When I visited Dinosaur National Monument in October with Brian Engh and Yara Haridy, we spent a decent amount of time checking out DNM 28, a skull and associated bits of Camarasaurus. In particular, I got some shots of the axis (the second cervical vertebra behind the head), and it got me thinking about pneumaticity in this unusual element. Why I failed to get a full set of orthogonal shots is quite beyond my capacity, but we can roll with what I have. Before we go on, you might want to revisit Tutorial 36 to brush up on the general parts of the atlas-axis complex.


Here’s the axis in left lateral view (so, anterior to the left).

And a labeled version of the same. A few things to note:

  • One oddity of sauropod axes (and of axes of most critters) is that not only are the articular facets of the prezygapophyses not set forward of the neural arch, they’re set backward, well behind the forward point of the arch.
  • The dens epistrophei or odontoid process is sticking out immediately below the neural canal. This is the tongue of bone that articulated with the atlas (first cervical vertebra) in life.
  • Check out the prominent epipophysis above the postzygapophysis, which anchored the long dorsal neck muscles. (For more on epipophyses, see these posts, and especially this one.)
  • The diapophysis and parapophysis articulated with a cervical rib, which is not shown here. In fact, I don’t remember seeing it in the drawer that this vert came from. The atlantal and axial cervical ribs are small, apparently fused late in life if they fused at all, and are easily lost through taphonomic processes.
  • At least three pneumatic features are visible in this lateral view: the lateral fossa on the centrum, which is referred to as the “pleurocoel” in a lot of older literature; a ventral fossa that lies between the parapophysis and the midline ventral keel; and a fossa on the neural arch, behind the postzygodiapophyseal lamina. In the nomenclature of Wilson et al. (2011), this is the postzygocentrodiapophyseal fossa.

“Postzygocentrodiapophyseal fossa” is a mouthful, but I think it’s the only way to go. To be unambiguous, anatomical terminology needs to references specific landmarks, and the schemes proposed by Wilson (1999) for vertebral laminae and Wilson et al. (2011) for vertebral fossae are the bee’s knees in my book.

Nomenclatural issues aside, how do we know that these fossae were all pneumatic? Well, they’re invasive, there’s no other soft-tissue system that makes invasive fossae like that in archosaur vertebrae (although crocs sometimes have shallow fossae that are filled with cartilage or fat), and the same fossae sometimes have unambiguous pneumatic foramina in other vertebrae or in other sauropods.

Most of the features labeled above are also visible on the right side of the vertebra, although the ventral fossa is a little less well-defined in this view, and I can’t make out the prezyg facet. Admittedly, some of the uncertainty here is because of my dumb shadow falling across the vertebra. Specimen photography fail!

The paired ventral fossae are more prominent in this ventral view, on either side of the midline ventral keel (anterior is to the top).

And here’s a labeled version of the same ventral view.

Finally, here’s the posterior view. It’s apparent now that the neural spine is a proportionally huge slab of bone, like a broad, tilted shield between the postzygapophyses (which are also quite large for the size of this vertebra). The back side of the neural spine is deeply excavated by a complex fossa with several subfossae (kudos again to Jeff Wilson [1999] for that eminently useful term).

Here’s the same shot with some features of interest labeled. If I’ve read Wilson et al. (2011) correctly, the whole space on the back side of the neural spine and above the postzygs could be considered the spinopostzygapophyseal fossa, but here I’ve left the interspinous ligament scar (ILS) unshaded, on the expectation that the pneumatic diverticula that created that fossa were separated on the midline by the interspinous ligament. I might have drawn the ILS too conservatively, conceivably the whole space between the large deeply-shadowed subfossae was occupied by the interspinous ligament.

I’m particularly interested in those three paired subfossae, which for convenience I’m simply calling A, B, and C. Subfossa A may just be the leftover space between the spinopostzgyapophyseal laminae laterally and the interspinous ligament medially. I think subfossa B is invading the ramus of bone that goes to the epipophysis and postzygapophysis, but I didn’t think to check and see how far it goes (that might require CT anyway).

