Well, who knew? There I was posting images of “Pelorosaurusbecklesi‘s humerus, radius and ulna, and skin impression. There I was saying that this beast is due a proper description, and warrants its own generic name. And what should come out today but a new paper by Paul Upchurch, Phil Mannion and, oh yes, me, which does exactly that.

Screen Shot 2015-06-03 at 19.05.12

The headline news is the long-overdue establishment of a new genus name for this species — something that we’ve known was needed at least since Upchurch’s (1993) dissertation. Paul and Phil came up with the name Haestasaurus, from “Haesta”, the name of the putative pre-Roman chieftain whose people apparently settled the area of Hastings and gave the town its name. It’s nice that I can finally stop typing the scare-quotes around the no-longer-relevant old genus name “Pelorosaurus“!

Upchurch et al. 2015: figure 2. Left humerus of Haestasaurus becklesii (NHMUK R1870). A, anterior view; B, posterior view; Abbreviations: af, anconeal fossa; dp, deltopectoral crest; hh, humeral head; ltf, lateral triceps fossa; mtf, medial triceps fossa.

Upchurch et al. (2015: figure 2). Left humerus of Haestasaurus becklesii (NHMUK R1870). A, anterior view; B, posterior view; Abbreviations: af, anconeal fossa; dp, deltopectoral crest; hh, humeral head; ltf, lateral triceps fossa; mtf, medial triceps fossa.

(As you can see, the photography is rather better than in my own illustrations, which I made independently some years ago.)

Of course Paul has had an eye on this work, on and off, since the early 1990s. Then in the late 2000s, when I was working on Xenoposeidon and other Wealden sauropods, I started work independently on a redescription — which of course is why I prepared the figures that have appeared in the last few posts. But that work petered out as I started working more on other specimens and on the problems of the sauropod neck. More recently, Paul and Phil hunkered down and got the nitty-gritty descriptive work done.

Once they had a complete draft manuscript, they very graciously invited me onto the authorship — not something they had to do, but they chose to based on my previous interest in the specimen. My contribution was minor: I provided two of the illustrations, tidied up the early versions of several others, and did an editing pass on the text.

Upchurch et al. (2015: figure 1). Map showing England and Wales, with boundaries for English counties. The magnified inset shows the Isle of Wight and East and West Sussex in more detail, marking the positions of selected major towns/cities and the fossil localities mentioned in the main text. Based on

Upchurch et al. (2015: figure 1). Map showing England and Wales, with boundaries for English counties. The magnified inset shows the Isle of Wight and East and West Sussex in more detail, marking the positions of selected major towns/cities and the fossil localities mentioned in the main text. Based on “English ceremonial counties 1998” by Dr. Greg, http://en.wikipedia.org/wiki/File:English_ceremonial_counties_1998.svg. CC By-SA 3.0.

(This map is one of the two illustrations that I provided; the other is the multi-view photograph of the Pelorosaurus conbeari humerus.)

I’m grateful to Paul and Phil, both for inviting me onto this project, and for taking into account my strong preference for an open-access venue. It’s largely because of the latter that the paper now appears in PLOS ONE, where the glorious colour illustrations appear at full resolution and may be re-used for any purpose subject to attribution.

So: what actually is Haestasaurus? Is it the early titanosaur that we’ve all been assuming? The unexciting answer is: we don’t really know. Our paper contains three phylogenetic hypotheses (all of them Paul and Phil’s work, I can’t take any credit). These results are from adding Haestasaurus to the Carballido and Sander (2014) matrix, to the Mannion et al. (2013) standard discrete matrix and to the Mannion et al. (2013) continuous-and-discrete matrix. Only the last of these recovers Haestasaurus as a titanosaur — as sister to Diamantinasaurus and then Malawisaurus, making it a lithostrotian well down inside Titanosauria.

