Various Internet rumours have suggested that the Archbishop is a super-giant sauropod one third larger than the mounted Giraffatitan specimen MB.R.2181 (formerly HMN SII). This is incorrect.

Figure E. Skeletal inventory of NHMUK PV R5937, “The Archbishop”, showing which bones were excavated by Migeod’ expedition. Based on a skeletal reconstruction of Giraffatitan brancai kindly provided by Scott Hartman: note that this image does not illustrate the shapes or proportions of the Archbishop material. Bones prepared and available for study are shown in white; those still in jackets awaiting preparation in light grey; those excavated by Migeod but apparently lost or destroyed in dark grey.

Migeod’s assessment of the size of the animal was based on the vertebrae: “The [neck] vertebrae found give a 20-foot [6.10 m] length […] The length of the back including the sacral region was about 15 feet [4.57 m]. The eight or nine caudal vertebrae cover about 6 feet [1.83 m]” (Migeod 1931a:90). This gives the total preserved length of the skeleton as 41 feet (12.50 m). By comparison, Janensch (1950b:102) gives lengths of portions of the mounted skeleton of MB.R.2181 as 8.78m (neck), 3.92m (torso) and 1.07m (sacrum) for a torso-plus-sacrum length of 4.99m. On this basis, the preserved neck of NHMUK PV R5937 is only 69% as long as that of MB.R.2181, but since the first four vertebrae were missing and omitted from Migeod’s measurement, this factor cannot be taken at face value. More informative is the torso-plus-sacrum length, which in NHMUK PV R5937 is 92% the length of MB.R.2181.

This is consonant with measurements of individual elements, which compare as follows:

Table 4. Comparative measurements of Archbishop and Giraffatitan elements

ElementMeasurement (cm)ArchbishopGiraffatitanRatio
Torso plus sacrumtotal length4574990.916
C10 (mC4)centrum length991000.990
C11 (mC3)centrum length104100[1]1.040
D4 (mD3)centrum length27360.750
Longest riblength over curve2352630.894
Left scapulocoracoidlength over curve221238[2]0.929
Right humeruslength1462130.685
Right humeruswidth51590.864
Right iliumlength98123[3]0.797
Right iliumheight7996[4]0.823
Femurlength122196[5]0.622
Average0.846

Archbishop measurements taken from Migeod (1931a) and converted from imperial; Giraffatitan measurements are for MB.R.2181 except where noted, and are taken from Janensch (1950a:44) and Janensch (1961).
Notes.
[1] Janensch (1950a) did not report a total centrum length for C11, as its condyle had not been removed from the cotyle of C10; but since the length of its centrum omitting the condyle was, at 87 cm, identical to that of C10, it is reasonable to estimate its total length as also equal to that of C10.
[2] Janensch (1961:181) did not include measurements for the right scapula of MB.R.2181, which is incorporated into the mounted skeleton, but does give the proximodistal length of its right coracoid as 45 cm. Using the 193 cm length given for the similarly sized scapula Sa 9, we can deduce a reasonable total estimate of 238 cm for the scapulocoracoid.
[3] Estimated by Janensch (1950b:99) based on cross-scaling from the fibula and ilium of Find J from the Upper Saurian Marl.
[4] This is the measurement provided by Janensch (1961:199) for the ilium Ma 2, which is incorporated into the mounted skeleton, and which Janensch (1950b:99) considered to match MB.R.2181 very precisely.
[5] Based on a restoration of the midshaft which Janench (1950b:99) calcuated based on other finds.

Individual lines of this table should each be treated with caution: Migeod’s measurements may have been unreliable, and in any case are underspecified: for example, we do not know whether, when he gave a vertebra’s length, he included overhanging prezygapophyses or the condyle. Similarly, we know that Migeod (1931:96) wrote that a rib “was as much as 92.5 inches long”, but we do not know for certain that, like Janensch, he measured the length over the curve rather than the straight-line distance between the ends. And when Migeod says that the ilium “measured 38.5 by 31 inches” we do not know that the height was measured “at the public process”, as Janensch (1961:199) specified.

With those caveats in place, nevertheless, a picture emerges of a sauropod somewhat smaller than MB.R.2181, though by no means negligible. On average, the measurements come out about 15% smaller than those of Giraffatitan.