Subfossa C is the most intriguing. Together, those paired fossae form a couple of shallow pits, just on either side of the midline, and aimed straight forward. They can’t be centropostzygapophyseal fossae, which used to be called peduncular fossae, because they’re not in the peduncles on either side of the neural canal, they’re up above the lamina that connects the two postzygapophyses. Could they be ligament attachments? Maybe, but I’m skeptical for at least four reasons:

  1. Although interspinous ligament attachments often manifest as pits in the cervical vertebrae of birds, in sauropods they usually form rugosities or even spikes of bone that stick out, not inward. Furthermore, these pits are smooth, not rough like the interspinous ligament scars of birds.
  2. The interspinous ligament in tetrapods is typically a single, midline structure, and these pits are paired.
  3. Similar pits in front of the neural spine are present in some sauropod caudals, and they appear to be pneumatic (see Wedel 2009: p. 11 and figure 9).
  4. Pits at the base of the neural spine seem to be fairly uncommon in sauropod vertebrae. If they were attachment scars from the universally-present interspinous ligaments, we should expect them to be more prominent and more widespread.

But if these paired pits are not ligament scars, what are they? Why are they present, and why are they so distinct? Sometimes (often?) subfossae and accessory laminae look like the outcome of pneumatic diverticulum and bone reacting to each other (I almost wrote ‘playing together’), in what looks like a haphazard process of adaptation to local loading. But the symmetry of these pits argues against them being incidental or random. They don’t seem to be going anywhere, so maaaybe they are the first hoofbeats of the embossed laminae and “unfossae” that we see in the vertebrae of more derived sauropods (for which see this post), but again, their symmetry in size and placement isn’t really consistent with the “developmental program gone wild” appearance of “unfossae”. I really don’t know what to make of them, but if you have ideas, arguments, or observations to bring to bear, the comment field is open.

In summary, sauropod axes are more interesting than I thought, even in a derpasaurus like Cam. I’ll have to pay more attention to them going forward.

References

 

From Will’s Skull Page, here.

Here’s a skull of a wild boar. Note the loooong face, practically a straight line from the tip of the snout to the top of the back of the head.

We shall now proceed through a series of pig skulls with increasingly steep foreheads.

From the UCL Museums and Collections blog, here.

Some domestic pigs have a longish snout and nearly straight forehead, like their wild forebears. (Or foreboars, if you will.)

A cast skull from Carolina, available here.

But it seems–from a quick, unscientific, and in-no-way-standardized image search–that the vast majority of domestic pigs have at minimum a more steeply-inclined forehead.

This one was auctioned in New Zealand, at this site.

Foreheadization is becoming undeniable.

From skullbase.info, here.

Is this one any more pronounced than the one before? I’m not sure, and so far I’m too lazy to try superimposing the skulls. But they don’t even look like the same kind of animal as the wild boar shown at top.

From theweirdandwonderful.com, now apparently only available on Pinterest, here.

In my explorations so far, this appears to the ne plus ultra of short-faced, high-forehead domestic pigs, excluding truly pathological cases. The line from the inflection point of the forehead to the occiput is twice the length of the snout!

From theweirdandwonderful.com, now apparently only available on Pinterest, here.

Oddly enough, the high forehead in domestic pigs is not always associated with a super-short snout, as this skull demonstrates.

This figure from Owen et al. (2014) sums up the shape differences between domestic (left) and wild (right) Sus scrofa.

Okay, so domestic pigs have shorter snouts and steeper foreheads than wild pigs of the same species. But y tho? It seems to be part of the “domestication syndrome” present in many domesticated animals, which includes a shortened snout, smaller teeth, piebald coloration, floppy ears, a curly tail, and a host of other morphological and behavioral traits. Interestingly, pigs seem to show more aspects of domestication syndrome than any other domestic animals other than dogs, as shown in the figure below, from Sanchez-Villagra et al. (2016).

Okay, so domestication, but how? It’s not like the Domestication Fairy comes in the night and steals half your snout.

Wilkins et al. (2014: fig. 1)

The various morphological changes that go along with domestication syndrome seemed disconnected until 2014, when Wilkins et al. proposed a pretty nifty hypothesis, which goes like this:

  • Probably the most crucial aspect of domestication is selection for tameness, which is really selection for reduced adrenal gland and sympathetic nervous system activity, so the animals aren’t freaking out all the time.
  • The adrenal glands and sympathetic ganglia are derived from embryonic neural crest, which also influences the growth of the teeth, brain, skull, vertebral column, and ear cartilages, and the distribution of melanocytes in the skin and coat.
  • Selection for increased tameness (= reduced freaking out) is really selection for reduced neural crest activity in early development, and the smaller teeth, shorter snout, floppy ears, curly tail, patchy coloration, and so on, are unselected developmental consequences of reduced neural crest activity.