Both both of the other analyses find Haestasaurus as a very basal macronarian — outside of Titanosauriformes. Here is the result of the analysis based on Carballido and Sander’s Europasaurus matrix:

Upchurch et al. (2105: figure 15). Strict consensus tree (CSM). A strict consensus tree based on the 28 most parsimonious trees generated by analysis of the Carballido and Sander [19] data matrix with the addition of Haestasaurus and six new characters (Tendaguria excluded a priori). GC values (multiplied by 100) are shown in square brackets for all nodes where these values are greater than 0. The monophyletic Diplodocoidea has been collapsed to a single branch in order to reduce figure size. Abbreviation: Brc, Brachiosauridae.

Upchurch et al. (2105: figure 15). Strict consensus tree (CSM). A strict consensus tree based on the 28 most parsimonious trees generated by analysis of the Carballido and Sander [19] data matrix with the addition of Haestasaurus and six new characters (Tendaguria excluded a priori). GC values (multiplied by 100) are shown in square brackets for all nodes where these values are greater than 0. The monophyletic Diplodocoidea has been collapsed to a single branch in order to reduce figure size. Abbreviation: Brc, Brachiosauridae.

As you can see, Haestasaurus is here a camarasaurid, making it (along with Camarasaurus itself) the most basal of all macronarians. In the second analysis — the one using discrete characters only from Mannion et al.’s Lusotitan paper — Haestasaurus is again in the most basal macronarian clade, but this time as sister to Janenschia and then Tehuelchesaurus. (In this topology, Camarasaurus is the next most basal macronarian after that three-taxon clade.)

So it looks like Haestasaurus is either a very basal macronarian or a pretty derived titanosaur. We don’t know which.

But, hey, at least it has a proper name now!

Acknowledgements

It’s Matt’s birthday today. I’d like to dedicate a sauropod to him, but I don’t have the authority to do that. So instead, I dedicate this blog-post to him, and declare it the Mathew J. Wedel Memorial Blog Post.

References

We’ve seen the humerus of the Wealden-supergroup putative titanosaur “Pelorosaurusbecklesi. We’ve seen the bones of the forearm, the radius and ulna. That’s it for bony remains: no other bones have been found.

But there is one other fossil that’s part of the same specimen: this skin impression:

Skin impression of

Skin impression of “Pelorosaurusbecklesii holotype NHMUK R1868. (Note that the other elements of this specimen are all catalogued as R1870.)

As you can see, the body — or at least this part of the body — was covered with roughly hexagonal tessellating (non-overlapping) scales, of about 1-2 cm diameter. But what part of the body is it from? The initial — extremely brief — description of this specimen, by Mantell (1852:143) hardly mentions the skin impression at all. All it says is:

A portion of the scaly cuirass which covered the limbs and is composed of hexagonal plates, was exhibited.

Still, this does at least suggest that the skin impression was from a limb — hardly surprising given then the left forelimb was the only part of the skeleton recovered. Upchurch et al. (2004:295) were more specific:

This skin impression was found in close association with the elbow region of the forelimb of Pelorosaurus becklesii.

But I don’t know whether this assertion is based on something written earlier, or is just a surmise.

Assuming that the skin impression is indeed from the elbow, and putting it all together, here’s what we know of “Pelorosaurus” becklesii:

Schematic of

Schematic of “Pelorosaurusbecklesi holotype NHMUK R1870, showing the preserved humerus, radius, ulna, and skin impression of the elbow. Based on Scott Hartman’s skeletal reconstruction of Alamosaurus. This is not a skeletal reconstruction of “Pelorosaurusbecklesi.

It’s not much, but it’s enough to be diagnostic.

But what actually is this beast? A titanosaur, as often assumed? A more basal macronarian? Something else entirely? Who can tell? Someone really ought to get onto that.

References

  • Mantell, Gideon A. 1852. On the structure of the Iguanodon, and on the fauna and flora of the Wealden Formation. Notices of the proceedings at the meetings of the members of the Royal Institution, with abstracts of the discourses delivered at the evening meetings 1:141-146.
  • Upchurch, Paul, Paul M. Barrett and Peter Dodson. 2004. Sauropoda. pp. 259-322 in D. B. Weishampel, P. Dodson and H. Osmólska (eds.), The Dinosauria, 2nd edition. University of California Press, Berkeley and Los Angeles. 861 pp.

