The new monster redescription of Dilophosaurus by Adam Marsh and Tim Rowe came out in the Journal of Paleontology last week. I’m blogging about it now because the OA link just went live yesterday. So you can get this huge, important paper for free, at this link.

There’s a lot of stuff to love here: beautiful, clear photos of every element from every specimen from multiple angles, interesting anatomical and phylogenetic findings, and of particular interest on this blog, some very cool documentation of serial variation in pneumatic features. Here in Figure 62 we see serial changes in the posterior centrodiapophyseal laminae, which in some of the vertebrae are split around an intermediate fossa, or have accessory laminae.

One thing that I’ve thought a lot about, but written not so much about (yet), is pneumatic features on the ventral surfaces of vertebrae and how they change along the column. So I was excited to see Figure 64, which shows how fossae change serially on both the lateral and the ventral surfaces of the presacral centra. As far as I know, no-one has ever done something like this for a sauropod (please correct me in the comments if I’ve forgotten any examples), but it could be done and the results would be interesting, particularly for taxa like Haplocanthosaurus or Dicraeosaurus that have both lateral and ventral fossae and keels in at least some of the vertebrae.

Here’s Figure 66, a beautiful new skull reconstruction and life restoration, both by Brian Engh. There’s a lot of Engh/Dilophosaurus stuff going on right now, including a new video for the St. George Dinosaur Discovery Site museum (short version here, longer version available at the museum, and I think on Brian’s Patreon page), and, uh, another thing that will be revealed in the not-too-distant future.

I hope everyone is well and safe. When I first realized we were going into quarantine back in March, I had big plans for doing various series of posts here, but almost immediately the demand of getting med school anatomy online ate up all my time and creative energy. Just barely getting back on my feet now. I know Mike has been busier than normal, too. So please be patient with us, and we’ll try to remember to feed the blog now and then.

Reference

Marsh, Adam D., and Rowe, Timothy B. 2020. A comprehensive anatomical and phylogenetic evaluation of Dilophosaurus wetherilli (Dinosauria, Theropoda) with descriptions of new specimens from the Kayenta Formation of northern Arizona. Journal of Paleontology Volume 94, Supplement S78: 1-103. DOI: https://doi.org/10.1017/jpa.2020.14

Here’s one of my most prized possessions: a cannon bone from a giraffe. I got it last fall from Necromance, a cool natural history store in LA. Originally they had a matched pair on display in the front window. Jessie Atterholt got one of them last summer, and I got the other a few months later.

The cannon bones of hoofed mammals consist of fused metacarpals (in the forelimbs) or metatarsals (in the hindlimbs). In this case, the giraffe cannon bone in the top photo is the one from the right forelimb, consisting of the fused 3rd and 4th metacarpals, which correspond to the bones in the human hand leading to the middle and ring fingers. Only my third metacarpal is traced in the top photo. For maximum homology goodness I should have traced MC4, too, but I’m lazy.

I didn’t know that this was a right forelimb cannon bone when I got it. In fact, I only figured that out this afternoon, thanks to the figures and text descriptions in Rios et al. (2016), which I got free through Palaeontologia Electronica (you can too). The weirdly large and perfectly circular holes at the ends of my cannon bone were clearly drilled out by somone, I guess maybe for mounting purposes? At first I thought it might have been to help the marrow cook out of the shaft of the bone during simmering and degreasing, but none of the drilled holes intersect the main marrow cavity, they’re just in the sponge of trabecular bone at the ends of the element.

This post is a sequel to one from last year, “Brachiosaurus and human metacarpals compared“, which featured metacarpal 3 from BYU 4744, the partial skeleton of Brachiosaurus from Potter Creek, Colorado. I know what everyone’s thinking: can we make these two high-browsing giants throw hands?

Yes, yes we can. The giraffe cannon bone is 75.5cm long, and the brachiosaur metacarpal is 57cm long, or 75.5% the length of the giraffe element. I scaled the two bones correctly in the above image. My hands aren’t the same size because they’re at different distances from the camera, illustrating the age-old dictum that scale bars are not to be trusted.

The Potter Creek brachiosaur is one of the largest in the world–here’s me with a cast of its humerus–but ‘my’ giraffe is not. World-record giraffes are about 19 feet tall (5.8m), and doing some quick-and-dirty cross-scaling using the skeleton photo above suggests that the metacarpal cannon bone in a world-record giraffe should be pushing 90cm. So the giraffe my cannon bone is from was probably between 15.5 and 16 feet tall (4.7-4.9m), which is still nothing to sniff at.