Wilkins et al. (2014: fig. 2)

So far, so good. The neural crest hypothesis seems to have genuine explanatory power, in that it lassos a disparate set of phenomena and provides a single, logical cause. Of course not everyone is convinced, and the neural crest hypothesis could be true without ruling out other complementary mechanisms and confounding effects. Along those lines, Sanchez-Villagra et al. (2016) is worth a read. It’s free at the link below, as is Wilkins et al. (2014).

The neural crest hypothesis might explain why domestic pigs have shorter snouts than their wild relatives, but I think there must be some other factors in play to explain pig foreheads. Which is fine, domestic dogs have a staggering variety of skull shapes that reflect thousands of years of strong artificial selection, and probably a healthy dose of unintended consequences and other knock-on effects. Given that pigs have been domesticated for a long time, were probably domesticated many times in many places, have had frequent infusions of wild-type genes (from possibly genetically disparate wild populations), and have been canalized into different breeds, it might actually be weirder if they all looked like short-snouted wild boars. All of which is a long way of saying that I’m not surprised that domestic pigs don’t all fall on some morphogenetic monocline from wild boars, but I’m still curious about how they got their foreheads.

I actually started writing this post before the very interesting discussion of pig domestication flared up in the comments on Mike’s pig skull post. Mike’s two skulls nicely illustrate the difference between forehead-less and, er, forehead-ful conditions, and the comment thread touched on a lot of related issues and is worth a read. In particular, I’d like to note again that domestic pig skulls are not notably paedomorphic with respect to wild boars, other than having short snouts–they’re on a different morphogenetic trajectory (Evin et al. 2016).

For a nice comparison of domestic pig and wild boar skulls, see Marcus Bühler’s post at Bestiarium, here.

UPDATE just a few days later: for a skeptical look at the very existence of domestication syndrome, see the new Lord et al. (2019) paper, “The history of farm foxes undermines the animal domestication syndrome”, freely available here.

References

Long-term readers will remember that way back in the pre-history of this blog, I wrote about my experience de-fleshing a pig head, which because the very first part in our ongoing series Things to Make and Do. In a subsequent post with a sheep-skull multiview, I included the multiview of that pig skull, too. Here it is:

Mike’s first pig skull, cranium only. Top row: dorsal view, anterior to right; middle row, from left to right: posterior, right lateral and anterior views; bottom row: ventral view, anterior to right.

As I noted in that sheep-skull post, I no longer own that skull: I donated it to be the first prize for the quiz in the very first TetZooCon, and it was won by Kelvin Britton.

But around the same time, our church hosted a barbecue even in which an entire pig was slow-roasted, and at the end of it I took the head home and prepped the skull out of it. The bone was much more fragile for having been roasted instead of simmered, and was in some danger of crumbling apart, but I stablised it with diluted PVA and it holds together OK.

Here it is:

Mike’s second pig skull, cranium and mandible in articulation. Top row: dorsal view, anterior to right; middle row, from left to right: posterior, left lateral (reversed) and anterior views; bottom row: ventral view, anterior to right.

Even allowing that the new skull was photographed with the mandible in place, the difference between the two is shocking. In particular, check out the dorsal views: the zygomatic arches of the first pig protrude way further laterally, and are much more robust than those of the second pig, and the whole shape of the skull roof is different.

I’m not sure what to make of this. I assume what we’re seeing here is variation of different breeds within the single domesticated species Sus domesticus, analogous to the way bulldog and greyhound skulls differer dramatically despite both being breeds of Canis familiaris. There are a lot of pig breeds out there, so perhaps it’s not too surprising. On the other hand, while the different dogs were bred for different purposes, I’d have thought all the pig were bred for the same purpose: to put on weight and provide meat. So I don’t know why such different skulls would have been selected for.

Well, it’s time. Ten years and almost 5 months after Mike kicked off our “Things to Make and Do” section with his post on cleaning a pig skull, I am finally getting around to prepping a pig skull of my own. There will be a complete play-by-play coming, but for now I want to focus on what is usually the least-pleasant step in prepping a skull: extracting the brain. Aside from the relatively small and often tortuous passages for the cranial nerves, the braincase is a cul-de-sac, with a big glob of tissue (the brain and associated meninges and vessels) only accessible through a relatively small hole at the back of the head (the foramen magnum). Virtually every tutorial and how-to on prepping skulls has some section where the author advises you to basically swirl something around in there, get stuff out the best you can, and prepare to deal with a lot of nastiness along the way. So I had my antennae out for anything that might help, and in the local dollar store I ran across the beauty shown above.