But this average conceals a great deal of variation. The cervical vertebrae are comparable in length to those of MB.R.2181 (The total of 203 cm for C10 and C11 in the Archbishop, only 1.5% longer than 200 cm for MB.R.2181, is a difference well within the margin of measurement error). The Archbishop’s scapulocoracoid may have been 93% as long as in MB.R.2181. But the limb bones are signficantly shorter (87% for the humerus and a scarcely credible 62% for the femur), and the humeri at least bseem to be have been proportionally more robust in the Archbishop: only 2.86 times as long as wide, whereas the ratio is 3.61 in MB.R.2181. If Migeod’s measurements can be trusted, we have here an animal whose neck is as long as that of Giraffatitan, but whose limbs are noticably shorter. These proportions corroborate the hypothesis that the Archbishop is not a specimen of Giraffatitan.

Well, one reason is the utterly rancid “block editor” that WordPress has started imposing with increasing insistence on its poor users. If there is one thing that world really doesn’t need, it’s a completely new way of writing text. Seriously, WordPress, that was a solved problem in 1984. As Henry Spencer very nearly said back in the eighties, “thy creativity is better used in solving problems than in creating beautiful new impediments to productivity“.

But enough pointless whining: instead, check out this bad boy:

Taylor (in prep. for 2020: Figure V). NHMUK PV R5937, “The Archbishop”, cervical vertebra V (most anterior preserved cervical vertebra, probably C6), left side still encased in plaster. A. Reconstruction of right lateral view with neural spine, prezygapophysis, diapophysis, condyle, cotyle and cervical rib restored. The prezygapophysis from the succeeding vertebra that has adhered to this element is shown in red. B. Dorsal view with anterior to the right. C. Posterior view. D. Right lateral view. E. Anterior view. F. Ventral view with anterior to the right. Scale bar 20 cm.

Yes, it’s your friend and mine, The Archbishop! It’s a big titanosauriform sauropod excavated by F. W. H. Migeod for the British Museum (Natural History) back in 1930, from the same Tendaguru Formation that yielded the awesome Giraffatitan specimens in the Museum für Naturkunde Berlin.

Yes, I admit I have been working on the Archbishop for more than sixteen years, and that I gave a talk about it at SVPCA 2005, and that I failed utterly to get it done as part of the Paleo Project Challenge 2010, and that as early as 2011 I was in despair about ever finishing it, and that I promised to do it by SVPCA 2016 but didn’t.

But in 2018 I did something significant, which was to actually start writing the paper in public. Now anyone can follow the progress of the project — and it’s progressing. The manuscript currently runs to about fifty printed pages, although that length is inflated by twenty-odd beautiful illustrations — of which the “Cervical V” image above is just one. (Do click through to see it in all its glory.)

So, yeah. That’s the main reason I am not blogging much. Because I am writing the paper. Finally.

I can’t even count how many sauropod vertebra pictures we’ve posted here across the last ten years, but I am confident that the total comes to at least a lot. Here’s a picture from each year of the blog’s existence so far — let’s vote on which is the best!

November 15, 2007: Xenoposeidon week, day 1: Introducing Xeno

The stark beauty of the Xenoposeidon proneneukos holotype NHMUK R2095, a mid-to-posterior partial dorsal vertebra in left and right lateral views.

February 1, 2008: Your neck is pathetic

Sauroposeidon proteles holotype OMNH 53062, 8th cervical vertebra in left lateral view (1400 mm total length). Entire human neck for scale.

January 7, 2009: The sauropods of Star Wars: Special Edition

Our old friend Giraffatitan brancai MB.R.2181 once more, this time with Matt for scale.

February 12, 2010: Tutorial 8: how to photograph big bones

The Archbishop in all its glory. The much-loved dorsals 8 and 9, in right lateral view, of the Tendaguru brachiosaurid NHMUK R5937.

