How big was the Recapture Creek sauropod?
February 28, 2013
From Jensen (1987, page 604):
“In 1985 I found the proximal third of an extremely large sauropod femur (Figs. 8A, 12A) in a uranium miner’s front yard in southern Utah. The head of this femur is 1.67 m (5’6″) in circumference and was collected from the Recapture Creek Member of the the Morrison Formation in Utah near the Arizona border. It is the largest bone I have ever seen.”
Jensen included not one but two figures of this immense shard of excellence. Here they are:
The specimen was heavily reconstructed, as you can see from the big wodge of unusually smooth and light-colored material in the photo. So we can’t put much stock in that part of the specimen.
Unfortunately, the only measurement of the specimen that Jensen gives in the paper is that circumference; there are no straight-line linear measurements, and the figures both have the dreaded scale bars. Why dreaded? Check this out:
As you can see, when the scale bars are set to the same size, the bones are way off (the scale bar in the drawing is 50 cm). This is not an uncommon problem. I make the Fig 8 version 30% bigger in max mediolateral width of the entire proximal end, and still 17% bigger in minimum diameter across the femoral head, as measured from the slight notch on the dorsal surface (on the right in this view).
Can we figure out which is more accurate based on the internal evidence of the paper? For starters, the Fig 12 version is a drawing (1), that does not match the outline from the photo (2), and the hand-drawn scale bar (3) does not actually coincide with any landmarks (4), and that’s plenty of reasons for me not to trust it.
What about that circumference Jensen mentioned? Unfortunately, he didn’t say exactly where he took it, just that the head of the femur had a circumference of 1.67 meters. Is that for the entire proximal end, or for the anatomical head that fits in the acetabulum, er wot? I’m afraid the one measurement given in the paper is no help in determining which of the figures is more accurately scaled.
The obvious thing to do would be to see if this bone is in the BYU collections, and just measure the damn thing. More on that at the end of the post.
In the meantime, Jensen said that the shape of the Recapture Creek femur was most similar to the femur of Alamosaurus, or to that of Brachiosaurus among Morrison taxa, and he referred it to Brachiosauridae. So how does this thing–in either version–compare with the complete femur of FMNH P25107, the holotype of Brachiosaurus altithorax?

The Recapture Creek femur fragment compared to the complete femur of the Brachiosaurus altithorax holotype FMNH P25107
The first thing to notice is that the drawn outline from Figure 12 is a much better match for the Brachiosaurus altithorax femur–enough so that I wonder if Jensen drew it from the Recapture Creek specimen, or just traced the B.a. proximal femur and scaled it accordingly (or maybe not accordingly, since the scale bars don’t match).
But let’s get down to business: how long would the complete femur have been?
Using the scale bar in the photograph from Figure 8 (on the left in above image), I get a total femur length of 2.36 meters. Which is long, but only 7.7% longer than the 2.19-meter femur of FMNH P25107, and therefore only 25% more massive. So, 35 tonnes to Mike’s 28-tonne B.a., or maybe 45 tonnes to a more liberal 36-tonne B.a. Big, yeah, but not world-shattering. Update 2014-05-19: I don’t know where I got the 2.19-meter femur length for Brachiosaurus altithorax, but it’s a mistake. So the rest of that paragraph should read: Which is 16% longer than 2.03-meter femur of FMNH P25107, and therefore 57% more massive. So, 44 tonnes to Mike’s 28-tonne B.a., or maybe 57 tonnes to a more liberal 36-tonne B.a. That’s nowhere near the 2.5-meter femur and estimated 70-tonne mass of the largest Argentinosaurus, but it’s pretty darned good for a brachiosaur.
Using the scale bar in the drawing from Figure 12 (on the right in the above image)–which, remember, is 50 cm, not 1 meter–I get a total femur length of about 1.9 meters, which is considerably smaller than the B.a. holotype. That is very much at odds with Jensen’s description of it as “the largest bone I have ever seen”, and given that we have many reasons for not trusting the scale bar in the drawing, it is tempting to just throw it out as erroneous.
So it would seem that unless Jensen got both scale bars too big, the Recapture Creek brachiosaur was at most only a shade bigger than the holotype specimen of Brachiosaurus altithorax.