I figured drain rooter = brain rooter, and I was only risking a buck, so I picked one up. It worked a trick: by putting the pig’s snout down the drain, running hot water into the foramen magnum to continually flush out the loose bits, and vigorously exploring the cranial cavity with the brain rooter, I was able to get the whole brain out in about 10 minutes. To be clear, all the tissue came out the foramen magnum; there would be no way to get it to come out the nose without breaking the ethmoid bone and destroying the nasal turbinates. I only put the head snout-down for ease of access. I had a great deal of control, and I could tell pretty well which areas were getting emptied out and which still needed work. All I missed was a small glob of meninges and dural venous sinuses, which came out easily after the first simmer.

Some specific advantages of the drain rooter as a brain extractor:

  • backward-pointing teeth to hook out the tissue
  • flexible plastic so you can go pretty hard with it without damaging the bone
  • super long so you’re not going to find a job too big for it, OR you can cut it to length
  • still works for unclogging drains
  • dishwasher safe
  • dirt cheap

Go have fun.

UPDATE: Turns out pigs have an insane amount of cartilage and mucosa in their nasal cavities, and the brain rooter is pretty good at getting that stuff out, too.

The Man Himself, taking notes on what look like Giraffatitan caudals.

Here’s how I got my start in research. Through a mentorship program, I started volunteering at the Oklahoma Museum of Natural History in the spring of 1992, when I was a junior in high school. I’d been dinosaur-obsessed from the age of three, but I’d never had an anatomy course and didn’t really know what I was doing. Which is natural! I had no way of knowing what I was doing because I lacked training. Fortunately for me, Rich Cifelli took me under his wing and showed me the ropes. I started going out on digs, learned the basics of curatorial work, how to mold and cast fossils, how to screenwash matrix and then pick microfossils out of the concentrate under a dissecting microscope, and—perhaps most importantly—how to make a rough ID of an unidentified bone by going through the comparative element collection until I found the closest match.

All set, right? Ignition, liftoff, straight path from there to here, my destiny unrolling before me like a red carpet.

No.

It could have gone that way, but it didn’t. I had no discipline. I was a high-achieving high school student, but it was all to satisfy my parents. When I got to college, I didn’t have them around to push me anymore, and I’d never learned to push myself. I went off the rails pretty quickly. Never quite managed to lose my scholarships, without which I could not have afforded to be in college, period, but I skimmed just above the threshold of disaster and racked up a slate of mediocre grades in courses from calculus to chemistry. I even managed to earn a C in comparative anatomy, a fact which I am now so good at blocking out that I can go years at a time without consciously recalling it.

After three years of this, I had the most important conversation of my life. Because I was a zoology major I’d been assigned a random Zoology Dept. faculty member as an undergrad advisor. I was given to Trish Schwagmeyer, not because we got on well (we did, but that was beside the point) or had similar scientific interests, just luck of the draw. And it was lucky for me, because in the spring of 1996 Trish looked at my grades from the previous semester, looked me in the eye, and said, “You’re blowing it.” She then spent the next five minutes explaining in honest and excruciating detail just how badly I was wrecking my future prospects. I’ve told this story before, in this post, but it bears repeating, because that short, direct, brutal-but-effective intervention became the fulcrum for my entire intellectual life and future career.

The holotype specimen of Sauroposeidon coming out of the ground in 1994.

Roughly an hour later I had the second most important conversation of my life, with Rich Cifelli. While I’d been lost in the wilderness my museum volunteering had petered out to zero, and Rich would have been completely justified in telling me to get lost. Not only did he not do that, he welcomed me back into the fold, in a terrifyingly precise recapitulation of the Biblical parable of the prodigal son. When I asked Rich if I could do an independent study with him in the next semester, he thought for a minute and said, “Well, we have these big dinosaur vertebrae from the Antlers Formation that need to be identified.” Which is how, at the age of 21, with a rubble pile of an academic transcript and no real accomplishments to stand on, I got assigned to work on OMNH 53062, the future holotype of Sauroposeidon proteles.

I was fortunate in four important ways beyond the forgiveness, patience, and generosity of Richard Lawrence Cifelli:

  • OMNH 53062 was woefully incomplete, just three and a half middle cervical vertebrae, which meant that the project was small enough in concept to be tractable as an independent study for an undergrad. Rich and I both figured that I’d work on the vertebrae for one semester, come up with a family-level identification, and maybe we’d write a two-pager for Oklahoma Geology Notes documenting the first occurrence of Brachiosauridae (or whatever it might turn out to be) in the vertebrate fauna of the Antlers Formation.
  • Because the specimen was so incomplete, no-one suspected that it might be a new taxon, otherwise there’s no way such an important project would have been assigned to an undergrad with a spotty-to-nonexistent track record.
  • Despite the incompleteness, because the specimen consisted of sauropod vertebrae, it held enough characters to be identifiable–and eventually, diagnosable. Neither of those facts were known to me at the time.
  • All of Rich’s graduate students were already busy with their own projects, and nobody else was about to blow months of time and effort on what looked like an unpromising specimen.

