiency: the presumed course of the recurrent laryngeal nerve in sauropod dinosaurs. Acta Palaeontologica Polonica 57(2):251-256.

Baby box turtles 2015-03-21 3

We adopted a couple of 6-week-old box turtles today.

Baby box turtles 2015-03-21 1

They are Three-Toed Box Turtles, Terrapene carolina triunguis, and they are insanely adorable.

Baby box turtles 2015-03-21 4

This one seemed oddly familiar…had I encountered it before?

Baby box turtles 2015-03-21 4-2

Baby box turtles 2015-03-21 4-3

Baby box turtles 2015-03-21 4-4

 

UPDATE: The last few images here are an homage to Mike’s Gilmore sequence from slide 96 in our 2012 SVPCA talk on Apatosarus minimus (link). I would have linked to it sooner, but I couldn’t find the right blog post. Because there wasn’t one. Memory!

Having given pterosaurs all the glory in two earlier posts, it’s time to move yet further away from the sauropods we know and love, and look at epipophyses outside of Ornithodira.

Here, for example, is the basal archosauriform Vancleavea. (Thanks to Mickey Mortimer, whose a comment on an earlier post put us onto this, and various other candidate epipohysis-bearers which we’ll see below.)

Here is a pair of Vancleavea cervical vertebrae:

Nesbitt et al. (2009: fig. 11A). Vertebrae of Vancleavea campi. Two articulated cervical vertebrae (PEFO 33978) in left lateral view.

Nesbitt et al. (2009: fig. 11A). Vertebrae of Vancleavea campi. Two articulated cervical vertebrae (PEFO 33978) in left lateral view.

No ambiguity here: the epipophysis is even labelled.

But we can find epipophyses even outside Archosauriformes. Here, for example, is the the rhynchosaur Mesosuchus:

Dilkes (1998: fig. 7A). Mesosuchus browni. Holotype SAM 5882. Partial skull and jaws and cervical vertebrae in left lateral view.

Dilkes (1998: fig. 7A). Mesosuchus browni. Holotype SAM 5882. Partial skull and jaws and cervical vertebrae in left lateral view.

Check out the rightmost vertebra (C7), clicking through for the full resolution if necessary. There is a definite eminence above the postzyg, separated from it by a distinct groove. Unless the drawing is wildly misleading, that is a definite epipophysis, right there.

But even more basal archosauromorphs have epipophyses. Check out Teraterpeton, described by Hans-Dieter Sues in 2003:

Sues (2003: figure 7). Teraterpeton hrynewichorum, NSM 999GF041 (holotype), cervical and anterior dorsal vertebrae and ribs, associated with right scapula (sc), ?clavicles (cl?), ?interclavicale (ic?), and incomplete right humerus (h), in right lateral view. Scale bar = 1 cm. a.p., accessory process above postzygapophysis; ax, axis; c3, c4, cervical vertebra 3 and 4, respectively; t, displaced tooth.

Sues (2003: figure 7). Teraterpeton hrynewichorum, NSM 999GF041 (holotype), cervical and anterior dorsal vertebrae and ribs, associated with right scapula (sc), ?clavicles (cl?), ?interclavicale (ic?), and incomplete right humerus (h), in right lateral view. Scale bar = 1 cm. a.p., accessory process above postzygapophysis; ax, axis; c3, c4, cervical vertebra 3 and 4, respectively; t, displaced tooth.

This is another one where the epipophysis is labelled (though not recognised as such — it’s just designated an “accessory process”).

Can we go yet more basal? Yes we can! Here are cervicals 2 and 3 of the trilophosaur Trilophosaurus (in an image that I rearranged and rescaled from the published original for clarity):

Spielmann et al. (2008: figure 30, rearranged). Cervical vertebrae 2-3 (i.e. axis and C3) of Trilophosaurus buettneri TMM 31025-140. Top row: right lateral. Second row: dorsal, with anterior to the left. Third row, left to right: anterior, left lateral, posterior. Bottom row: ventral, with anterior to the left.