May 16, 2011: Why the long necks? Probably not sexual selection

Taylor et al. (2011), fig. 1: Sauropod necks, showing relationships for a selection of species, and the range of necks lengths and morphologies that they encompass. Phylogeny based on that of Upchurch et al. (2004: fig. 13.18). Mamenchisaurus hochuanensis (neck 9.5 m long) modified from Young & Zhao (1972: fig. 4); Dicraeosaurus hansemanni (2.7 m) modified from Janensch (1936: plate XVI); Diplodocus carnegii (6.5 m) modified from Hatcher (1903: plate VI); Apatosaurus louisae (6 m) modified from Lovelace, Hartman & Wahl (2008: fig. 7); Camarasaurus supremus (5.25 m) modified from Osborn & Mook (1921: plate 84); Giraffatitan brancai (8.75 m) modified from Janensch (1950: plate VIII); giraffe (1.8 m) modified from Lydekker (1894:332). Alternating grey and white vertical bars mark 1 m increments.

April 15, 2012: Neural spine bifurcation in sauropods, Part 6: more reasons why Haplocanthosaurus is not a juvenile of a known diplodocid

Wedel 2009: Fig. 6. Pneumatization of the presacral vertebrae in Haplocanthosaurus. (A) X-ray image of a posterior cervical vertebra of CM 879 in right lateral view. (B) A CT slice through the same vertebra. (C) X-ray image of an anterior dorsal vertebra of CM 572 in left lateral view. (D) X-ray image of the same vertebra in anterior view.

January 16, 2013: Plateosaurus is pathetic

Our old friend C8 of the Giraffatitan brancai paralectotype MB.R.2181 in left dorsolateral view, with a comparable cervical of the prosauropod Plateosaurus for scale.

February 12, 2014: Can PeerJ really be only a year old?

Barosaurus lentus holotype YPM 429, Vertebra Q (C?13). Top row: left ventrolateral view. Middle row, from left to right: anterior view, with ventral to the right; ventral view; posterior view, with ventral to the left. Bottom row: right lateral view, inverted. Inset shows diapophyseal facet on right side of vertebra, indicating that the cervical ribs were unfused in this individual despite its great size. Note the broad, flat prezygapophyseal facet visible in anterior view. (Taylor and Wedel 2013b: figure 6)

September 14, 2015: So what were apatosaurs doing with their crazy necks?

A slide from our 295 SVPCA talk, illustrating key points in apatosaurine neck morphology that led us to the BRONTOSMASH hypothesis.

May 18, 2016: Thank you to all our Sauropocalypse hosts!

Mike compares Jensen’s sculpture of the big Supersaurus cervical BYU 9024 with the actual fossil.

August 15, 2017: “Biconcavoposeidon”

AMNH FARB 291, five consecutive posterior dorsal vertebrae of a probably brachiosaurid sauropod which we informally designate “Biconcavoposeidon”, in right lateral view.

(Yes, there are eleven pictures: we’ve been running for ten years, but that includes both the end of 2007 and the start of 2017.)

So, which is the picture of the decade? Vote here (and let us know in the comments if we missed your favourite).

 

Here I am at SVPCA in 2015. I am haunted by the fact that ten years ago at SVPCA 2005, I gave a talk about the NHM’s Tendaguru brachiosaurid, NHMUK R5937. And the description is still not done and submitted a full decade later. Even though it’s objectively one of the most beautiful specimens in the world:

dorsals-ab-composite

So here is my pledge to the world:

By this time next year (i.e. the start of SVPCA 2016 in Liverpool), I will have written and submitted this description. If I fail, I give you all permission — no, I beg you — to mock me mercilessly. Leave mocking comments on this blog, yes; but more than that, those of you at SVPCA are invited to spend the week pointing contemptuously at me and saying “Ha!”

Let’s hope it doesn’t come to that.

Update (6 September): see also.

Today (12th February) is the one-year anniversary of the first PeerJ papers! As Matt put it in an email this morning:

Hard to believe it’s been a year already. On the other hand, it’s also hard to believe that it’s only been a year. PeerJ is just such an established part of my worldview now.

That’s exactly right. PeerJ has so completely rewritten the rule-book (on price, speed and quality of service) that now when I’m thinking about new papers I’m going to write, the question I ask myself is no longer “Where shall I send this?” but “Is there any reason not to send it to PeerJ?”

dorsals-ab-composite

Dorsals A and B (probably D8 and D9) of NHM R5937, “The Archbishop”, a still-undescribed brachiosaurid sauropod from the Upper Jurassic Tendaguru Formation of Tanzania, which I will get done this year, and which is destined for PeerJ. Top row: dorsal view with anterior to the right. Bottom row, from left to right: left lateral, posterior, right lateral, anterior.