NB: this guy is not a prodigy.

There is a risk here, in that I come off looking like some kind of kid genius for grasping the importance of OMNH 53062, and Rich’s other students look like fools for not seeing it themselves. It ain’t like that. The whole point is that nobody grasped the importance of the specimen back then. It would take Rich and me a whole semester of concentrated study just to come to the realization that OMNH 53062 might be distinct enough to be diagnosable as a new taxon, and a further three years of descriptive and comparative work to turn that ‘maybe’ into a paper. People with established research programs can’t afford to shut down everything else and invest six months of study into every incomplete, garbage-looking specimen that comes down the pike, on the off chance that it might be something new. Having the good judgment to not pour your time down a rat-hole is a prerequisite for being a productive researcher. But coming up with a tentative ID of an incomplete, garbage-looking specimen is a pretty good goal for a student project: the student learns some basic comparative anatomy and research skills, the specimen gets identified, no existing projects get derailed, and no-one established wastes their time on what is most likely nothing special. If the specimen does turn out to be important, that’s gravy.

So there’s me at the start of the fall of 1996: with a specimen to identify and juuuust enough museum experience, from my high school mentorship, to not be completely useless. I knew that one identified a fossil by comparing it to known things and looking for characters in common, but I didn’t know anything about sauropods or their vertebrae. Rich got me started with a few things from his academic library, I found a lot more in OU’s geology library, and what I couldn’t find on campus I could usually get through interlibrary loan. I spent a lot of time that fall standing at a photocopier, making copies of the classic sauropod monographs by Osborn, Hatcher, Gilmore, Janensch, and others, assembling the raw material to teach myself sauropod anatomy.

The sauropod monographs live within arm’s reach of my office chair to this day.

In addition to studying sauropods, I also started going to class, religiously, and my grades rose accordingly. At first I was only keeping up with my courses so that I would be allowed to continue doing research; research was the carrot that compelled me to become a better student. There was nothing immediate or miraculous about my recovery, and Rich would have to give me a few well-deserved figurative ass-kickings over the next few years when I’d occasionally wander off course again. But the point was that I had a course. After a few months I learned—or remembered—to take pride in my coursework. I realized that I had never stopped defining myself in part by my performance, and that when I’d been adrift academically I’d also been depressed. It felt like crawling out of a hole.

(Aside: I realize that for many people, depression is the cause of academic difficulty, not the reverse, and that no amount of “just working harder” can offset the genuine biochemical imbalances that underlie clinical depression. I sympathize, and I wish we lived in a world where everyone could get the evaluation and care that they need without fear, stigma, crushing financial penalties, or all of the above. I’m also not describing any case here other than my own.)

What fresh hell is this? (Apatosaur dorsal from Gilmore 1936)

Out of one hole, into another. The biggest problem I faced back then is that if you are unfamiliar with sauropod vertebrae they can be forbiddingly complex. The papers I was struggling through referred to a pandemonium of laminae, an ascending catalog of horrors that ran from horizontal laminae and prespinal laminae through infraprezygapophyseal laminae and spinopostzygapophyseal laminae. Often these features were not labeled in the plates and figures, the authors had just assumed that any idiot would know what a postcentrodiapophyseal lamina was because, duh, it’s right there in the name. But that was the whole problem: I didn’t know how to decode the names. I had no map. SV-POW! tutorials didn’t exist. Jeff Wilson’s excellent and still-eminently-useful 1999 paper codifying the terminology for sauropod vertebral laminae was still years in the future.

Then I found this, on page 35 of Werner Janensch’s 1950 monograph on the vertebrae of what was then called Brachiosaurus brancai (now Giraffatitan):

It was in German, but it was a map! I redrew it by hand in my very first research notebook, and as I was copying down the names of the features the lightbulb switched on over my head. “Diapophyse” meant “diapophysis”, and it was the more dorsal of the two rib attachments. “Präzygapophyse” was “prezygapophysis”, and it was one of the paired articular bits sticking out the front of the neural arch. And, crucially, “Präzygodiapophysealleiste” had to be the prezygodiapophyseal lamina, which connected the two. And so on, for all of the weird bits that make up a sauropod vertebra.

