Here’s a bunch of cool stuff that is either available now or happening soon:

Sauropod Dinosaurs book excerpt in Prehistoric Times

Been on the fence about the sauropod book Mark Hallett and I wrote? Now you can try before you buy – our chapter on titanosaurs is reprinted in the new issue of Prehistoric Times magazine. I know it’s on newsstands because I picked it up at the local Barnes & Noble yesterday. You can also buy the issue from the PT website, physically or in digital form, solo or as part of a subscription. Many thanks to PT editor and publisher Mike Fredericks for the visibility, the staff at Johns Hopkins University Press for permission, and most of all to Mark Hallett for making it happen. We hope you enjoy it.

Get more sauropods in Mark Hallett’s 2018 dinosaur calendar

Mark has a dinosaur calendar out from Pomegranate, and I’m happy to say that sauropods are featured 5 out of 12 months. The calendar has a nice mix of Hallett classics and some newer works, including the cover art from our book, as shown above. Get it direct from Pomegranate or from Amazon.

Vicki’s public talk on forensic anthropology in December

My better half, anthropologist and author Vicki Wedel, is giving a public talk about her work on the evening of Thursday, December 14, at the Western Science Center in Hemet, California. Her title will be, “Bones, ballistics, and blunt force trauma.” I assume the talk will start at 6:00, but check the WSC website for details. The painted skull above is from the natural history museum in Vienna, and it doesn’t have any connection to the talk other than Vicki thought it was rad and I needed a skull to illustrate the post. For more on Vicki and her work, see these posts: cold case, book.

2017VWedelLecture

UPDATE: Final details on Vicki’s talk are out. It will start at 6:00, she’ll be signing copies of her book, Broken Bones: Anthropological Analysis of Blunt Force Trauma, and admission is $5.

My public talk on sauropods and whales in January

In January it will be my turn to give a talk at the Western Science Center. I’m on for the evening of Thursday, January 18. Title is not quite finalized but it will probably something along the lines of, “Dinosaurs versus whales: what is the largest animal of all time, and how do we know?” That’s me with the gray whale skeleton at Long Marine Lab in Santa Cruz, back in 2006. I was helping Nick Pyenson measure whales, back when we were both grad students. Ancient blog posts about that here: gray, blue.

See me in Seattle at Norwescon over Easter weekend

If you want to see me star-struck, come to Norwescon, home of the Philip K. Dick Award, next spring, where I’ll be rubbing shoulders with some vastly more famous people. Hugo, Nebula, and World Fantasy Award winner Ken Liu will be the Writer Guest of Honor, legendary SF&F visionary Wayne Douglas Barlowe will be the Artist Guest of Honor, Green Ronin is the Spotlight Publisher, and, er, I will be the Science Guest of Honor. Yes, I’m alert to both the honor and the incongruity of the thing. When I’m not Freaking. Out. about hanging with two of my favorite creators, I’ll probably be giving talks on dinosaurs and astronomy (my other thing) and participating on some panels and signing books. I’ll try not to disappoint.

Advertisements

Having benefitted so hugely from 3D models that Heinrich Mallison made for me — most notably, the Xenoposeidon model that is the supplementary data file for the recent preprint — I realised the time has come for me to learn to do this for myself. To that end, I am going to read all the tutorials he’s written on the subject. This page is a link-farm to those tutorials, which I made for my own benefit, but which I hope others will also benefit from.

There is also Heinrich’s paper, with Oliver Wings, Photogrammetry in paleontology – a practical guide (Mallison and Wings 2014), which he announced in its own blog-post.

Reference

 

Peter Falkingham and Nick Gardner independently put me onto Sketchfab: a website that provides a way to view and navigate 3D models without needing to download any software beyond the browser that you’re already running.

So get yourself over to the live Xenoposeidon model! Verify for yourself that the laminae are as I described them, that the posterior margin of the neural arch really does grade into the posterior articular surface of the centum, etc. Really, this is worth ten times whatever set of illustrations I might have provided.

Truly, we are living in the future!

UPDATE, 23 November 2017: see also this beautiful 3d model of the skull of Triceratops horridus, photogrammetrised from images taken at the Museum National d’Histoire Naturelle, Paris, France, by Benoît Rogez; and the same creator’s Nanotyrannus lancensis model, also from MNHN photos. And, most astonishingly, his model of the whole MNHN palaeontology gallery!