Yesterday, we looked at (mostly) the humerus of the Wealden sauropod “Pelorosaurusbecklesii, which you will recall is known from humerus, radius, ulna and a skin impression, and — whatever it might be — is certainly not a species of Pelorosaurus.

Now let’s look at the radius and ulna.

Left forearm of

Left forearm of “Pelorosaurusbecklesii holotype NHMUK R1870, articulated, in anterior view, with proximal to the left: radius in front, ulna behind.

They fit together pretty neatly: the proximal part of the radius is a rounded triangular shape, and it slots into the triangular gap between the anteromedial and anterolateral processes of the proximal part of the ulna.

Left forearm of “Pelrosaurus” becklesii holotype NHMUK R1870 in proximal view, with anterior to the right. The arms of the ulna enclose the radius.

Left forearm of “Pelorosaurusbecklesii holotype NHMUK R1870 in proximal view, with anterior to the right. The “arms” of the ulna enclose the radius.

Let’s take a closer look at the ulna:

Left ulna of

Left ulna of “Pelorosaurusbecklesii holotype NHMUK R1870. Top row: proximal view, with anterior to the bottom. Middle row, from left to right: medial, anterior, lateral and posterior views. Bottom row: distal view, with anterior to top.

And the radius:

Left radius of

Left radius of “Pelorosaurus” becklesii holotype NHMUK R1870. Top row: proximal view, with anterior to the bottom. Middle row, from left to right: medial, anterior, lateral and posterior views. Bottom row: distal view, with anterior to top.

As you can see, it’s pretty well preserved: there’s no evidence of significant crushing in any of the bones, and the 3d shape is apparent.

In short, it’s a really sweet specimen. Someone really ought to get around to describing it properly, and giving it the new generic name that it clearly warrants.

It’s an oddity that in eight years of SV-POW!, we’ve never written about one of the best of all the Wealden-formation sauropod specimens: the forelimb and associated skin impression NHMUK R1870 that is known as “Pelorosaurusbecklesii.

Let’s fix that. Here is all the bony material (i.e. everything except the skin patch) in a photo taken in the basement of the Natural History Museum back in 2007:

Left forelimb material of

Left forelimb material of “Pelorosaurusbecklesii holotype NHMUK R1870. Left: humerus, in posterior view. Right, from top to bottom: ulna in anterior view; radius in anterior view. Yes, I should have turned the humerus over before taking this photo. What can I tell you? I was young and stupid then.

As you can see, the two lower-limb bones were broken back then (though I believe they have since been repaired), but the breaks are very clean, and it’s actually quite interesting to see inside the bones:

Breakage in bones of the lower left forelimb of

Breakage in bones of the lower left forelimb of “Pelorosaurusbecklesii holotype NHMUK R1870. Left: proximal part of radius in distal view. Right: proximal part of ulna in distal view.

I wish I knew enough about mineralisation to comment intelligently on what we can see there. If anyone has thoughts, do leave them in the comments.

We can look in more detail at those lower-limb bones in a subsequent post, but for now, here’s the humerus:

Pelorosaurusbecklesii holotype NHMUK R1870, left humerus. Top row: proximal view, with anterior to the bottom. Middle row, from left to right: medial, anterior, lateral and posterior views. Bottom row: distal view, with anterior to the top.

As you can see it’s in really nice shape, and pretty distinctive. Way back in my 2007 Progressive Palaeo talk (Taylor 2007), I coded up the humerus (alone, without the other elements) in the Harris-based phylogenetic matrix that I’ve used repeatedly in other projects. It came out as the sister taxon to the titanosaur Malawisaurus (which in that matrix comes out fairly basal within Titanosauria): in fact, it could hardly do anything else, since the coding was exactly the same as that of Malawisaurus.

And indeed it’s been pretty widely accepted that “P.” becklesii is a titanosaur — one of the earliest known, and the only name-bearing one from the Wealden Supergroup, unless you count the extremely indeterminate Iuticosaurus, which predictably enough is based on a single eroded partial mid-caudal centrum. Still, the titanosaurian identity of “P.” becklesii has never been convincingly demonstrated — only inferred by non-cladistic means.