It’s been 22 years and I still remember that moment of discovery, my pencil flying across the page as I made my own English translations of the German anatomical terms, my mind buzzing with the realization that I was now on the other side. Initiated. Empowered. I felt like I had pulled the sword from the stone, found Archimedes’ lever that could move the world. In the following weeks I’d go back through all of my photocopied sauropod monographs with my notebook open to the side, reading the descriptions of the vertebrae for the second or third times but understanding them for the first time, drawing the vertebrae over and over again until I could call up their basic outlines from memory. This process spilled over from the fall of 1996 into the spring of 1997, as Rich and I realized that OMNH 53062 would require more than one semester of investigation.

Interlude with a left femur of the Oklahoma apatosaurine (but not the largest individual).

My memories of those early days of my sauropod research are strongly shaped by the places and circumstances in which I was doing the work. Vicki and I had gotten married in the summer of 1996 and moved into a two-bedroom duplex apartment on the north side of Norman. The upstairs had a long, narrow bathroom with two sinks which opened at either end onto the two upstairs bedrooms, the one in which we slept and the one we used as a home office. In the mornings I could get showered and dressed in no time, and while Vicki was getting ready for work or school I’d go into the office to read sauropod papers and take notes. Vicki has always preferred to have music on while she completes her morning rituals, so I listened to a lot of Top 40 hits floating in from the other upstairs rooms while I puzzled out the fine details of sauropod vertebral anatomy.

Two songs in particular could always be counted on to play in any given hour of pop radio in the early spring of 1997: Wannabe by the Spice Girls, and Lovefool by the Cardigans. I am surely the only human in history to have this particular Pavlovian reaction, but to this day when I hear either song I am transported back to that little bedroom office where I spent many a morning poring over sauropod monographs, with my working space illuminated by the light of the morning sun pouring through the window, and my mind illuminated by Werner Janensch, who had the foresight and good grace to give his readers a map.

Figure 5 from my undergraduate thesis: OMNH 53062 in right lateral view.

If you want to know what I thought about OMNH 53062 back in 1997, you can read my undergraduate thesis—it’s a free download here. Looking back now, the most surprising thing to me about that thesis is how few mentions there are of pneumaticity. I met Brooks Britt in the summer of 1997 and had another epochal conversation, in which he suggested that I CT scan OMNH 53062 to look at the air spaces inside the vertebrae. I filed my undergrad thesis in December of 1997, and the first session CT scanning OMNH 53062 took place in January, 1998. So in late 1997 I was still a pneumaticity n00b, with no idea of the voyage I was about to embark upon.

In 2010, after I was settled in as an anatomist at Western University of Health Sciences, I wrote a long thank-you to Trish Schwagmeyer. It had been 14 years since that pivotal conversation, but when she wrote back to wish me well, she still remembered that I’d gotten a C in comparative anatomy. I’d have a chance to make amends for that glaringly anomalous grade later the same year. At ICVM in Punta del Este, Uruguay, I caught up with Edie Marsh-Matthews, who had taught my comparative anatomy course back when. I apologized for having squandered the opportunity to learn from her, and she graciously (and to my relief) shifted the conversation to actual comparative anatomy, the common thread that connected us in the past and the present.

If the story has a moral, it’s that I owe my career in large part to people who went out of their way to help me when I was floundering. And, perhaps, that the gentle approach is not always the best one. I needed to have my head thumped a few times, verbally, to get my ass in gear, when less confrontational tactics had failed. I slid easily through the classrooms of dozens of professors who watched me get subpar grades and didn’t try to stop me (counterpoint: professors are too overworked to invest in every academic disaster that comes through the door, just like paleontologists can’t study every garbage specimen). If Trish Schwagmeyer and Rich Cifelli had not decided that I was worth salvaging, and if they not had the grit to call me out on my BS, I wouldn’t be here. As an educator myself now, that thought haunts me. I hope that I will be perceptive enough to know when a student is struggling not because of a lack of ability but through a lack of application, wise enough to know when to deploy the “you’re blowing it” speech, and strong enough to follow through.