Yesterday in the comments of a post on The Scholarly Kitchen, Harvey Kane asked me “I am curious as to where you get the notion that publishing OA is less expensive and in some way “better” than the traditional model?” My reply was (in part):

My notion that OA publishing yields better results than traditional is rooted in the online-only nature of articles, which allows them to ignore arbitrary limits on word-count, number of figures, use of colour, etc., and to exploit online-only formats such as video, 3d models, CT-slice stacks, etc. In my own field of vertebrate palaeontology, it’s now routine to see in PLOS ONE descriptive articles that are many times more comprehensive than their equivalents in traditional journals — see for example the recent description of the frog Beelzebufo.

Of course there is nothing specific to open-access about this: there is no technical reason why an online-only subscription journal shouldn’t publish similarly detailed articles. But my experience so far has been that they don’t — perhaps because they are tied to the mindset that pages and illustrations are limited resources.

For Beelzebufo in PLOS ONE, read baby Parasaurolophus in PeerJ, which we described as “the world’s most open-access dinosaur“. This paper is 83 pages of technicolour goodness, plus all the 3d models you can eat. And the crazy thing is, this sort of detail in descriptive papers is not even exceptional any more — see for example the recent description of Canardia in PLOS ONE, or this analysis of croc respiration in PeerJ

Years ago, I said that in the Archbishop descriptions I wanted to raise the bar for quality of illustration. Well, I’ve taken so long over getting the Archbishop done that the bar has been raised, and now I’m scrambling to catch up. Certainly the illustrations even in our 2011 description of Brontomerus are starting to look a bit old-fashioned.

And of course, the truly astonishing thing about PeerJ is that it does this so very cheaply. Because I’m already a member (which cost me $99), the Archbishop description is going to be free to me to publish this year. (This year for sure!) If we also get our Barosaurus neck preprint published properly this year,then I’ll have to find $100 to upgrade my Basic membership to Enhanced. That’s cheap enough that it’s not even worth going through the hassle of trying to get Bristol to pay for me. And if I ever hit a year when I publish three or more papers, I’ll upgrade once more (for another $100) to the Investigator plan and then that’s it: I’m done paying PeerJ forever, however many papers I publish there. (Matt jumped straight to the all-you-can-eat plan, so he wouldn’t even have to think about it ever again.)

Barosaurus lentus holotype YPM 429, Vertebra Q (C?13). Top row: left ventrolateral view. Middle row, from left to right: anterior view, with ventral to the right; ventral view; posterior view, with ventral to the left. Bottom row: right lateral view, inverted. Inset shows diapophyseal facet on right side of vertebra, indicating that the cervical ribs were unfused in this individual despite its great size. Note the broad, flat prezygapophyseal facet visible in anterior view. (Taylor and Wedel 2013b: figure 6)


Barosaurus lentus holotype YPM 429, Vertebra Q (C?13). Top row: left ventrolateral view. Middle row, from left to right: anterior view, with ventral to the right; ventral view; posterior view, with ventral to the left. Bottom row: right lateral view, inverted. Inset shows diapophyseal facet on right side of vertebra, indicating that the cervical ribs were unfused in this individual despite its great size. Note the broad, flat prezygapophyseal facet visible in anterior view. (Taylor and Wedel 2013b: figure 6)

PeerJ’s pricing is making PLOS ONE’s $1350 APC look distinctly old-fashioned; and the $3000 charged by the legacy publishers (for a distinctly inferior product) is now frankly embarrassing. You might expect that as such low prices, PeerJ’s quality of service would suffer, but that’s not been our experience: editing, reviewing, typesetting and proofing for our neck-anatomy paper were all up there with the best we’ve received anywhere.

And it’s great to see that it’s not just minor researchers like Matt and me who are persuaded by PeerJ: they’ve now accumulated a frankly stellar list of 20 universities (so far) with institutional plans for researchers to publish there. When I say “stellar” I mean that the list includes Harvard, MIT, Cambridge, Berkeley, Stanford, Johns Hopkins, UCL, Carnegie Mellon, Duke … the list goes on.