In writing the recent preprint “Xenoposeidon is the earliest known rebbachisaurid sauropod dinosaur” (Taylor 2017), it was invaluable to have a 3D model of the Xenoposeidon vertebra available. Here’s a short clip of viewing the model in the free MeshLab program. (It’s well worth full-screening to get the full impact.)

As I pan around, I look first at the upper margin of the posterior articular facet of the centrum, showing how the posterior margin of the neural arch shades into it — something that is not really apparent from photos, but needs the shifting perspectives that 3D offers to eliminate the interpretation that this contiguous border is due to damage.

Then I zoom in on the complex of laminae at the top of the left side of the neural arch, and explore the shapes of the intersections (ACPL with lateral CPRL, and PCDL with CPOL).

Finally I look at the distinctive sets of laminae on the anterior face of the vertebra which enclose the big, teardrop shaped centroparapophyseal fossa: lateral CPOL coming in from the lateral face of the arch, medial CPOL emerging from the pedicels, and the additional arched laminae that bound the space.

It’s just great to be able to do this. Time and again as I was preparing that manuscript, I went back to the model to check some detail — much as, twenty years earlier, Matt kept driving into the OMNH late at night to look at the Sauroposeidon holotype, to check out some idea he’d had as he worked on the description. The difference is, I didn’t need to drive into Norman, Oklahoma — or even London, England. The idea now of going back to trying to understand fossils from photos seems ridiculous.

A few years back, Matt wrote:

The idea of superseding photographs with 3D photogrammetric models is not original. I got religion last week while I was having beers with Martin Sander and he was showing me some of the models he’s made. He said that going forward, he was going to forbid his students to illustrate their specimens only with photographs; as far as he was concerned, now that 3D models could be cheaply and easily produced by just about everyone, they should be the new standard.

I’m totally on board with that, and said as much in the concluding paragraph of the new preprint.

The last thing I want to say here is to acknowledge the enormous amount of help I’ve had from Heinrich Mallison, digitizer extraordinaire at the Museum für Naturkunde Berlin. He’s invested many, many hours building models for me from my photos, pointing me to programs that I can use to view them, and helping me get started on making my own models. The greatest regret of my palaeontological life is that, when I happened to be in Berlin on 19th November 2008 and Heinrich invited me to come and watch the Germany-England friendly at his place, I couldn’t do it, and missed out on a pretty unique chance to see England beat Germany, in Germany, with a German. I doubt that chance will come up again any time soon.

I leave you with EmperorDinobot‘s life restoration of Xenoposeidon, which I stumbled across a few days ago. Obviously it’s wildly speculative, but I’m cool with that.

References

  • Taylor, Michael P. 2017. Xenoposeidon is the earliest known rebbachisaurid sauropod dinosaur. PeerJ PrePrints 5:e3415. doi: 10.7287/peerj.preprints.3415 [PDF] [PeerJ page]

 

There’s just time before midnight strikes to wish Xenoposeidon a very happy tenth birthday. It came along just a month and a half after SV-POW! itself — in fact, I can’t even remember now, a decade on, whether part of the reason we started SV-POW! in the first place was so we’d have somewhere to talk about it when the paper (Taylor and Naish 2007) came out.

Taylor 2017: Figure 4. NHMUK R2095, the holotype and only vertebra of Xenoposeidon proneneukos, in left lateral view, interpreted as a rebbachisaurid. This interpretation is modelled primarily on MNHN MRS 1958, a posterior dorsal vertebra from the holotype specimen of Rebbachisaurus garasbae. The CPOL passes through a sheetlike PCDL, as in Rebbachisaurus; but the lateral CPRL forms a cross-shaped junction with the ACPL, each of these laminae equally interrupting the trajectory of the other. Abbreviations as used in the text. Scale bar = 200 mm.

For the last few days, I have been working away like a trojan, trying to ready a new manuscript for launching on this day. I’ve taken two days off from my day-job to get it done before this arbitrary deadline, and here I am writing about it with just 15 minutes to go!

The title of this new manuscript (Taylor 2017) is “Xenoposeidon is the earliest known rebbachisaurid sauropod dinosaur”, and it explains in detail the argument that I made informally sixteen months ago when I first saw the rotating video of the Rebbachisaurus garasbae that Jeff Wilson and co put out with their then-new redescription of that species. I got it submitted (to PeerJ, natch) a bit more than an hour ago, and at the same time I clicked the “Make this available as a preprint” button. So as I write this, I am periodically checking back in the other window to see whether it’s made it through the basic editorial checks yet.