References

  • Gilmore Charles W. 1936. Osteology of Apatosaurus, with special reference to specimens in the Carnegie Museum. Memoirs of the Carnegie Museum 11:175–300 and plates XXI–XXXIV.
  • Janensch, Werner.  1950.  Die Wirbelsaule von Brachiosaurus brancai.  Palaeontographica (Suppl. 7) 3: 27-93.
  • Wedel, M.J. 1997. A new sauropod from the Early Cretaceous of Oklahoma. Undergraduate honor thesis, Department of Zoology, University of Oklahoma, Norman, OK. 43pp.
  • Wilson, J.A. 1999. A nomenclature for vertebral laminae in sauropods and other saurischian dinosaurs. Journal of Vertebrate Paleontology 19: 639-653.

Matt with big Apato dorsal 2000

Final bonus image so when I post this to Facebook, it won’t grab the next image in line and crop it horribly to make a preview. This is me with OMNH 1670, in 2003 or 2004, photo by Andrew Lee.

A life-size silhouette of the Snowmass Haplocanthosaurus, with Thierra Nalley, me, and Jessie Atterholt for scale. Photo by Jeremiah Scott.

Tiny Titan, a temporary exhibit about the Snowmass Haplocanthosaurus project, opened at the Western Science Center in Hemet, California, last night. How? Why? Read on.

Things have been quieter this year on the Haplo front than they were in 2018, for many reasons. My attention was pulled away by a lot of teaching and other day-job work–we’re launching a new curriculum at the med school, and that’s eaten an immense amount of time–and by some very exciting news from the field that I can’t tell you about quite yet (but watch this space). Things are still moving, and there will be a paper redescribing MWC 8028 and all the weird and cool things we’ve learned about it, but there are a few more timely things ahead of it in the queue.

One of the things going on behind the scenes this year is that Jessie Atterholt, Thierra Nalley, and I have been working with Alton Dooley, the director of the Western Science Center, on this exhibit. Alton has had a gleam in his eye for a long time of using the WSC’s temporary exhibit space to promote the work of local scientists, and we had the honor of being his first example. He also was not fazed by the fact that the project isn’t done–he wants to show the public the process of science in all of its serendipitous and non-linear glory, and not just the polished results that get communicated at the end.

Everything’s better cut in half. Photo by Jessie Atterholt.

Which is not to say that the exhibit isn’t polished. On the contrary, it looks phenomenal. Thanks to a loan from Julia McHugh at Dinosaur Journey in Colorado, most of the real fossils are on display. We’re only missing the ribs and most of the sacrum, which is too fragmentary and fragile to come out of its jacket. As you can see from the photo up top, there is a life-size vinyl silhouette of the Snowmass Haplo, with 3D prints of the vertebrae in approximate life position. Other 3D prints show the vertebrae before and after the process of sculpting, rescanning, and retrodeformation, as described in our presentation for the 1st Palaeontological Virtual Congress last year (that slideshow is a PeerJ Preprint, here). The exhibit also includes panels on “What is Haplocanthosaurus” and its relationships, on pneumaticity in sauropods, on the process of CT scanning and 3D modeling, and on the unusual anatomical features of the Snowmass specimen. The awesome display shown above, with the possibly-bumpy spinal cord and giant intervertebral discs reconstructed, was all Alton–he did the modeling, printing, and assembly himself.

Haplo vs Bronto. Thierra usually works on the evolution and development of the vertebral column in primates, so I had to show her how awesome vertebrae can be when they’re done right. Photo by Brittney Stoneburg.

My favorite thing in the exhibit is this striking comparison of one the Snowmass Haplo caudals with a proximal caudal from the big Oklahoma apatosaurine. This was Alton’s idea. He asked me if I had any photos of caudal vertebrae from really big sauropods that we could print at life size to compare to MWC 8028, and my mind went immediately to OMNH 1331, which is probably the second-largest-diameter vertebra of anything from all of North America (see the list here). It was also Alton’s idea to fill in the missing bits using one of Marsh’s plates of Brontosaurus excelsus from Como Bluff in Wyoming. It’s a pretty amazing display, and it turns out to have been a vehicle for discovery, too–I didn’t realize until I saw the verts side-by-side that the neural canal of the Snowmass Haplo caudal is almost as big as the neural canal from the giant apatosaurine caudal. It’s not a perfect comparison, because the OMNH fossil doesn’t preserve the neural canal, and the Como specimen isn’t that big, but proportionally, the Snowmass Haplo seems to have big honkin’ neural canals, not just at the midpoint (which we already knew), but all the way through. Looks like I have some measuring and comparing to do.