I don’t know how this bone came to be at Necromance. I assume from an estate sale or something. I only visited for the first time last year, and at that time they had three real bones from giraffes out in the showroom: the two cannon bones and a cervical vertebra. They might have put out more stuff since–it’s been about six months since I’ve been there–but all of the giraffe bones they had at that point have been snapped up by WesternU anatomists. Jessie and I got the cannon bones, and Thierra Nalley got the cervical vertebra, which is fair since she works on the evolution of necks (mostly in primates–see her Google Scholar page here). I don’t know if there are any photos of Thierra’s cervical online, but Jessie did an Instagram post on her cannon bone, which is nearly as long as her whole damn leg.

There will be more anatomy coming along soon, and probably some noodling about sauropods. Stay tuned!

Reference

Ríos M, Danowitz M, Solounias N. 2016. First comprehensive morphological analysis on the metapodials of Giraffidae. Palaeontologia Electronica 19(3):1–39.

 

 

Storm Giant

March 12, 2020

Challenge: can you spot the Iguanodon pelvis in this photo?

Big news: I will be at the Burpee Museum PaleoFest this year. I’m speaking at 10:30 AM on Sunday, March 8. The title of my talk is, “In the Footsteps of Giants: Finding and Excavating New Fossils of Brachiosaurus from the Lower Morrison Formation in Utah”. Brian Engh, John Foster, and ReBecca Hunt-Foster are all coauthors.

The main page for PaleoFest 2020 is here (link), and on the right side of that page there’s a block of quick links to the speaker list, daily schedules, and so on. If you’re in the Midwest and not already booked for the weekend of March 7-8, come on out and I’ll talk your legs off about dinosaurs.

The photo above is of me at a table at the Raymond M. Alf Museum Fossil Fest on February 8, 2020. It’s nothing to do with the Burpee PaleoFest, I just needed a photo of me talkin’ Brachiosaurus. And yes, you can have that t-shirt — objectively the greatest in the history of the universe — when you cut it off my cold, dead carcass. (Or you can order your own; this model is the “Retro Brontosaurus Dinosaur T-shirt” by Dinosaur Tees and the Amazon link is here.)

I swear I’m not making this up: I was recently contacted by one of our patrons, who said he’d like to support us at the SV-POW! Patreon at $10/month. We didn’t have that tier at the time, only $1/mo. and $5/mo. So to accommodate him, and any others who theoretically might like to support us at that level, we created a $10 tier. There’s a new reward to go with this tier: in addition to being acknowledged in any papers that get written as a result of a trip that you help to fund, at $10/month you’ll also get an 8×10 art print once a year, either one of my skull drawings or a photograph, signed or unsigned. Here’s the link.

Our support is up to $57/mo. That might not sound like much, but $7/mo. is $84/yr., which is what we wanted when Mike launched the Patreon so we could get rid of ads on the site. The other $50/mo. is $600/yr., which is roughly the cost of a trans-Atlantic plane ticket. So that’s already one Matt-and-Mike get-together a year to do research and write papers, in addition to any others we were going to do anyway.

What would we do with more support? More research, and more writing. I get small grants now and then, and I get a yearly travel budget from my department, but grant-writing takes time away from research and paper-writing, and the departmental travel money doesn’t cover all the things I’d like to do. For example, I skipped SVPCA in 2018 so I could visit the Carnegie last spring. That’s a tough choice, a whole conference worth of ideas and conversations that I missed out on. And Mike is basically self-funded. We’re pretty good at converting travel money into new ideas and new data, and we’re going to start doing writing retreats where we hole up someplace cheap, far from museums, field sites, and other distractions, and just write. So if you like the stuff we do, please consider supporting us–we promise not to waste your donation.

Many thanks to everyone who supports our work, and to everyone else for sitting through this post. In the spirit of giving you more than you asked for, up top is the cervicodorsal transition in Giraffatitan brancai, MB.R.2181, in my favorite, inconvenient portrait orientation. And here’s a version with the centrum lengths and posterior widths given in cm. From Janensch (1950: figs. 49 and 50).

Reference

Janensch, Werner. 1950. Die Wirbelsaule von Brachiosaurus brancai. Palaeontographica (Suppl. 7) 3: 27-93.

