Sauropod guru Jeff Wilson is on Twitter, as of a couple of weeks ago. In one of his earliest tweets, he showed the world this gorgeous photo of a Rebbachisaurus dorsal:

Jeff Wilson (left) and Ronan Allain (right), with dorsal vertebra of Rebbachisaurus.

Jeff Wilson (left) and Ronan Allain (right), with dorsal vertebra of Rebbachisaurus. Photograph by MNHN photographer, Copyright © Muséum National d’Histoire Natural.

I’m pretty certain this is the dorsal vertebra that’s been on exhibition in Paris for some time, and which is part of the holotype of Rebbachisaurus garasbae, which is in turn the type specimen of Rebbachisaurus and so of Rebbachisauridae as a whole. In which case it’s pretty darned important as defining a major group of sauropods.

This specimen was initially described, very briefly and without illustrations, by Lavocat (1954). The species (though a different specimen) was given a slightly better treatment by Russell (1996), as part of a larger work on isolated dinosaur bones. Russell included some line-drawings of the material (his figures 29-31), of which the pick is definitely this one of the bottom part of a dorsal vertebra:

xx

Rebbachisaurus garasbae, NMC 50844, anterior dorsal vertebra in (a) right lateral, (b) anterior, (c) left lateral and (d) posterior aspect. From Russell (1996:figure 30).

As noted by Russell (p388), this vertebra is similar, but not identical, to the one in Wilson’s photo. Russell says of his specimen that “the greater length of the centrum relative to the height and width of the intercentral articulations and less steeply projecting transverse processes imply that the vertebra occupied a more anterior position in the column.”

Will Rebbachisaurus ever get the detailed treatment that such gorgeous material deserves? Yes! here’s another tweet from Jeff:

Fantastic to think that Rebbachisaurus is in the works, and Nigersaurus to follow! Happy days!

References

  • Lavocat, R. 1954. Sur les Dinosauriens du continental intercalaire des Kem-Kem de la Daoura. [On the dinosaurs of the Continental Intercalaire of the Kem Kem of the Daoura].Comptes Rendus 19th Intenational Geological Congress 1952 (1):65-68. [English translation]
  • Russell, D.A. (1996). Isolated dinosaur bones from the Middle Cretaceous of the Tafilalt, Morocco. Museum Natl. d’Histoire Nat. (Paris) Bull. Ser. 4 18 (Section C, Nos. 2-3), 349-402.

dodo-skeleton-flipped

Hey, remember this? Your bound-for-PeerJ manuscript is like our Mauritian friend here, and the March 1 deadline is approaching like a hungry sailor with a club. So if you still want a voucher, let me know ASAP.

Sauroposeidon and friends

February 24, 2014

Sauroposeidon and kin cervicals - DRAFTAs a break from photography posts, here are four pretty big vertebrae that swirl in the same thought-space in my head. All are shown to scale, in right lateral view. These are not the biggest sauropod cervical vertebrae–Supersaurus beats them all, and there are vertebrae of Puertasaurus, Alamosaurus, and Futalognkosaurus that rival the big Sauroposeidon vert, but those are either less well preserved or still awaiting detailed description.

Incidentally, I think BYU 12867 is a C10. The centrum proportions are about right, compared to Giraffatitan, and the neural spine looks good, too, like a geometric transformation of the big Giraffatitan C8. Also, the drawn-in prezyg outline for MIWG.7306 is a little short; the actual prezyg is a monster and would have overhung the condyle by another 10cm or so. I’m pretty sure that we had a composite photograph showing this at one point, but irritatingly none of us can find it at the moment. If it turns up, I’ll update the image.

For a long time I thought Sauroposeidon was a brachiosaurid. Now it seems to be a somphospondyl (D’Emic 2012) or possibly even a basal titanosaur (Mannion et al. 2013), even if we stick just to the holotype. But if it’s not a brachiosaurid, it’s cervical vertebrae are at least coarsely brachiosaur-y in outline.