Pelorosaurusbecklesii holotype NHMUK R1870, left humerus in anterodistal view (anterior to the left).

So why the quotes around the genus name “Pelorosaurus“? Because it’s long been recognised that, whatever this specimen might be, it ain’t Pelorosaurus, which is based on the Cetiosaurusbrevis caudals and a much more slender humerus.

Here’s that humerus, so you can see how different it is from that of “Pelorosaurusbecklesii:

Right humerus of Pelorosaurus conybeari holotype NHMUK 28626. Top row: distal view, anterior to bottom. Middle row, left to right: lateral, anterior and medial views. Bottom row: distal, anterior to top. Missed parts reconstructed from the humerus of Giraffatitan brancai (Janensch 1961: Beilage A)

Right humerus of Pelorosaurus conybeari holotype NHMUK 28626. Top row: distal view, with anterior to bottom. Middle row, left to right: lateral, anterior and medial views. Bottom row: distal view, with anterior to top. Missing parts reconstructed from the humerus of Giraffatitan brancai (Janensch 1961: Beilage A)

Paul Upchurch recognised the generic distinctness of “Pelorosaurusbecklesii way back in his (1993) dissertation. But because of Cambridge University’s policy of only making copies of dissertations available for £65, that work is effectively unknown. (Perhaps we should all chip in a fiver, buy a copy and “liberate” it. Or maybe 22 years on, Paul would rather leave it in obscurity and let his reputation continue to rest on his impressive body of later work.)

What has happened to this specimen in the last 22 years? Very little has been published about it. It got a mention in the systematic review of sauropods in Dinosauria II (Upchurch et al. 2004), but the only mention that is more than in passing, as far as I’m aware, is that of see Upchurch’s first published (1995) phylogenetic analysis. From page 380:

The only reliable Lower Cretaceous titanosaurid material, apart from Malawisaurus, comes from Europe, especially England. The earliest of these forms may be represented by the forelimb of ‘Pelorosaurus becklesii‘ (Mantell 1852) from the Valanginian of Sussex. This specimen was considered to be Sauropoda incertae sedis by McIntosh (1990b). However, a skin impression shows polygonal plates of a similar shape and size to those found in Saltasaurus (Bonaparte & Powell 1980). The ulna and radius are robust and the ulna bears the typical concavity on its anteromedial proximal process. Upchurch (1993) therefore argued that this form should be provisionally included within the Titanosauridae.

[Update: as Darren points out in the comment below, Upchurch et al. (2011) figure the specimen in colour and devote three pages to it. They leave it as Titanosauria, and “refrain from naming a new taxon until more comparative data are available” (p. 501).]

Given my interest in the Wealden, it’s surprising that we’ve never blogged about “Pelorosaurusbecklesii before, but it’s true: I’ve mentioned it three times in comments, but never in a post. It’s good to finally fix that!

Next time: the radius and ulna.

References

  • Janensch, Werner. 1961. Die Gliedmaszen und Gliedmaszengurtel der Sauropoden der Tendaguru-Schichten. Palaeontographica (Suppl. 7) 3:177-235.
  • Taylor, Michael P. 2007. Diversity of sauropod dinosaurs from the Lower Cretaceous Wealden Supergroup of southern England. p. 23 in Graeme T. Lloyd (ed.), Progressive Palaeontology 2007, Thursday 12th-Saturday 14th April, Department of Earth Sciences, University of Bristol. 38 pp.
  • Upchurch, Paul. 1993. The Anatomy, Phylogeny and Systematics of Sauropod Dinosaurs. Ph.D dissertation, University of Cambridge, UK. 489 pages.
  • Upchurch, Paul. 1995. The evolutionary history of sauropod dinosaurs. Philosophical Transactions of the Royal Society of London Series B, 349:365-390.
  • Upchurch, Paul, Paul M. Barrett and Peter Dodson. 2004. Sauropoda. pp. 259-322 in D. B. Weishampel, P. Dodson and H. Osmólska (eds.), The Dinosauria, 2nd edition. University of California Press, Berkeley and Los Angeles. 861 pages.
  • Upchurch, Paul, Philip D. Mannion and Paul M. Barrett. 2011. Sauropod dinosaurs. pp. 476-525 in: Batten, David J. (ed.), English Wealden Fossils. The Palaeontological Association (London).