Spielmann et al. (2008: figure 30, rearranged). Cervical vertebrae 2-3 (i.e. axis and C3) of Trilophosaurus buettneri TMM 31025-140. Top row: right lateral. Second row: dorsal, with anterior to the left. Third row, left to right: anterior, left lateral, posterior. Bottom row: ventral, with anterior to the left.

The parts of this image to focus on (and you can click through for a much better resolution) are the postzyg at top right of the left-lateral view, which has a distinct groove separating the zygapophyseal facet below from the epipohysis above; and the posterior view, which also shows clear separation on both sides between these two structures.

While we’re playing with trilophosaurs here’s here’s another one (probably), Spinosuchus:

Spielmann et al. (2009: figure 3N). Spinosuchus caseanus holotype UMMP 7507, 5th cervical vertebra in left lateral view.

Spielmann et al. (2009: figure 3N). Spinosuchus caseanus holotype UMMP 7507, 5th cervical vertebra in left lateral view.

Again, the groove separating postzygapophyseal facet from epipophysis (at top right in the image) is clear.

But there’s more! Even the protorosaurs, pretty much the most basal of all archosauromorphs, have convincing epipophyses. Here are two that I found in Dave Peters’ post from two years ago, which I only discovered recently. [Here I must insert the obligatory disclaimer: while Dave Peters is a fine artist and has put together a really useful website, his ideas about pterosaur origins are, to put it mildly, extremely heterodox, and nothing that he says about phylogeny on that site should be taken as gospel. See Darren’s write-up on Tet Zoo for more details.]

Dave shows some probable, but not super-convincing epipophyses in the protorosaur Macrocnemus (shaded purple here) …

Cervicals 1-6 of the protorosaur Macrocnemus, modified from an uncredited image on Dave Peters' site. Postzygapophyses in yellow, epipophyses in purple.

Cervicals 1-6 of the protorosaur Macrocnemus, modified from an uncredited image on Dave Peters’ site. Postzygapophyses in yellow, epipophyses in purple.

… and some much more convincing epipophyses in the better known and more spectacular protorosaur Tanystropheus:

Unspecified single cervical of Tanystropheus, from Dave Peters' site. Postzygapophysis in yellow, epipohysis in purple.

Unspecified single cervical of Tanystropheus, from Dave Peters’ site. Postzygapophysis in yellow, epipohysis in purple.

Frustratingly, Dave doesn’t attribute these images, so I don’t know where they’re originally from (unless they’re his own artwork). Can anyone enlighten me? There’s a nice illustration in figure 57 of Nosotti’s (2007) epic Tanystropheus monograph that is at least highly suggestive of epipophyses:

Nosotti (2007:figure 57). Reconstruction of an anterior cervical vertebra (A) and of a mid-cervical vertebra (B) in small-sized specimens of Tanystropheus longobardicus. Left lateral view. Not to scale. Watercolor: Massimo Demma. Abbreviation pzp = postzygapophyseal process.

Nosotti (2007:figure 57). Reconstruction of an anterior cervical vertebra (A) and of a mid-cervical vertebra (B) in small-sized specimens of Tanystropheus longobardicus. Left lateral view. Not to scale. Watercolor: Massimo Demma. Abbreviation pzp = postzygapophyseal process.

But it’s not as good as the one Peters used, as that one shows a distinct notch between postzyg and epipophysis, so I’d like to track that down if I can.

With this, I believe I am done on cataloguing and illustrating epipophyses, unless something dramatic turns up. (For example, this commenter thinks that nothosaurs have epipophyses, but I’ve not been able to verify that.) Here’s what we’ve found — noting that we’ve illustrated epipophyses on every taxon on this tree except Crocodylia:

tree

So it seems that epipophyses may well be primitive at least for Archosauromorpha — which implies that they were secondarily lost somewhere on the line to modern crocs.

With this lengthy multi-part digression complete, hopefully, we’ll get back to sauropods next time!