The thing is, I really love Xenoposeidon. I admit that a surprising number of people (my wife, Matt, his wife, Heinrich Mallison, his wife) seem to think it looks like a turd. But I honestly think it’s the most beautiful single bone I’ve ever seen. It’s a privilege to work on it.

Taylor 2017: Figure 5. NHMUK R2095, the holotype and only vertebra of Xenoposeidon proneneukos, in left anteroventrolateral view, highlighting the three sets of laminae related to the prezygapophyses. The trajectories of the medial CPRLs (which emerge from the neural arch pedicels) and the lateral CPRLs (which intersect with the APCLs) indicate the approximate position of the prezygapophyses. The additional arched laminae form the margins of the large, teardrop-shaped CPRF, but meet at a position some way below and posterior to the presumed location of the prezygapophyseal facets. Breakage of both medial CPRLs and the left ACPL and PCDL is indicated by cross-hatching. Note that, from this perspective, the lateral CPRL appears to turn a corner where it intersects with the ACPL, such that the posteroventral portion of the lateral CPRL appears contiguous with the dorsal portion of the ACPL. This is an illusion brought about by the eminence at the point of intersection. As always, this is much easier to see in three dimensions. Abbreviations as used in the text.

Anyway, I’ll link to the preprint as soon as it’s up. In the mean time, I’m just going to bask in the beauty that is Xenoposeidon.

Immediate update

Four minutes after posting this, and just three minutes before midnight, I got the notification from PeerJ that the preprint is up! So you are welcome to leave comments about the science on that page if you wish: I will take them into account when I revise the manuscript in light of the formal peer-reviews that will be coming along in due time.

References

 

Out today: a new Turiasaurian sauropod, Mierasaurus bobyoungi, from the Early Cretaceous Cedar Mountain formation in Utah. This comes to us courtesy of a nice paper by Royo Torres et al. (2017),

Royo-Torres et al. 2017, fig. 3. The postcranial skeleton (UMNH.VP.26004) of Mierasaurus bobyoungi gen. nov, sp. nov. with the following elements: (a) middle cervical vertebra (DBGI 69 h) in right lateral view; (b) middle cervical vertebra (DBGI 69G1) in right lateral view; (c) anterior cervical vertebra (DBGI 165) in right lateral view; (d) anterior cervical vertebra (DBGI 69G2) in right lateral view; (e) atlas (DBGI 5I) in anterior view; (f) atlas (DBGI 5I) in right lateral view; (g) posterior cervical vertebra (DBGI 95) in right lateral view; (h) posterior cervical vertebra (DBGI 19 A) in right lateral view; (i) posterior cervical vertebra (DBGI 19 A) in ventral view; (j) middle cervical vertebra (DBGI 38) in right lateral view; (k) middle cervical vertebra (DBGI 38) in dorsal view; (l) middle cervical vertebra in posterior view; (m) middle cervical vertebra (DBGI 38) in left lateral view; (n) right anterior cervical rib (DBGI 5D) in medial view; (o) right anterior cervical rib (DBGI 28 A) in medial view; (p) right anterior-middle cervical rib (DBGI 95 C) in medial view; (q) right middle cervical rib (DBGI 45 F) in dorsal view; (r) right middle cervical rib (DBGI 95 A) in dorsal view; (s) left anterior cervical rib (DBGI 95B) in lateral view; (t) left middle cervical rib (DBGI 95 H) in lateral view; (u) left middle cervical rib (DBGI 95D) in dorsal view; (v) right posterior cervical rib (DBGI 10) in dorsal view. A plus sign (+) indicates a diagnostic character for Mierasaurus bobyoungi gen. et sp. nov. An asterisk (*) indicates an autapomorphy of Mierasaurus bobyoungi gen. et sp. nov. (© Fundación Conjunto Paleontológico de Teruel-Dinópolis) in Adobe Illustrator CS5 (www.adobe.com/es/products/illustrator.html).

[Because this paper is in Nature’s Scientific Reports, it inexplicably has a big chunk of manuscript chopped out of the middle, supplied separately, not formatted properly, and for all we know not peer-reviewed. This includes such minor details as the specimen numbers of the elements that make up the holotype, and the measurements. Note to self: rant about how objectively inferior Scientific Reports is to PeerJ and PLOS ONE some time.]