We can only hope that the next year, and the next ten and twenty, are as successful for PeerJ as the first has been; and that other New Generation publishers will join it in pushing the field forward.

I leave the last word to Matt:

I’m getting Vicki a lifetime membership for Valentine’s Day. Because I’m a romantic.

She’s a lucky, lucky woman.

Generally when we present specimen photos in papers, we cut out the backgrounds so that only the bone is visible — as in this photo of dorsal vertebrae A and B of NHM R5937 “The Archbishop”, an as-yet indeterminate Tendaguru brachiosaur, in right lateral view:

DSCN7651-desaturated-whiteBut for some bones that can be rather misleading: they may be mounted in such a way that part of the bone is obscured by structure. For example — and this is a very minor case — the ventral margins of the centra in the photo above are probably slightly deeper than they appear, because the centra are slightly sunk within the plinth that holds the vertebrae upright.

So I’ve been toying with a different idea: instead of cutting the background out completely, leaving it in place but toning it down. Then the supporting structure is visible, but clearly distinct from the actual bone. (For a more extreme case, see the “Apatosaurusminimus sacrum.)

Here’s how the image above looks if I desaturate the background:

DSCN7651-desaturated

I’m not sure what to make of this. It looks a bit strange to me, but that might only be the strangeness of unfamiliarity.

And it might not work so well (or indeed it might work better) for photos taken against a busier background.

What do you think?

This year, I missed The Paleo Paper Challenge over on Archosaur Musings — it was one of hundreds of blog posts I missed while I was in Cancun with my day-job and then in Bonn for the 2nd International Workshop on Sauropod Biology and Gigantism.  That means I missed out on my annual tradition of promising to get the looong-overdue Archbishop description done by the end of the year.

Brachiosauridae incertae sedis NMH R5937, "The Archbishop", dorsal neural spine C, probably from an anterior dorsal vertebra. Top row: dorsal view, anterior to top; middle row, left to right: anterior, left lateral, posterior, right lateral; bottom row: ventral view, anterior to bottom.

But this year, Matt and I are going to have our own private Palaeo Paper Challenge.  And to make sure we heap on maximum pressure to get the work done, we’re announcing it here.

Here’s the deal.  We have two manuscripts — one of them Taylor and Wedel, the other Wedel and Taylor — which have been sitting in limbo for a stupidly long time.  Both are complete, and have in fact been submitted once and gone through review.  We just need to get them sorted out, turned around, and resubmitted.

(The Taylor and Wedel one is on the anatomy of sauropod cervicals and the evolution of their long necks.  It’s based on the last remaining unpublished chapter of my dissertation, and turned up in a modified form as my SVPCA 2010 talk, Why Giraffes Have Such Short Necks.  The Wedel and Taylor one is on the occurrence and implications of intermittent pneumaticity in the tails of sauropods, and turned up as his SVPCA 2010 talk, Caudal pneumaticity and pneumatic hiatuses in the sauropod dinosaurs Giraffatitan and Apatosaurus.)

We’re going to be realistic: we both have far too much going in (incuding, you know, families) to get these done by the end of 2011.  But we have relatively clear Januaries, so our commitment is that we will submit by the end of January 2012.  If either of us fails, you all have permission to be ruthlessly derisive of that person.

… and in other news …

Some time while we were all in Bonn, the SV-POW! hit-counter rolled over the One Million mark.  Thanks to all of your for reading!

 

Matt just wrote this, in an email exchange.  It struck a chord in me, and I thought it deserved a wider audience:

I hate to admit it, but those two papers (i.e., Taylor et al. 2009 and 2011) that had particularly protracted gestations and lots of review time are among the ones I am most proud of. There might be a lesson there — but if so, I’d rather not learn it.

Rats.

Cervical vertebra V (from an unknown position in the anterior part of the neck) of the STILL undescribed Tendaguru brachiosaurid NHM R5937, "The Archbishop", in right lateral view. The posterior portion is missing in action.