References

  • Dilkes, David W. 1998. The Early Triassic rhynchosaur Mesosuchus browni and the interrelationships of basal archosauromorph reptiles. Philosophical Transactions of the Royal Society of London B 353:501-541.
  • Kellner, Alexander W. A., and Yukimitsu Tomida. 2000. Description of a new species of Anhangueridae (Pterodactyloidea) with comments on the pterosaur fauna from the Santana Formation (Aptian-Albian), Northeastern Brazil. National Science Museum monographs, Tokyo, 17. 135 pages.
  • Nesbitt, Sterling J., Michelle R. Stocker, Bryan J. Small and Alex Downs. 2009. The osteology and relationships of Vancleavea campi (Reptilia: Archosauriformes). Zoological Journal of the Linnean Society 157:814-­864.
  • Nosotti, Stefania. 2007. Tanystropheus longobardicus (Reptilia, Protorosauria): re-interpretations of the anatomy based on new specimens from the Middle Triassic of Besano (Lombardy, Northern Italy). Memorie della Societa Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano 35(III). 88pp.
  • Spielmann, Justin A., Spencer G. Lucas, Larry F. Rinehart and Andrew B. Heckert. 2008. The Late Triassic Archosauromorph Trilophosaurus. New Mexico Museum of Natural History and Science Bulletin 43.
  • Justin A. Spielmann, Spencer G. Lucas, Andrew B. Heckert, Larry F. Rinehart and H. Robin Richards III. 2009. Redescription of Spinosuchus caseanus (Archosauromorpha: Trilophosauridae) from the Upper Triassic of North America. Palaeodiversity 2:283-313.
  • Sues, Hans-Dieter. 2003. An unusual new archosauromorph reptile from the Upper Triassic Wolfville Formation of Nova Scotia. Canadian Journal of Earth Science 40:635-649.

I’m scrambling to get everything done before I leave for England and SVPCA this weekend, so no time for a substantive post. Instead, some goodies from old papers I’ve been reading. Explanations will have to come in the comments, if at all.

Streeter (1904: fig. 3). Compare to the next image down, and note that in birds and other reptiles the spinal cord runs the whole length of the vertebral column, in contrast to the situation in mammals.

Streeter (1904: fig. 3). Compare to the next image down, and note that in birds and other reptiles the spinal cord runs the whole length of the vertebral column, in contrast to the situation in mammals.

Nieuwenhuys (1964: fig. 1)

Nieuwenhuys (1964: fig. 1)

Butler and Hodos (1996: fig. 16.27)

Butler and Hodos (1996: fig. 16.27)

For more noodling about nerves, please see:

References

  • Butler, A.B., and Hodos, W. 1996. Comparative Vertebrate Neuroanatomy: Evolution and Adaptation. 514 pp. Wiley–Liss, New York.
  • Nieuwenhuys, R. (1964). Comparative anatomy of the spinal cord. Progress in Brain Research, 11, 1-57.
  • Streeter, G. L. (1904). The structure of the spinal cord of the ostrich. American Journal of Anatomy, 3(1), 1-27.

 

Marble Mountains trilobites

 

These animals experienced days less than 23 hours long, and years with close to 400 days.

We feature a lot of Brian Engh’s stuff here–enough that he has his own category. But lately he has really been outdoing himself.

The wave of awesome started last year, when Brian started posting videos showing builds and suit tests for monsters–monster suits, monster puppets, monster you-name-its. Like this monster-sculpting timelapse from last August:

And this suit test from last October:

Brian even wrote a blog post about how he builds monsters.

Things really ramped up this May with the release of “In Mountains”, the first video in a three-part series from Brian’s Earth Beasts Awaken album (which is badass, and available for free here).

If you’re thinking that the Mountain Monster has some Estemmenosuchus in its background, you are correct–that astonishing real-world critter was one of Brian’s inspirations, among many others.

More awesomeness is coming in July, when the next video, “Call to Awaken”, is slated to be released. Here’s a teaser:

I have even more exciting Brian-Engh-related news, but I am not at liberty to discuss that just yet. Hopefully sometime this fall. Stay tuned, true believers. UPDATE: Now I’m at liberty to discuss it!

