This came out two months ago, and I should have blogged about it then, but as usual I am behind. I’m blogging about it now because it deals with a question that has been on my mind for about 10 years now. If you want to skip my blatherations and get on to the good stuff, here’s the paper (Martin and Palmer 2014).

An Unsolved Problem

Back in 2004 I realized that if one had CTs or other cross-sections of a pneumatic bone, it was possible to quantify how much of the cross-sectional space was bone, and how much was air, a ratio I called the Air Space Proportion (ASP). That was the subject of my 2004 SVP talk, and a big part–arguably the most important part–of my chapter in The Sauropods in 2005. Of course the same calculation works for marrow-filled bones as well, where you would refer to it as an MSP rather than an ASP. If you can quantify the areas of bone, air, and marrow, you can figure out how dense the element was. One-stop shopping for all the relevant (simple) math is in this post.

(From Wedel 2005)

(From Wedel 2005)

Sometimes in science you end up with data that you don’t know what to do with, and that was my situation in 2004. Since I had CTs and other cross-sectional images of sauropod vertebrae, I could calculate ASPs for them, but I didn’t know what those results meant, because I didn’t have anything to compare them to. But I knew where to get I could get comparative data: from limb bone cross-sections. John Currey and R. McNeill Alexander had published a paper in 1985 titled, “The thickness of the walls of tubular bones”. I knew about that paper because I’d become something of an R. McNeill Alexander junkie after reading his book, Dynamics of Dinosaurs and Other Extinct Giants (Alexander 1989). And I knew that it had data on the cross-sectional properties of the limb bones in a host of animals, including crocs, birds, mammals, and–prophetically–pterosaurs.

If you know the inner and outer radii of a tubular bone, it is trivial to convert that to an ASP. So I could take the data from Currey and Alexander (1985) and calculate ASPs for the pneumatic bird and pterosaur bones in their study. Cubo and Casinos (2000) had a much larger sample of bird limb bones, and those got fed into my 2005 paper as well.

I was alert to the possibility that a mid-shaft cross-section might not be representative of the whole bone, and I hedged a bit in describing the bird ASPs (Wedel 2005: p. 212):

For the avian long bones described above, data were only presented for a single cross sec- tion located at midshaft. Therefore, the ASP values I am about to discuss may not be representative of the entire bones, but they probably approximate the volumes (total and air) of the diaphyses. For tubular bones, ASP may be determined by squaring K (if r is the inner diameter and R the outer, then K is r/R, ASP is πr^2/πR^2 or simply r^2/R^2, and ASP = K^2). For the K of pneumatic bones, Currey and Alexander (1985) report lower and upper bounds of 0.69 and 0.86, and I calculate a mean of 0.80 from the data presented in their table 1. Using a larger sample size, Cubo and Casinos (2000) found a slightly lower mean K of 0.77. The equivalent values of ASP are 0.48 and 0.74, with a mean of 0.64, or 0.59 for the mean of Cubo and Casinos (2000). This means that, on average, the diaphysis of a pneumatic avian long bone is 59%–64% air, by volume.

Now, even though I hedged and talked about diaphyses (shafts of long bones) rather than whole bones, I honestly expected that the ASP of any given slice would not change much along the length of a bone. Long bones tend to be tubular near the middle, with a thick bony cortex surrounding the marrow or air space, and honeycombed near the ends, with much thinner cortices and lots of bony septa or trabeculae (for marrow-filled bones, this is called spongy or trabecular bone, and for air-filled bones it is best referred to as camellate pneumatic bone). I figured that the decrease in cortical bone thickness near the ends of the bone would be offset by the increase in internal bony septa, and that the bone-to-air ratio through the whole element would be under some kind of holistic control that would keep it about even between the middle of the bone and the ends.

It is fair to ask why I didn’t just go check. The answer is that research is to some extent a zero-sum game, in that every project you take on means another that gets left waiting in the wings or abandoned completely. I was mainly interested in what ASP had to say about sauropods, not birds, and I had other fish to fry.