Anyway, this is a nice specimen represented by lots of decent material, including plenty of presacral vertebrae, which is great.

But here’s where it gets weird. Until now, Turiasauria has been an exclusively European clade. Just like Diplodocidae used to be an exclusively North American clade until Tornieria turned up, and Dicraeosauridae used to be an exclusively Gondwanan clade until Suuwassea turned out to be a dicraeosaur, and so on.

I mentioned this in an email to Matt. His initial take was:

There is a semi-tongue-in-cheek biogeography “law” that states “Everything is everywhere, and the environment selects”.

It is kinda blowing my mind that so many taxa were shared between North America, Europe, and Africa in the Late Jurassic and yet we don’t see any turiasaurs in North America until the Cretaceous. I wonder if they are there in the Morrison and just not recognized — either some of the undescribed or undiscovered northern-Morrison weirdness, or currently lumped in with Camarasaurus.

I responded “That’s one read. Another is that we’re seeing convergence on similar eco-niches within widely different clades, and our analyses are not figuring this out.”

What I mean is this: what if our “Brachiosauridae” clade is really just a collection of not-closely-related taxa in the tall-shouldered very-high-browser ecological niche? And what if our “Dicraeosauridae” clade is just a collection of short-necked grazers, with independent evolutionary origins, but all converging on morphology that suits the same lifestyle?

And that is the thought that is currently freaking me out.

Royo-Torres et al. 2107, fig. 4. The postcranial skeleton (UMNH.VP.26004) of Mierasaurus bobyoungi gen. nov, sp. nov. with the following elements: (a) anterior dorsal vertebra (DBGI 54 A) in posterior view; (b) anterior dorsal vertebra (DBGI 54 A) in anteroventral view; (c) neural arch of a middle dorsal vertebra (DBGI 37) in right anterolateral view; (d) posterior neural arch of a dorsal vertebra (DBGI 19 A) in posterior view; (e) anterior dorsal vertebra (DBGI 16) in right lateral view; (f) anterior dorsal vertebra (DBGI 16) in posterior view; (g) posterior dorsal vertebra (DBGI 16) in anterior view; (h,i) posterior dorsal vertebra (DBGI 100NA 1) in anterior view; (j,k) posterior dorsal vertebra (DBGI 100NA 1) in posterior view; (l) posterior dorsal vertebra (DBGI 100NA 1) in left lateral view; (m) middle dorsal vertebra (DBGI 11) in anterior view; (n) centrum of a posterior dorsal vertebra (DBGI 24B) in ventral view; (o) centrum of a posterior dorsal vertebra (DBGI 24B) in anterior view; (p) centrum of a posterior dorsal vertebra (DBGI 192) in ventral view; (q) anterior-middle caudal vertebra (DBGI 23B) in anterior view; (r) anterior-middle caudal vertebra (DBGI 23B) in right lateral view; (s) posterior neural arch of a posterior caudal vertebra (DBGI 48) in left lateral view; (t) posterior caudal vertebra (DBGI 21) in anterior view; (u) posterior caudal vertebra (DBGI 21) in right lateral view; (v) distal caudal vertebra (DBI 37-34-529) in right lateral view; (W) anterior caudal vertebra (DBGI 192) in posterior view. For abbreviations see supplementary information. (i), (k) and (l) were drafted by R.R.T. (© Fundación Conjunto Paleontológico de Teruel-Dinópolis) in Adobe Illustrator CS5 (www.adobe.com/es/products/illustrator.html).

When I mentioned this possibility to Matt, he shared my existential terror:

What haunts me is this: we know from mammals and extant reptiles that morphological analyses suck. Laurasian moles, African moles, and Australian moles all look the same, despite evolving from very different ancestors. Ditto wolves and thylacines, horses and litopterns, etc.

Matt reminded of a paper we’ve talked about before (Losos et al. 1998), showing that this is exactly what happens with Caribbean anole lizards. Each island has forms that live on the ground, on the trunks of trees, and on branches. Phylogenetic analyses based on morphology put all the ground-livers together, ditto for trunk-climbers, ditto for branch-climbers. But molecular analyses show that each island was colonized once and the ground, trunk, and branch forms evolved separately for each island.

What if “turiasaur”, “brachiosaur”, and “titanosaur” are the sauropod equivalents? For “Caribbean island” read “continent”; for “lizard species”, read “sauropod clade”.