A few months ago, prosauropod supremo Adam Yates blogged about the Aardonyx cake that the BPI honours class baked in his honour.  In the comments, I mentioned that my wife Fiona once made me a BMNH R5937:D9 cake (i.e. a cake in the form of the more posterior of the pair of nicely preserved dorsal vertebrae of The Archbishop, in right lateral view). At the time, I couldn’t find the photo that I knew had been taken, and Adam asked me to post it when it turned up.

Voila!

And here, once more, is the real thing for comparison:

(Note that the topology of the lateral lamination is spot on, with a single infradiapophyseal lamina which forks into anterior and posterior branches only some way ventral to the diapophysis.  That’s what you look for in a cake.)

Update (21 April)

Silly me, of course what I should have shown is the cake and the vertebra side by side.  Here they are — together at last!

This post is nearly three weeks late — it’s based on a piece of artwork that appeared on 25 September, and which I wanted to write about immediately.  But it got washed away in the flood of camel necks (which by the way is not over yet), and then in the festival of articular cartilage, then by the whole “Amphicoelias brontodiplodocus” thing and the subsequent discussion of amateurs in palaeo, and then by what was already an overdue announcement of my sauropod history paper and the attendant copyright nonsense.  So it’s been a stupidly busy time here at SV-POW! Towers, but now the air has cleared a little, and it’s time to look at this beauty:

 

Life restoration of NHM R5937 "The Archbishop" (Brachiosauridae incertae sedis), by Nima.

 

This would be a beautiful piece of art by any standards — the world can always use brachiosaur art! — but what makes this extra special for me is that it is the first ever life restoration of my very own brachiosaur, BHM R5937, the Tendaguru specimen known as The Archbishop.  It’s by SV-POW! regular Nima, and I am absolutely delighted to see it.  It’s very Greg Paul-like, and I mean that in the most positive sense.  (I may not be a fan of Greg’s taxonomic vicissitudes, but his art is just beautiful.)

Over on his blog, Nima has described in detail how he created this piece, and shows four progressively refined versions (of which the one above is the last) — I urge you to check it out if you’re interested in art, brachiosaurs or both.

Nima’s blog-post also includes a brief history of the Archbishop, mostly taken from my 2005 SVPCA talk.  It’s a good summary, but I do have a few comments to make.  (I typed a lot of this in as a comment to the original post, but Blogger ate my comments as usual.)

  • The specimen is not known as M23, and has never been — that is in fact the designation of the Tendaguru quarry from which is was excavated.  Paul (1988) mistakenly conflated the quarry name with a specimen number, and referred to this specimen as BMNH M23, and Glut’s (1977) encyclopaedia perpetuated the error, but it’s always been R5937.
  • “The giant Brachiosaurus finds of the Germans” are now, of course, Giraffatitan.
  • “Controversy lingered” — well, no, not really.  The problem was worse than that: no-one paid a blind bit of notice to the specimen before 2004.
  • “It turns out the double spine claim was totally bogus and unscientific” — well, we don’t really know that yet.  It’s certainly true that none of the prepared vertebrae (five cervicals, two complete dorsals and an additional dorsal spine) have bifid spines; but Migeod reported these from the anterior dorsals, and it’s not clear that we have those.  A fair bit of material remains in jackets, and more has probably been lost or destroyed.  So it is possible, if unlikely, that one day we’ll open one of those jackets and find good evidence for bifid spines.
  • “Close-up of the Archbishop vertebrae (doesn’t look much like the mitre of an archbishop to me, but who knows” — well, the name The Archbishop is not based on any resemblance of the bones to a mitre.  (Nor is it based on anything else.  It’s completely arbitrary.)

Last 0f all, what about the actual picture?  Well, the long, thin, snakelike neck is beautiful art, but I don’t think it’s great science.  The height of the cervicals that we have for this animal show that the neck would have had to be quite a bit dorsoventrally taller than shown here.  And because there were only 13 cervical vertebrae — 12 if you omit the atlas, which is really a whole nother kettle of badgers, a neck bent into a strongly sigmoid pose like this would exhibit noticable kinks at some of the intervertebral joints — as you can see in giraffes when they twist their necks.

That aside, though, this is great.  Again, I am really delighted that it’s out there.  Congratulations to Nima!