This is the Jurassic World Legacy Collection Brachiosaurus. I think it might be an exclusive at Target stores here in the US. It turns up on other sites, like Amazon and eBay, but usually from 3rd-party sellers and with a healthy up-charge. Retails for 50 bucks. I got mine for Christmas from Vicki and London. Here’s the link to Target.com if you want to check it out (we get no kickbacks from this).

I thought it would be cool to leverage this thing at outreach events to talk about the new Brachiosaurus humerus that Brian Engh found last year, which a team of us got out of the ground and safely into a museum last October (full story here). But I needed a Brachiosaurus humerus, so I made one, and in this post I’ll show you how to do the same, for next to no money.

Depending on what base you start with and what materials you use, you could build a scale model of a Brachiosaurus humerus at any size. I wanted one that would match the JWLC Brach, so I started by taking some measurements of that. Here’s what I got:

Lengths

  • Head: 45mm
  • Neck: 455mm (x 20 = 9.1m = 29’10”)
  • Torso: 320mm
  • Tail: 320mm
  • Total: 1140 (x 20 = 22.8m = 74’10”)

Heights

  • Max head height: 705mm (x 20 = 14.1m = 46’3″)
  • Withers height: 360mm (x 20 = 7.2m = 23’7″)

The neck length, total length, and head height are pretty close to the mounted Giraffatitan in Berlin. The withers are a little high, as is the bottom of the animal’s belly. I suspect that the limbs on the model are oversized by about 10%. Nevertheless, the numbers say this thing is roughly 1/20 scale.

The largest humeri of Brachiosaurus and Giraffatitan are 213cm, which is about 3mm shy of 7 feet. So a 1/20 scale humerus should be 106.5mm, or 4.2 inches, or four-and-a-quarter if you want a nice, round number.

Incidentally, Chris Pratt is 6’2″ (74 inches), and the Owen Grady action figure is 3.75″, which is 1/20 of 6’3″. So the action figure, the Brachiosaurus toy highly detailed scientific model, and a ~4.2″ humerus model will all be more or less in scale with each other.

I used a chicken humerus for my base. The vast majority of chickens in the US are slaughtered at 5 months, so they don’t get nearly big enough for their humeri to be useful for this project. Fortunately, there’s a pub in downtown Claremont, Heroes & Legends, that has giant mutant chicken hot wings, so I went there and collected chicken bones in the guise of a date. The photo above shows three right humeri (on the left) and one left humerus (on the right) after simmering and an overnight degreasing in a pot of soapy water. I used the same bone clean-up methods as in this post.

What should you do if you don’t have access to giant mutant chicken wings? My method of Brachio-mimicry involves some sculpting, so any reasonably straight bone that bells out a bit at the ends would work. You could use a drumstick in a pinch. Here are my humeri whitening in a tub of 3% hydrogen peroxide from the dollar store down the street.

Brachiosaurid humeri vary somewhat but they all have certain features in common. Here’s the right humerus of Vouivria, modified from Mannion et al. (2017: fig. 19) to show the features of interest to brachiosaur humerus-sculptors. The arrows on the far left point to a couple of corners, one where the deltopectoral crest (dpc in the figure) meets the proximal articular surface, and the other where the articular surface meets the long sweeping curve of the medial border of the humeral shaft.

Here’s a more printer-friendly version of the same diagram. Why did I use Vouivria for this instead of one of the humeri of Brachiosaurus itself? Mostly because it’s a complete humerus for which a nice multi-view was available. Runner-up in this category would have to go to the humerus of Pelorosaurus conybeari figured by Upchurch et al. (2015: fig. 18) in the Haestasaurus paper–here’s a direct link to that figure.

I knew that I’d be doing some sculpting, and I wanted a scale template to work off of, so I made these outlines from the Giraffatitan humerus figured by Janensch (1950) and reproduced by Mike in this post (middle two), and from the aforementioned Pelorosaurus conybeari humerus shown by Mike in this post (outer two). I scaled this diagram so that when printed to fill an 8.5×11 piece of printer paper, the humerus outlines would all be 4.25″–the same nice-round-number 1/20 scale target found above. Here’s a PDF version: Giraffatitan and Pelorosaurus humeri outlines for print.