So that’s me from 2004-2012: aware that mid-shaft cross-sections of bird and pterosaur long bones might not be representative of whole elements, but not sufficiently motivated to go check. Then at SVPCA in Oxford that fall, Liz Martin rocked my world.

journal.pone.0097159.g001

Figure 1. CT scan images from two different regions of pterosaur first wing phalanx. A and B show the unmodified CT scans from A) the distal end of UP WP1 and B) the mid-shaft of UP WP1, while C and D show the modified and corrected images used in the calculation. Air space proportion (ASP) is calculated by determining the cross-sectional area of the internal, air filled cavity (the black centre of D) and dividing that by the total cross-sectional area, including the white cortical tissue and the black cavity. In areas with trabeculae, like C, the calculation of the air space includes the air found in individual trabeculae around the edges. Scale = 10 mm. doi:10.1371/journal.pone.0097159.g001 (From Martin and Palmer 2014)

A Paper in the Can

At SVPCA 2012, Liz Martin gave a talk titled, “A novel approach to estimating pterosaur bone mass using CT scans”, the result of her MS research with Colin Palmer at the University of Bristol. In that talk–the paper for which has been submitted to JVP–Liz and Colin were interested in using CT scans of pterosaur bones to quantify the volume of bone, in order to refine pterosaur mass estimates. I was fully on board, since estimating the masses of extinct animals is a minor obsession of mine. But what really caught my attention is that Liz and Colin had full stacks of slices spanning the length of each element–and therefore everything they needed to see how or if ASPs of pterosaur wing bones changed along their lengths.

At the next available break I dashed up to Liz, opened up my notebook, and started scribbling and gesticulating and in general carrying on like a crazy person. It’s a wonder she didn’t flee in terror. The substance of my raving was that (1) there was this outstanding problem in the nascent field of ASP research, and (2) she had everything she needed to address it, all that was required was a little math using the data she already had (I say this as if running the analyses and writing the paper were trivial tasks–they weren’t). Fortunately Liz and Colin were sufficiently interested to pursue it. Their paper on ASPs of pterosaur wing bones was submitted to PLOS ONE this February, and published on May 9 (while their earlier paper continues to grind its way through JVP).

And I’m blogging about it because the results were not what I expected.

Pterosaur wing bone ASPs - Martin and Palmer 2014

Figure 2. Plot of air space proportion over the length in six pterosaur wing bones. These plots show a polynomial line fit for each bone to show the general shape distribution. Exact measurements can be seen in Table S1. (From Martin and Palmer 2014).

Here’s the graph that tells the tale. Each line traces the ASP per slice along the length of a single pterosaur wing bone. A few things jump out:

  • Almost all of the lines drop near the left end. This is expected–if you’re cutting slices of a bone and measuring the not-bone space inside, then as you approach the end of the bone, you’re cutting through progressively more bone and less space. A few of the lines also drop near the right. I’m puzzled by that–if my explanation is correct, the ASP should plunge about equally at both ends. And the humerus USNM 11925 doesn’t follow the same pattern as the rest. As Martin and Palmer write, “It is unknown if this is a general feature of humeri, or this single taxon and more investigation is needed.”
  • Almost all of the bones have MUCH lower ASPs at mid-shaft than near the ends, on the order of 10% or more. So mid-shaft cross-sections of pterosaur wing bones tend to significantly underestimate how pneumatic they were. It would be interesting to know if the same holds true for bird long bones, or for the vertebrae of pterosaurs, birds, and sauropods. As Martin and Palmer point out, more work is needed.
  • The variation in ASP along the length of a single bone is in some cases greater than the variation between elements and individuals. That’s pretty cool. On the happy side, it means that getting into the nitty-gritty of ASP is not just stamp-collecting; you really need to know what is going on along the length of a bone before you can say anything intelligent about ASP or the density of the element. On the less happy side, that’s going to be a righteous pain in the butt for sauropod workers, because vertebrae are tough to get good scans of, assuming they will fit through a CT scanner at all (most don’t).
  • Finally, pterosaurs turn out to be even more pneumatic than you would think from looking at the already-freakishly-thin-walled shafts of their long bones. That’s pretty awesome, and it dovetails nicely with the emerging picture that pneumaticity in ornithodirans was more prevalent and more interesting than even I had suspected–it’s in prosauropods (Yates et al. 2012) and brachiosaur tails (Wedel and Taylor 2013) and rebbachisaur hips (Fanti et al. 2013) and saltasaur shoulders (Cerda et al. 2012) and, er, a couple of places that I can’t mention just yet. So life is good.

A few last odds and ends:

You can read more of this story at Liz Martin’s blog, scattered over several recent posts.

If you have CTs of bones and you want to follow in the footsteps of Martin and Palmer, you can do a lot of the work, and maybe all of it, in BoneJ, a free plug-in for ImageJ, which is also free.

A final note: this is Liz Martin’s first published paper, so congratulations are in order. Well done, Liz!

Almost Immediate Update: As soon as I posted this, I sent the link to Liz to see if I’d missed anything important. She writes, “It may be worth mentioning that it’s a question that I am actively following up on in my PhD, and looking into it with birds too hopefully. And it is indeed all possible using ImageJ, as that’s how I did the whole thing!”