Will we ever know?

Matt is hopeful that we will. He’s confident that in time, we’ll get molecular analyses of dinosaur relationships — that it’s just a matter of time and cleverness. When that happens, things could be upended bigtime.

References

 

More thoughts on SVPCA 2017

October 13, 2017

This morning, I and the other 1456 attendees of SVPCA 2017 received a useful document, SVPCA report_for attendees, which collects and analyses delegates’ feedback on the meeting. It prompted me to mention a few more thoughts of my own.

First, I didn’t like the shortening of the meeting, from the usual three or even four days to two and a half (or just two if you ignore the macroevolution symposium). But it’s apparent from the gathered feedback that nearly everyone disagrees with me on this.

My position may be an artifact of my idiosyncratic status on the edge of the field: SVPCA is pretty much my only physical (non-blog) contact with the vertebrate palaeontology community, so by the time I’ve taken a week off work for it, the more of that time I can use for it, the better. By contrast, people who spend most of their work-hours with other palaeontologists don’t have that incentive, and see a longer meeting as a financial burden. I’m guessing that if the survey had specifically asked for opinions on meeting length and then compared those opinions with people’s career stage, they’d find a strong correlation between amateur and other unusual statuses, and preferring a longer meeting.

Sadly (for me), it seems pretty clear how this one is going to go: the meeting is attended overwhelmingly by professionals of various career stages. Since the majority of those prefer the shorter meeting, I imagine Birmingham’s abridged programme will become the new normal.

Second thing: a lot of people complained that the posters were only up for the dedicated two-hour session, and quite a few didn’t like having a dedicated poster session at all. Once more, I find myself in a minority here. As someone presenting a poster, I very much appreciated having time dedicated to it. And I also liked that it was restricted to a specific slot, so I didn’t feel I had to spend the whole meeting babysitting the poster. Wine was provided for this session, which made it feel like a friendly, bustling session with plenty of science going on, and time to go and physically fetch the people who I specifically wanted to discuss my poster with.

So I would definitely support a dedicated two-hour poster session with wine at future meetings; though I wouldn’t object if the posters remained up in the background for the next day, if that was logistically easy. (It wasn’t in Birmingham.)

The third thing, which I forgot to mention on my feedback form, is that lightning talks need to be all together in a single session. These talks didn’t really work at Birmingham. By tagging two or three of them on the end of a regular session, they simply came across as a lesser versions of regular talks — tail-enders with no particular merit of their own.

But I do think lightning talks can work well: I’ve been in conferences (admittedly in computer science and library science rather than palaeo) where the lightning-talk sessions have been the best in the conference. The key is keeping all of them together in a single, dedicated session, and really keeping the pace up: whizzing through each talk within a strictly enforced five-minute time limit, and leaping from subject to subject. It can be exhilarating.

(There were specific reasons why it couldn’t be done this was at this year’s meeting — paucity of lightning-talk submissions, people’s difficult schedules and unexpected withdrawals all meant that the original plan couldn’t be adhered to. But I would hate to see lightning talks dropped from the conference because of their underwhelming impact this time around.)

The fourth thing is that I was not wholly convinced by the symposium. Given the scarcity of talk slots, their limited length, and the carefully blinded abstract review process, it seems inimical to invite a special anointed class of speakers who get twice as long and don’t have to go through review.

I might have been convinced despite this, had the quality of the talks been uniformly higher. But as one respondent to the survey wrote: “I was alarmed and disappointed to hear one presenter say that they had put their talk together the night before, and it showed”. It really did. Surely if being invited to give a double-length talk is anything, it’s an honour. People in receipt of that honour should either do their job to a level that merits it; or, if they don’t have time, politely decline and let someone else have the slot.

Finally, and least important, the annual dinner. This was a curry, with a good selection and far more food than we needed. But the report says “there have been a few comments […] that more people might attend if the food was more of a meat-and-two-veg type affair, and that some people would like to see a more formal, or more ‘special’ dinner”. For whatever it’s worth, I threw my hat in partly because it was a curry. In my experience, attempts at catering “special” dinners for large groups tend to produce mediocre food tarted up, which is why my group tends to skip the dinner.

But I’m glad I went this year. I liked the sense of being part of an ongoing community, of seeing the handover to next year’s host (Rob Sansom), hearing who the winners of the prizes were, and so on.