Here’s the largest of my giant mutant chicken humeri, compared to the outlines. The chicken humerus isn’t bad, but it’s too short for 1/20 scale, the angles of the proximal and distal ends are almost opposite what they should be, and the deltopectoral crest is aimed out antero-laterally instead of facing straight anteriorly. Modification will be required!

Here’s my method for lengthing the humerus: I cut the midshaft of another humerus out, and swapped it in to the middle of the prospective Brachiosaurus model humerus.

To my immense irritation, I failed to get a photo of the lengthened humerus before I started sculpting on it. In the first wave of sculpting, I built up the proximal end and the deltopectoral crest, but missed some key features. On the right, I glued the proximal and distal ends of the donor humerus together; I might make this into a Haestasaurus humerus in the future.

I should mention my tools and materials. I have a Dremel but it wasn’t charged the evening I sat down to do this, so I made all the humerus cuts with a small, cheap hacksaw. I used superglue (cyanoacrylate or CA) for quick joins, and white glue (polyvinyl acetate or PVA) to patch holes, and I put gobs of PVA into the humeral shafts before sealing them up. For additive sculpting I used spackling compound, same stuff you use to patch holes in walls and ceilings, and for reductive sculpting I used sandpaper. I got most of this stuff from the dollar store.

Here we are after a second round of sculpting. The proximal end has its corners now, and the distal end is more accurately belled out, maybe even a bit too wide. It’s not a perfect replica of either the Giraffatitan or Pelorosaurus humeri, but it got sufficiently into the brachiosaurid humerus morphospace for my taste. A more patient or dedicated sculptor could probably make recognizable humeri for each brachiosaurid taxon or even specimen. I deliberately left it a bit rough in hopes that it would read as timeworn, fractured, and restored when painted and mounted. Again, a real sculptor could make some hay here by putting in fake cracks and so on.

The cheap spackling compound I picked up did not harden as much as some other I have used in the past. I had planned on sealing anyway before I painted, and for porous materials a quick, cheap sealant is white glue mixed with water. Here that coat of diluted PVA is drying, and I’m holding up a spare chicken humerus to show how far the model humerus has come.

Before painting, I drilled into the distal end with a handheld electric drill, and used a bamboo barbeque skewer as a mounting rod and handle. I hit it with a couple of coats of gray primer, then a couple of coats of black primer the next day. I could have gotten fancier with highlights and washes and so on, but I was scrambling to get this done for a public outreach event, in an already busy week.

And here’s the finished-for-now product. A couple of gold-finished cardboard gift boxes from my spare box storage gave their lids to make a temporary pedestal. When I get a version of this model that I’m really happy with, either by hacking further on this one or starting from scratch on a second, I’d love to get a wooden or stone trophy base with a little engraved plaque that looks like a proper museum exhibit, and replace the bamboo skewer with a brass rod. But for now, I’m pretty happy with this.

The idea of making dinosaurs out of chicken bones isn’t original with me. I was inspired by the wonderful books Make Your Own Dinosaur Out of Chicken Bones and T-Rex To Go, both by Chris McGowan. Used copies of both books can be had online for next to nothing, and I highly recommend them both.

If this post helps you in making your own model Brachiosaurus humerus, I’d love to see the results. Please let me know about your model in the comments, and happy building!

References

  • Janensch, Werner. 1950. Die Wirbelsaule von Brachiosaurus brancai. Palaeontographica (Suppl. 7) 3: 27-93.
  • Mannion PD, Allain R, Moine O. (2017The earliest known titanosauriform sauropod dinosaur and the evolution of BrachiosauridaePeerJ 5:e3217 https://doi.org/10.7717/peerj.3217
  • Upchurch, Paul, Philip D. Mannion and Micahel P Taylor. 2015. The Anatomy and Phylogenetic Relationships of “Pelorosaurus” becklesii (Neosauropoda, Macronaria) from the Early Cretaceous of England. PLoS ONE 10(6):e0125819. doi:10.1371/journal.pone.0125819

On today’s episode of the I Know Dino postcast, Garret interviews Brian and me about our new Brachiosaurus bones and how we got them out of the field. You should listen to the whole thing, but we’re on from 10:10 to 48:15. Here’s the link, go have fun. Many thanks to the I Know Dino crew for their interest, and to Garret for being such a patient and accommodating host. Amazingly, there is a much longer version of the interview available for I Know Dino Patreon supporters, so check that out for more Brachiosaurus yap than you are probably prepared for.