But wait–is the Recapture Creek brachiosaur a brachiosaur at all? Jensen didn’t list any characters that pushed him toward a brachiosaurid ID, and I don’t know of any proximal femur characters preserved in the specimen that would separate Brachiosaurus from, say, Camarasaurus. And in fact a camarasaur ID has a lot to recommend it, in that Camarasaurus femora have very offset heads (the ball- or cylinder-like articular surface at the top end sticks out a big more to engage with the hip socket–see Figure 12 up near the top of the post), moreso than in many other Morrison sauropods, and that would make them better matches for the Recapture Creek femur photo. Here’s what the comparo looks like:
I make that a 2.07-meter femur using the photo on the left, and a 1.66-meter femur using the drawing on the right. The one decent femur in the AMNH 5761 Camarasaurus supremus collection is 1.8 meters long, so these results are surprisingly similar to those for the B. althithorax comparison–the drawing gives a femur length shorter than the largest known specimens, and the photo gives a length only slightly longer. A camarasaur with a 2.07 meter femur would be 15% larger than the AMNH C. supremus in linear terms, and assuming isometric scaling, 1.5 times as massive–maybe 38 tonnes to AMNH 5761’s estimated 25. A big sauropod to be sure, but not as big as the largest apatosaurs, and not nearly as big as the largest titanosaurs.
I have always been surprised that the Recapture Creek femur frag has attracted so little attention, given that “Dinosaur Jim” himself called it the biggest bone he had ever seen. But it appears that the lack of attention is justified–whether it was a brachiosaur or a camarasaur, and using the most liberal estimates the scale bars allow, it simply wasn’t that big.
Update about half an hour later: Okay, maybe I was a little harsh here. IF the photo scale bar is right, the Recapture Creek femur might still represent the largest and most massive macronarian from the Morrison Formation (Edit: only if it’s a brachiosaur and not a camarasaur; see this comment), which is something. I suppose I was particularly underwhelmed because I was expecting something up in OMNH 1670-to-Argentinosaurus territory, and so far, this ain’t it. I’ll be interested to see what the actual measurements say (read on).
The Moral of This Story
So, if it wasn’t that big after all, and if no-one has made a stink about it being big before now, why go to all this trouble? Well, mostly just to satisfy my own curiosity. If there was a truly gigantic brachiosaur from the Morrison, it would be relevant to my interests, and it was past time I crunched the numbers to find out.
But along the way something occurred to me: this should be a cautionary tale for anyone who gets all wound up about the possible max size of Amphicoelias fragillimus. As with A. fragillimus, for the Recapture Creek critter we have part of one bone, and at least for this exercise I was working only from published illustrations with scale bars. And as with A. fragillimus, the choice of a reference taxon is not obvious, and the size estimates are all over the place, and some of them just aren’t that big.
It always amuses me when A. fragillimus comes up and people (well, trolls) accuse us of being big ole’ wet blankets that just don’t want to believe in 200-tonne sauropods. It amuses me because it’s wrong on so many levels. Believe me, when we have our sauropod fanboy hats on, we most definitely do want to believe in 200-tonne sauropods. That would rock. But when we put our scientist hats on, wanting and belief go right out the window. We have to take a cold, hard look at the data, and especially at its limitations.
Oh, the other moral is to go buy a tape measure, and use it. Sheesh!
Coda
As I said above, the obvious thing to do would be to just track down the bone and measure it. It does still exist, it’s in the BYU collections, and Brooks Britt has kindly offered to send along some measurements when he gets time. So we should have some real answers before long (and here they are). But I wanted to work through this example without them, to illustrate how much uncertainty creeps in when trying to estimate the size of a big sauropod from published images of a single partial bone.
Reference
February 28, 2013 at 12:44 pm
Great sauropod and great post!
March 1, 2013 at 9:29 am
But is it really the biggest macronarian from the Morrison?
*puts brachiosaurus fanboy hat*
25 tonnes for AMNH 5761 seems to be on the high side, if we estimate its mass by comparing it to CMNH 11393 which has a 1.57m femur and has been estimated at 12.3 tonnes by Donald Henderson and 14.2 tonnes by Greg Paul it’ll only be ~18-21 tonnes, accordingly, the owner of the Recapture Creek femur would be ~28-32 tonnes. Brachiosaurus hasn’t gone down yet ;D
March 1, 2013 at 3:32 pm
Yep, good catch. I meant that it would be the largest macronarian from the Morrison IF the scale bar is correct and IF it’s a brachiosaurid, but I didn’t say that. I’m amending the post right now.
March 3, 2013 at 7:23 am
[…] you’re just joining us, this post is a follow-up to this one, in which I considered the possible size and identity of the Recapture Creek femur fragment, which […]