You  may recall from Naish et al. (2004) that MIWG.7306 shares several derived characters with the holotype vertebrae of Sauroposeidon. Does that mean that Angloposeidon is a somphospondyl or titanosaur as well? I dunno–as always, we need more material–but it’s an interesting possibility.

References

Illustration talk slide 32

Illustration talk slide 33

Illustration talk slide 34

The links in the first slide:

Mike’s post on desaturating the background in specimen photos is here, and previous posts in this series are here.

Illustration talk slide 23

Illustration talk slide 24

Illustration talk slide 25

Illustration talk slide 26

Illustration talk slide 27

Illustration talk slide 28

Illustration talk slide 29

Illustration talk slide 30

Illustration talk slide 31

Previous posts in this series are here.

Illustration talk slide 19

Illustration talk slide 20

Illustration talk slide 21

Illustration talk slide 22

This whole section, including the title, is mostly swiped from Mike’s Tutorial 17.

Other posts in this series are here.

Papers referenced in these slides:

Illustration talk slide 16

Illustration talk slide 17

Illustration talk slide 18

Previous posts in this series:

Part 1: Intro and Stromer

Part 2: Taking good photos

Part 3: Backdrops and lighting

And the rest of the series is here.

Last time, we took a very quick look at YPM 1910, a mounted skeleton that is the holotype of Camarasaurus (= “Morosaurus“) lentus, in the dinosaur hall of the Yale Peabody Museum.

Here’s the whole skeleton, in various views. Skip down to the bottom for the science; or just enjoy the derpiness. First, in anterior view:

DSCN8899

Here’s a more informative right anterolateral view. As you can see, this little Camarasaurus is in every sense in the shadow of the the much more impressive Apatosaurus (= “Brontosaurus“) excelsus holotype, YPM 1980: click through for the full image:

DSCN8893-thumbnail

And here’s the corresponding photo from Lull (1930: figure 1) (see below):

Camarasaurus lentus, holotype skeleton, oblique front view (Full 1930: fig. 1)

Camarasaurus lentus, holotype skeleton, oblique front view (Lull 1930: fig. 1)

It’s interesting to see such a familiar mount in such unfamiliar surroundings. Judging by the cabinets in the background, YPM 1910 was mounted in what’s now the dinosaur hall at Yale — i.e. it hasn’t moved since the photo was taken. But back then, Brontosaurus hadn’t been mounted, and Zallinger’s mural hadn’t been painted.

If you thought this animal looked dumb from the front, check out this left anterodorsolateral view, taken from the balcony above the hall. The foreshortening of the neck makes Cam look like a particularly dense puppy.

(Once more, click through for the full version of the photo, including the much more impressive Apatosaurus.)

DSCN8887-thumbnail

Right lateral view, with Zallinger’s justly famous mural in the background. Note the Diplodocus-type double-beamed chevrons in the tail:

IMG_0552

Here’s the justly under-rated posterior view:

IMG_0551

And finally, Lull’s left posterolateral photo — taken from a position that can’t now be replicated, due to the inconveniently located Brontosaurus. (The Archelon in the background, which was previously featured on SV-POW!, has been moved to the end of the hall since Lull’s time.

Camarasaurus lentus, oblique rear view. Lull (1930: fig. 2)

Camarasaurus lentus, oblique rear view. Lull (1930: fig. 2)

How much of this skeleton is real? Happily, not the skull. We can only hope that the real thing wasn’t quite so troubling. But much of the rest of the skeleton is real bone. To quote Lull (1930:1-3):

In the Yale specimen the entire vertebral column is present from the second or third cervical to the tenth caudal with one or two later caudals. Of the limbs and their girdles there are present the left scapula, right coracoid, both humeri, the left radius and ulna, both ilia, the right pubis and left ischium, and both femora, tibiae and fibulae. One cervical rib is present but no thoracic ribs. The disarticulated sacrum lacked one rib from either side.

(How could Lull have been unsure whether the most anterior preserved cervical was the second or third? C2 in sauropods, as in most animals, is radically different from the subsequent cervicals. He does go on to say that only the centrum of the most anterior vertebra is preserved, but the axis has a distinct anterior central articulation.)