Arriving as an early Christmas present, and coming in just a week before the end of what would otherwise have been a barren 2014, my paper Quantifying the effect of intervertebral cartilage on neutral posture in the necks of sauropod dinosaurs is out! You can read it on PeerJ (or download the PDF).

Figure 4. Effect of adding cartilage to the neutral pose of the neck of Diplodocus carnegii CM 84. Images of vertebra from Hatcher (1901:plate III). At the bottom, the vertebrae are composed in a horizontal posture. Superimposed, the same vertebrae are shown inclined by the additional extension angles indicated in Table 2.

Figure 4: Effect of adding cartilage to the neutral pose of the neck of Diplodocus carnegii CM 84. Images of vertebra from Hatcher (1901:plate III). At the bottom, the vertebrae are composed in a horizontal posture. Superimposed, the same vertebrae are shown inclined by the additional extension angles indicated in Table 2.

Yes, that posture is ludicrous — but the best data we currently have says that something like this would have been neutral for Diplodocus once cartilage is taken into account. (Remember of course that animals do not hold their necks in neutral posture.)

The great news here is that PeerJ moved quickly. In fact here’s how the time breaks down since I submitted the manuscript (and made it available as a preprint) on 4 November:

28 days from submission to first decision
3 days to revise and resubmit
3 days to accept
15 days to publication

TOTAL 49 days

Which of course is how it ought to be! Great work here from handling editor Chris Noto and all three reviewers: Matt Bonnan, Heinrich Mallison and Eric Snively. They all elected not to be anonymous, and all gave really useful feedback — as you can see for yourself in the published peer-review history. When editors and reviewers do a job this good, they deserve credit, and it’s great that PeerJ’s (optional) open review lets the world see what they contributed. Note that you can cite, or link to, individual reviews. The reviews themselves are now first-class objects, as they should be.

At the time of writing, my paper is top of the PeerJ home-page — presumably just because it’s the most recent published paper, but it’s a nice feeling anyway!

Screenshot from 2014-12-23 10:39:34

 

A little further down the front-page there’s some great stuff about limb function in ratites — a whole slew of papers.

Well, I’m off to relax over Christmas. Have a good one, y’all!

Aquilops in LA Times - scan

Hey, just a quick announcement this time: today’s LA Times has a nice little article on Aquilops on page A6. It’s also available online here. Good luck tracking down a hardcopy – our local Barnes & Noble doesn’t carry the LA Times (not sure which party that reflects worse on), and I got the last copy from a gas station down the street. I’m so happy that they used Brian’s artwork!

I’ll put up a better scan when I get back to work next week. Later: I did.

 

TMNT Turtles in Time cover

So, this is on the shelves right now. Underage anthropomorphic martial chelonian cargo notwithstanding, the Triceratops on the cover is pretty standard.

TMNH Turtles in Time hell yeah Triceratops

The one on the inside is much less so. Or, at least it would have been up until a couple of years ago. Apparently, dinos that are All-Yesterdays-ed out are a pop culture Thing now.

TMNT Turtles in Time hell yeah T-rex

I’m quite taken with this decidedly un-shrink-wrapped T. rex. But then I would be, wouldn’t I? He’s a big guy with a beard who’s interested in turtles–he’s about one spatial dimension away from being me.

So anyway, if you dig on dinos, you might want to pick this one up. Kudos to cover artist David Petersen for rocking it old school, and to interior artist Ross Campbell for going next-gen.

Immediate Update: Arf, about 60 seconds after hitting “publish”, I realized that those rascals at Love in the Time of Chasmosaurs had gotten here first. Go read their much better post, and then kiss your productive time away as you get sucked into whatever cool stuff they’ve been posting on lately. Seriously, be careful over there.

Follow

Get every new post delivered to your Inbox.

Join 530 other followers