References

Folks,

You may know that the inaugral TetZooCon is set to take place next Saturday (12 July) at the London Wetland Centre. It’s an informal convention that’s condensed around occasional SV-POW!sketeer Darren Naish’s absurdly informative blog Tetrapod Zoology, and features a day of talks, a palaeoart workshop and a quiz. At £40 for the day, it’s a bit of a bargain.

Among the speakers is my own good self, and I will be talking about why giraffes are rubbish.

Taylor and Wedel 2013a: Figure 3. Necks of long-necked sauropods, to scale. Diplodocus, modified from elements in Hatcher (1901, plate 3), represents a “typical” long-necked sauropod, familiar from many mounted skeletons in museums. Puertasaurus, Sauroposeidon, Mamenchisaurus and Supersaurus modified from Scott Hartman’s reconstructions of Futalognkosaurus, Cedarosaurus, Mamenchisaurus and Supersaurus respectively. Alternating pink and blue bars are one meter in width. Inset shows Fig. 1 to the same scale.

Taylor and Wedel 2013a: Figure 3. Necks of long-necked sauropods, to scale. Diplodocus, modified from elements in Hatcher (1901, plate 3), represents a “typical” long-necked sauropod, familiar from many mounted skeletons in museums. Puertasaurus, Sauroposeidon, Mamenchisaurus and Supersaurus modified from Scott Hartman’s reconstructions of Futalognkosaurus, Cedarosaurus, Mamenchisaurus and Supersaurus respectively. Alternating pink and blue bars are one meter in width. Inset shows Fig. 1 to the same scale.

If that sounds like your idea of a good time, then you need to move fast! Booking closes at 4pm this evening. Better get on it now!

 

 

TMNT Turtles in Time cover

So, this is on the shelves right now. Underage anthropomorphic martial chelonian cargo notwithstanding, the Triceratops on the cover is pretty standard.

TMNH Turtles in Time hell yeah Triceratops

The one on the inside is much less so. Or, at least it would have been up until a couple of years ago. Apparently, dinos that are All-Yesterdays-ed out are a pop culture Thing now.

TMNT Turtles in Time hell yeah T-rex

I’m quite taken with this decidedly un-shrink-wrapped T. rex. But then I would be, wouldn’t I? He’s a big guy with a beard who’s interested in turtles–he’s about one spatial dimension away from being me.

So anyway, if you dig on dinos, you might want to pick this one up. Kudos to cover artist David Petersen for rocking it old school, and to interior artist Ross Campbell for going next-gen.

Immediate Update: Arf, about 60 seconds after hitting “publish”, I realized that those rascals at Love in the Time of Chasmosaurs had gotten here first. Go read their much better post, and then kiss your productive time away as you get sucked into whatever cool stuff they’ve been posting on lately. Seriously, be careful over there.

Get your red/cyan anaglyph glasses on, and feast your eyes:

xenoposeidon--nhm-r2095--left-lateral--anaglyph

Click through for stupidly high resolution.

Those of you who are still too cheap to have sprung 99¢ for a pair of glasses, you can make do with this grossly inferior wigglegram:

xenoposeidon--nhm-r2095--left-lateral--wigglegram

JZool paleoethology special issue

Got this in my inbox this morning. I presume this means that the 30 days start now. But if you’re interested in this stuff, don’t tarry.

And you should be interested in this stuff. This volume brings together some very active and knowledgeable researchers–including our fellow SV-POW!sketeer, Darren Naish, and sometime coauthor Dave Hone–writing on a broad range of interesting topics under the umbrella of behavior.

Here’s the link.

Marble Mountains trilobites

 

These animals experienced days less than 23 hours long, and years with close to 400 days.

Check out this beautiful Lego Diplodocus:

10954093715_c4c7fe19ec_k-crop

(Click through for the full image at full size.)

I particularly like the little touch of having of bunch of Lego Victorian gentleman scientists clustered around it, though they’re probably a bit too big for the skeleton.

This is the work of MolochBaal, and all rights are reserved. You can see five more views of this model in his Flickr gallery. I especially admire how he’s managed to get the vertebral transitions pretty smooth, the careful use of separate radius/ulna and tibia/fibula, and the use of a transparent brick in the skull to represent the antorbital fenestra.

The forefeet are wrong — their toes should not be splayed out — but you can’t blame MolochBaal for that, as he was copying the mounted CM 84/94 cast in the Madrid museum.

 

Follow

Get every new post delivered to your Inbox.

Join 377 other followers