The photo is an overhead shot of me, Casey Cordes, and Yara Haridy smoothing down a plaster wrap around the middle of humerus. The 2x4s aren’t on yet, and the sun is low, so this must have been in the late afternoon on our first day in the quarry in October. Photo by Brian Engh, who perched up on top of the boulder next to the bone to get this shot.

For the context of the Brach-straction, see Part 1 of Jurassic Reimagined on Brian’s paleoart YouTube channel, and stay tuned for more.

FHPR 17108, a right humerus of Brachiosaurus, with Wes Bartlett and his Clydesdale Molly for scale. Original paleoart by Brian Engh.

Last May I was out in the Salt Wash member of the Morrison Formation with Brian Engh and Thuat Tran, for just a couple of days of prospecting. We’d had crappy weather, with rain and lots of gnats. But temperatures were cooler than usual, and we were able to push farther south in our field area than ever before. We found a small canyon that had bone coming out all over, and as I was logging another specimen in my field book, I heard Brian shout from a few meters away: “Hey Matt, I think you better get over here! If this is what I think it is…”

What Brian had found–and what I couldn’t yet show you when I put up this teaser post last month–was this:

That’s the proximal end of a Brachiosaurus humerus in the foreground, pretty much as it was when Brian found it. Thuat Tran is carefully uncovering the distal end, some distance in the background.

Here’s another view, just a few minutes later:

After uncovering both ends and confirming that the proximal end was thin, therefore a humerus (because of its shape), and therefore a brachiosaur (because of its shape and size together), we were elated, but also concerned. This humerus–one of the largest ever found–was lying in what looked like loose dirt, actually sitting in a little fan of sediment cascading down into the gulch. We knew we needed to get it out before the winter rains came and destroyed it. And for that, we’d need John Foster’s experience with getting big jackets out of inconvenient places. We were also working out there under the auspices of John’s permit, so for many reasons we needed him to see this thing.

We managed to all rendezvous at the site in June: Brian, John, ReBecca Hunt-Foster, their kids Ruby and Harrison, and Thuat. We uncovered the whole bone from stem to stern and put on a coat of glue to conserve it. Any doubts we might have had about the ID were dispelled: it was a right humerus of Brachiosaurus.

While we were waiting for the glue to dry, Brian and Ruby started brushing of a hand-sized bit of bone showing just a few feet away. After about an hour, they had extracted the chunk of bone shown above. This proved to be something particularly exciting: the proximal end of the matching left humerus. We hiked that chunk out, along with more chunks of bone that were tumbled down the wash, which may be pieces of the shaft of the second humerus.

But we still had the intact humerus to deal with. We covered it with a tarp, dirt, and rocks, and started scheming in earnest on when, and more importantly how, to get it out. It weighed hundreds of pounds, and it was halfway down the steep slope of the canyon, a long way over broken ground from even the unmaintained jeep trail that was the closest road. Oh, and there are endangered plants in the area, so we coulnd’t just bulldoze a path to the canyon. We’d have to be more creative.

I told a few close friends about our find over the summer, and my standard line was that it was a very good problem to have, but it was actually still a problem, and one which we needed to solve before the winter rains came.

As it happened, we didn’t get back out to the site until mid-October, which was pushing it a bit. The days were short, and it was cold, but we had sunny weather, and we managed to get the intact humerus uncovered and top-jacketed. Here John Foster and ReBecca Hunt-Foster are working on a tunnel under the bone, to pass strips of plastered canvas through and strengthen the jacket. Tom Howells, a volunteer from the Utah Field House in Vernal, stands over the jacket and assists. Yara Haridy was also heavily involved with the excavation and jacketing, and Brian mixed most of the plaster himself.

John Foster, Brian Engh, Wes and Thayne Bartlett, and Matt Wedel (kneeling). Casey Cordes (blue cap) is in the foreground, working the winch. Photo courtesy of Brian Engh.

Here we go for the flip. The cable and winch were rigged by Brian’s friend, Casey Cordes, who had joined us from California with his girlfriend, teacher and photographer Mallerie Niemann.

Photo courtesy of Brian Engh.

Jacket-flipping is always a fraught process, but this one went smooth as silk. As we started working down the matrix to slim the jacket, we uncovered a few patches of bone, and they were all in great shape.

So how’d we get this monster out of the field?

From left to right: Wes Bartlett and one of his horses, Matt Wedel, Tom Howells, and Thayne Bartlett. Photo by Brian Engh.