Lull is quite ready to criticise the mount, and notes in particular:

The cervical ribs in the Yale mount are not long enough by half, and the thoracic ribs may be somewhat heavy and their length a little short […] both carpus and tarsus are probably incorrect, as the elements in each instance are fewer than shown, there being no more than two at most. There is apparently no justification for the fore and aft extensions of the distal chevrons, as these were not preserved and the Osborn-Mook restoration was followed. […] A probable error lies in too great an allowance for cartilage between the [pelvic] elements, thus making the acetabulum seem rather large.

He also notes a scheme that sadly never came to pass:

[The holotype of Camarasaurus (= “Morosaurus“) robustus], a very perfect specimen, we intend to mount when the great Brontosaurus excelsus type is completed. The three sauropods, ranging in length from 21 to nearly 70 feet, should make a very impressive group.

They would have done! But in the end it fell to the Museum für Naturkunde Berlin to give us the world’s first three-sauropod combo (unless someone knows of an earlier one?)

Finally; the mounted Yale Camarasaurus also crops up in three of the plates of Ostrom and McIntosh (1966). Plate 60 depicts metacarpals I and II in all the cardinal views except for some reason posterior; plate 61 does the same for metacarpals III and IV); and plate 70 shows the right pubis in every aspect but anterior. Here it is:

x

Morosaurus lentus [Now referred to Camarasaurus lentus] Marsh (1889) YPM 1910 (holotype). Right pubis (reversed) in medial (1), posterior (2), lateral (3), proximal (4), and distal (5) views; transverse sections through blade (6) and shaft (7). (Ostrom and McIntosh 1966: plate 70)

Judging by this, it’s a beautifully preserved element with some very distinctive morphology. But we’ve been burned by Marsh’s plates before, and I don’t trust them at all any more — at least, not until I’ve seen the elements for myself. Now I wish I paid more attention to Derpy’s pubes.

And on that line, I’m out.

References

Lull, Richard S. 1930. Skeleton of Camarasaurus lentus recently mounted at Yale. American Journal of Science, 5th series, 19(109):1-5.

Ostrom, John H., and John S. McIntosh. 1966. Marsh’s Dinosaurs: the Collections from Como Bluff. Yale University Press, New Haven, CT. 388 pages including 65 positively scrumptious plates.

Matt’s harsh-but-fair “Derp dah durr” / “Ah hurr hurr hurr” captions on his Giraffatitan skull photos reminded me that there is a sauropod with a much, much stupider head than that of Giraffatitan. Step forward YPM 1910, a mounted skeleton that is the holotype of Camarasaurus (= “Morosaurus“) lentus, in the dinosaur hall of the Yale Peabody Museum. Herp derp derp Full details on this specimen next time! (But a spoiler: the skull isn’t real.)

Today (12th February) is the one-year anniversary of the first PeerJ papers! As Matt put it in an email this morning:

Hard to believe it’s been a year already. On the other hand, it’s also hard to believe that it’s only been a year. PeerJ is just such an established part of my worldview now.

That’s exactly right. PeerJ has so completely rewritten the rule-book (on price, speed and quality of service) that now when I’m thinking about new papers I’m going to write, the question I ask myself is no longer “Where shall I send this?” but “Is there any reason not to send it to PeerJ?”

dorsals-ab-composite

Dorsals A and B (probably D8 and D9) of NHM R5937, “The Archbishop”, a still-undescribed brachiosaurid sauropod from the Upper Jurassic Tendaguru Formation of Tanzania, which I will get done this year, and which is destined for PeerJ. Top row: dorsal view with anterior to the right. Bottom row, from left to right: left lateral, posterior, right lateral, anterior.

Yesterday in the comments of a post on The Scholarly Kitchen, Harvey Kane asked me “I am curious as to where you get the notion that publishing OA is less expensive and in some way “better” than the traditional model?” My reply was (in part):

My notion that OA publishing yields better results than traditional is rooted in the online-only nature of articles, which allows them to ignore arbitrary limits on word-count, number of figures, use of colour, etc., and to exploit online-only formats such as video, 3d models, CT-slice stacks, etc. In my own field of vertebrate palaeontology, it’s now routine to see in PLOS ONE descriptive articles that are many times more comprehensive than their equivalents in traditional journals — see for example the recent description of the frog Beelzebufo.