(Oh, about the title: we don’t know if the Snowmass Haplo was fully grown or not, but not all haplocanthosaurs were small. The mounted H. delfsi in Cleveland is huge, getting into Apatosaurus and Diplodocus territory. Everything we can assess in the Snowmass Haplo is fused, for what that’s worth. We have some rib chunks and Jessie will be doing histo on them to see if we can get ontogenetic information. I’ll keep you posted.)

Brian’s new Haplocanthosaurus restoration, along with some stinkin’ mammals. Photo by Jessie Atterholt.

Brian Engh contributed a fantastic life restoration of Haplocanthosaurus pro bono, thanks to this conversation, which took place in John Foster’s and ReBecca Hunt-Foster’s dining room about a month ago:

Brian: What are you drawing?

Me: Haplocanthosaurus.

Brian: Is that for the exhibit?

Me: Yup.

Brian (intense): Dude, I will draw you a Haplocanthosaurus.

Me: I know, but you’re a pro, and pros get paid, and we didn’t include a budget for paleoart.

Brian (fired up): I’m offended that you didn’t just ask me to draw you a Haplocanthosaurus.

Then he went to the Fosters’ couch, sat down with his sketchbook, and drew a Haplocanthosaurus. Not only is it a stunning piece on display in the exhibit, there are black-and-white printouts for kids to take and color (or for adults to take to their favorite tattoo artists, just sayin’). [Obligatory: this is not how things are supposed to work. We should all support original paleoart by supporting the artists who create it. But Brian just makes so damn many monsters that occasionally he has to kick one out for the heck of it. Also, I support him on Patreon, and you can, too, so at a stretch you could consider this the mother of all backer rewards.]

One special perk from the opening last night: Jessica Bramson was able to attend. Who’s that, you ask? Jessica’s son, Mike Gordon, found the first piece of bone from the Snowmass Haplo on their property in Colorado over a decade ago. Jessica and her family spent two years uncovering the fossils and trying to get paleontologists interested. In time she got in touch with John Foster, and the rest is history. Jessica lives in California now, and thanks to John’s efforts we were able to invite her to the exhibit opening to see her dinosaur meet the world. Stupidly, I did not get any photos with her, but I did thank her profusely.

A restored, retrodeformed caudal of the Snowmass Haplocanthosaurus, 3D-printed at life size for the exhibit. Photo swiped from the WSC Facebook page.

I owe a huge thanks to Alton Dooley for taking an interest in our work, and to the whole WSC crew for their hard work creating and promoting the exhibit. You all rock.

The exhibit will run through the end of March, 2020, at least. I deliberately did not show most of it, partly because I was too busy having fun last night to be diligent about taking photos, but mostly because I want you to go see it for yourself (I will do a retrospective post with more info after the exhibit comes down, for people who weren’t able to see it in person). If you make it out to Hemet, I hope you have half as much fun going through the exhibit as we did making it.

Way back in 2009–over a decade ago, now!–I blogged about the above photo, which I stole from this post by ReBecca Hunt-Foster. It’s a cut and polished chunk of a pneumatic sauropod vertebra in the collections at Dinosaur Journey in Fruita, Colorado.

This is the other side of that same cut; you’ll see that it looks like a mirror image of the cut at the top, but not quite a perfect mirror image, because some material was lost to the kerf of the saw and to subsequent polishing, and the bony septa changed a bit just in those few millimeters.

And this is the reverse face of the section shown above. As you can see, it is a LOT more complex. What’s going on here? This unpolished face must be getting close to either the condyle or the cotyle, where the simple I-beam or anchor-shaped configuration of the centrum breaks up into lots of smaller chambers (as described in this even older post). It’s crazy how fast that can happen–this shard of excellence is only about 4 or 5 cm thick, and in that short space it has gone from anchor to honeycomb. I think that’s amazing, and beautiful.

It’s probably Apatosaurus–way too complex to be Camarasaurus or Haplocanthosaurus, not complex enough to be Barosaurus, no reason to suspect Brachiosaurus, and although there is other stuff in the DJ collections, the vast majority of the sauropod material is Apatosaurus. So that’s my null hypothesis for the ID.

Oh, back in 2009 I was pretty sure these chunks were from a dorsal, because of the round ventral profile of the centrum. I’m no longer so certain, now that I know that the anchor-shaped sections are so close to the end of the centrum, because almost all vertebrae get round near the ends. That said, the anchor-shaped sections are anchor-shaped because the pneumatic foramina are open, and having foramina that open, that close to the end of the vertebra still makes me think it is more likely a dorsal than anything else. I’m just less certain than I used to be–and that has been the common theme in my personal development over the last decade.