 

Last time, we looked at how including intervertebral cartilage changes the neutral pose of a neck — or, more specifically, of the sequence of cervical vertebrae. The key finding (which is inexplicably missing from the actual paper, Taylor and Wedel 2013c) is that adding cartilage of thickness x between vertebrae whose zygapophyses are height y above the mid-height of the centra elevates the joint’s neutral posture by x/y radians.

Figure 14. Geometry of opisthocoelous intervertebral joints. Hypothetical models of the geometry of an opisthocoelous intervertebral joint compared with the actual morphology of the C5/C6 joint in Sauroposeidon OMNH 53062. A. Model in which the condyle and cotyle are concentric and the radial thickness of the intervertebral cartilage is constant. B. Model in which the condyle and cotyle have the same geometry, but the condyle is displaced posteriorly so the anteropos- terior thickness of the intervertebral cartilage is constant. C. the C5/C6 joint in Sauroposeidon in right lateral view, traced from the x-ray scout image (see Figure 12); dorsal is to the left. Except for one area in the ventral half of the cotyle, the anteroposterior separation between the C5 cotyle and C6 condyle is remarkably uniform. All of the arrows in part C are 52 mm long.

Figure 14. Geometry of opisthocoelous intervertebral joints. Hypothetical models of the geometry of an opisthocoelous intervertebral joint compared with the actual morphology of the C5/C6 joint in Sauroposeidon OMNH 53062. A. Model in which the condyle and cotyle are concentric and the radial thickness of the intervertebral cartilage is constant. B. Model in which the condyle and cotyle have the same geometry, but the condyle is displaced posteriorly so the anteroposterior thickness of the intervertebral cartilage is constant. C. the C5/C6 joint in Sauroposeidon in right lateral view, traced from the x-ray scout image (see Figure 12); dorsal is to the left. Except for one area in the ventral half of the cotyle, the anteroposterior separation between the C5 cotyle and C6 condyle is remarkably uniform. All of the arrows in part C are 52 mm long.

But how thick was the intervertebral cartilage in sauropods?

At the moment, no-one really knows. As Kent Stevens (2013) points out in his contribution to the PLOS ONE sauropod gigantism collection:

Determining the ONP of a sauropod’s cervical vertebral column given only its bones requires is necessarily speculative since the cartilage, and thus the intervertebral spacing, is unknown.

Part of the our goal in our own PLOS collection paper (Taylor and Wedel 2013c) was to take some very tentative first steps towards estimating the cartilage thickness. To do this, we used two approaches. First, we looked at CT scans of articulated vertebrae; and second, we measured the cartilage thickness in a selection of extant animals and thought about what we could extrapolate.

Since the CT scans were Matt’s domain, I’m going to pass over those for now, in the hope that he’ll blog about that part of the paper. Here, I want to look at the extant-animal survey.

Figure 18. Cartilage in the neck of a rhea. Joint between cervicals 11 (left) and 10 (right) of a rhea, sagittally bisected. Left half of neck in medial view. The thin layers of cartilage lining the C11 condyle and C10 cotyle are clearly visible.

Figure 18. Cartilage in the neck of a rhea. Joint between cervicals 11 (left) and 10 (right) of a rhea, sagittally bisected. Left half of neck in medial view. The thin layers of cartilage lining the C11 condyle and C10 cotyle are clearly visible.

The first thing to say is that our survey is inadequate in many ways. We worked with the specimens we could get hold of, in the state we had them. This means that:

  • we have a very arbitrary selection of different animals,
  • they are at different ontogenetic stages, and
  • their cartilage thickness was measured by a variety of methods.

Our goal was not at all to reach anything like a definitive answer, but just to get the question properly asked, and so hopefully to catalyse much a more detailed survey.

With that proviso out of the way, here are our main results (from Table 4 of the paper, though here I have removed the sauropod CT-scan rows since we’ll be writing about those separately).