Of course there is nothing specific to open-access about this: there is no technical reason why an online-only subscription journal shouldn’t publish similarly detailed articles. But my experience so far has been that they don’t — perhaps because they are tied to the mindset that pages and illustrations are limited resources.

For Beelzebufo in PLOS ONE, read baby Parasaurolophus in PeerJ, which we described as “the world’s most open-access dinosaur“. This paper is 83 pages of technicolour goodness, plus all the 3d models you can eat. And the crazy thing is, this sort of detail in descriptive papers is not even exceptional any more — see for example the recent description of Canardia in PLOS ONE, or this analysis of croc respiration in PeerJ

Years ago, I said that in the Archbishop descriptions I wanted to raise the bar for quality of illustration. Well, I’ve taken so long over getting the Archbishop done that the bar has been raised, and now I’m scrambling to catch up. Certainly the illustrations even in our 2011 description of Brontomerus are starting to look a bit old-fashioned.

And of course, the truly astonishing thing about PeerJ is that it does this so very cheaply. Because I’m already a member (which cost me $99), the Archbishop description is going to be free to me to publish this year. (This year for sure!) If we also get our Barosaurus neck preprint published properly this year,then I’ll have to find $100 to upgrade my Basic membership to Enhanced. That’s cheap enough that it’s not even worth going through the hassle of trying to get Bristol to pay for me. And if I ever hit a year when I publish three or more papers, I’ll upgrade once more (for another $100) to the Investigator plan and then that’s it: I’m done paying PeerJ forever, however many papers I publish there. (Matt jumped straight to the all-you-can-eat plan, so he wouldn’t even have to think about it ever again.)

Barosaurus lentus holotype YPM 429, Vertebra Q (C?13). Top row: left ventrolateral view. Middle row, from left to right: anterior view, with ventral to the right; ventral view; posterior view, with ventral to the left. Bottom row: right lateral view, inverted. Inset shows diapophyseal facet on right side of vertebra, indicating that the cervical ribs were unfused in this individual despite its great size. Note the broad, flat prezygapophyseal facet visible in anterior view. (Taylor and Wedel 2013b: figure 6)


Barosaurus lentus holotype YPM 429, Vertebra Q (C?13). Top row: left ventrolateral view. Middle row, from left to right: anterior view, with ventral to the right; ventral view; posterior view, with ventral to the left. Bottom row: right lateral view, inverted. Inset shows diapophyseal facet on right side of vertebra, indicating that the cervical ribs were unfused in this individual despite its great size. Note the broad, flat prezygapophyseal facet visible in anterior view. (Taylor and Wedel 2013b: figure 6)

PeerJ’s pricing is making PLOS ONE’s $1350 APC look distinctly old-fashioned; and the $3000 charged by the legacy publishers (for a distinctly inferior product) is now frankly embarrassing. You might expect that as such low prices, PeerJ’s quality of service would suffer, but that’s not been our experience: editing, reviewing, typesetting and proofing for our neck-anatomy paper were all up there with the best we’ve received anywhere.

And it’s great to see that it’s not just minor researchers like Matt and me who are persuaded by PeerJ: they’ve now accumulated a frankly stellar list of 20 universities (so far) with institutional plans for researchers to publish there. When I say “stellar” I mean that the list includes Harvard, MIT, Cambridge, Berkeley, Stanford, Johns Hopkins, UCL, Carnegie Mellon, Duke … the list goes on.

We can only hope that the next year, and the next ten and twenty, are as successful for PeerJ as the first has been; and that other New Generation publishers will join it in pushing the field forward.

I leave the last word to Matt:

I’m getting Vicki a lifetime membership for Valentine’s Day. Because I’m a romantic.

She’s a lucky, lucky woman.