Taxon Thickness Reference Notes
Turkey 4.56% This study Difference in measurements of intact neck and articulated sequence of cleaned, degreased and dried vertebrae.
Ostrich 6.30% Cobley et al. (2013) Difference in measurements of individual vertebrae with and without cartilage.
Rhea 2.59% This study Measurement of in situ cartilage in bisected neck.
Alligator 14.90% This study Measurement of in situ cartilage from photograph of cross section.
Horse 6.90% This study Measurement of in situ cartilage from photograph of cross section.
Camel 13.00% This study Crude measurement from condyle margin to cotyle lip of lateral-view X-ray. This is an interim measurement, which we hope to improve on when we obtain better images.
Dog 17.00% This study Measurement of intervertebral gaps in lateral-view X-ray, uncorrected for likely concavity of cotyles.
Giraffe 24.00% This study Difference in measurement of intact neck and closely articulated sequence of cleaned vertebrae. Young juvenile specimen.
Muraenosaurus 14.00% Evans (1993) Measurement of in situ cartilage in fossils.
Cryptoclidus 20.00% Evans (1993) Measurement of in situ cartilage in fossils.

We’ve expressed the measurements as a ratio between cartilage thickness and the length of the bone itself — that is, cartilage/bone. Another way to think of this is that the percentage is a correction factor which you need to add onto bone length to get whole-segment length. Note that this is not the same ratio as the proportion of total segment length that consists of cartilage: that would be (cartilage thickness + bone length) / bone length.

(We also tossed in some measurements of plesiosaur neck cartilage that Mark Evans made way back when. Get that thing properly published, Mark!)

Even this small survey throws up some interesting points.

First, there is a huge range of proportional cartilage thicknesses: almost an order of magnitude from the 2.59% of the Rhea up to the 24% of the juvenile giraffe — or, even if you discard that because of its ontogenetic stage, up to 17% for the dog. And note that the 17% for the dog is probably an under-estimate, since we were working from an X-ray that doesn’t show the concavity of the vertebral cotyles.

Figure 22. Dog neck in X-ray. Neck of a dog (dachsund), in X-ray, with the seven cervical vertebrae indicated. This photo has been used with permission from the Cuyahoga Falls Veterinary Clinic.

Figure 22. Dog neck in X-ray. Neck of a dog (dachsund), in X-ray, with the seven cervical vertebrae indicated. This photo has been used with permission from the Cuyahoga Falls Veterinary Clinic.

(Two reviewers expressed scepticism that this is the usual condition for dogs, but this X-ray is consistent with those of other dogs illustrated in the veterinary literature.)

The second thing to note is that the cartilage measurements for birds (average 4.5%) are are much lower than those of crocodilians (14.9%) or mammals (15.2%). What does this mean? Among these groups, sauropods are most closely related to birds; but birds and crocs form the extant phylogenetic bracket, so we can’t tell from phylogeny alone whether to expect them to more closely approach the avian or crocodilian condition. Furthermore, in being opisthocoelous (condyle in front, cotyle at the back) sauropod cervicals most closely resemble those of mammals in gross structure — and they have the thickest cartilage of all.

The third thing to note is that there is considerable variation within groups. Although the cartilage is proportionally thin for all three birds, it’s more than twice as thick in the ostrich as in the rhea (although some of this could be due to the different measurement methods used for these two birds). More interestingly, among mammals the cartilage is twice as thick in camels as in horses. In the horse, the condyles are deeply inserted into the cotyles of the preceding vertebrae; but in camels, they don’t reach even the lip of the cotyle. This should worry us, as horse and camel cervicals are grossly similar, and no osteological correlates have been identified that would allow us to determine from the bones alone how very different the cartilage is between these two mammals. So it seems possible that there were similarly dramatic differences in the neck-cartilage thickness of different sauropods.

Note: I said that no osteological correlates have been identified. That doesn’t mean they don’t exist. One thing I would love to see is a serious attempt to analyse cartilage thickness across a broad range of mammals, and to examine the corresponding dry bones to see whether in fact there are correlates that could be informative in this respect. One lesson that Matt and I have learned over and over again is that there’s often plenty of data in places that are out in the open, but where no-one’s thought to look.

Next time: more on searching for osteological correlates of cartilage. Then, measurements of sauropod-neck cartilage from CT scans, and likely implications for cartilage thickness in life.

References

Follow

Get every new post delivered to your Inbox.

Join 496 other followers