Clydesdales! John had hired the Bartlett family of Naples, Utah–Wes, Resha, and their kids Thayne, Jayleigh, Kaler, and Cobin–who joined us with their horses Molly and Darla. Brian had purchased a wagon with pneumatic tires from Gorilla Carts. Casey took the point on winching the jacket down to the bottom of the wash, where we wrestled it onto the wagon. From there, one of the Clydesdales took it farther down the canyon, to a point where the canyon wall was shallow enough that we could get the wagon up the slope and out. The canyon slope was slickrock, not safe for the horses to pull a load over, so we had to do that stretch with winches and human power, mostly Brian, Tom, and Thayne pushing, me steering, and Casey on the winch.

Easily the most epic and inspiring photo of my butt ever taken. Wes handles horses, Casey coils rope, Thayne pushes the cart, and Kaler looks on. Photo by Brian Engh.

Up top, Wes hooked up the other horse to pull the wagon to the jeep trail, and then both horses to haul the jacket out to the road on a sled. I missed that part–I had gone back to the quarry to grab tools before it got dark–but Brian got the whole thing on video, and it will be coming soon as part of his Jurassic Reimagined documentary series.

There’s one more bit I have to tell, but I have no photos of it: getting the jacket off the sled and onto the trailer that John had brought from the Field House. We tried winching, prybar, you name it. The thing. Just. Did. Not. Want. To. Move. Then Yara, who is originally from Egypt, said, “You know, when my people were building the pyramids, we used round sticks under the big blocks.” As luck would have it, I’d brought about a meter-long chunk of thick dowel from my scrap wood bin. Brian used a big knife to cut down some square posts into roughly-round shapes, and with those rollers, the winch, and the prybar, we finally got the jacket onto the trailer.

The real heroes of the story are Molly and Darla. In general, anything that the horses could help with went waaay faster and more smoothly than we expected, and anything we couldn’t use the horses for was difficult, complex, and terrifying. I’d been around horses before, but I’d never been up close and personal with Clydesdales, and it was awesome. As someone who spends most of his time thinking about big critters, it was deeply satisfying to use two very large animals to pull out a piece of a truly titanic animal.

Back in the prep lab at the Field House in Vernal: Matt Wedel, Brian Engh, Yara Haridy, ReBecca Hunt-Foster, and John Foster.

We’re telling the story now because the humerus is being unveiled for the public today at the Utah Field House of Natural History State Park Museum in Vernal. The event will be at 11:00 AM Mountain Time, and it is open to the public. The humerus, now cataloged as FHPR 17108, will be visible to museum visitors for the rest of its time in the prep lab, before it eventually goes on display at the Field House. We’re also hoping to use the intact right humerus as a Rosetta Stone to interpet and piece back together the shattered chunks of the matching left humerus. There will be a paper along in due time, but obviously some parts of the description will have to wait until the right humerus is fully prepped, and we’ve made whatever progress we can reconstructing the left one.

Why is this find exciting? For a few reasons. Despite its iconic status, in dinosaur books and movies like Jurassic Park, Brachiosaurus is actually a pretty rare sauropod, and as this short video by Brian Engh shows, much of the skeleton is unknown (for an earlier, static image that shows this, see Mike’s 2009 paper on Brachiosaurus and Giraffatitan, here). Camarasaurus is known from over 200 individuals, Apatosaurus and Diplodocus from over 100 individuals apiece, but Brachiosaurus is only known from about 10. So any new specimens are important.

A member of the Riggs field crew in 1900, lying next to the humerus of the holotype specimen of Brachiosaurus. I’m proud to say that I know what this feels like now!

If Brachiosaurus is rare, Brachiosaurus humeri are exceptionally rare. Only two have ever been described. The first one, above, is part of the holotype skeleton of Brachiosaurus, FMNH P25107, which came out of the ground near Fruita, Colorado, in 1900, and was described by Elmer S. Riggs in his 1903 and 1904 papers. The second, in the photo below, is the Potter Creek humerus, which was excavated from western Colorado in 1955 but not described until 1987, by Jim Jensen. That humerus, USNM 21903, resides at the National Museum of Natural History in Washington, D.C.

The Brachiosaurus humerus from Potter Creek, Colorado, on display at the Smithsonian.

For the sake of completeness, I have to mention that there is a humerus on display at the LA County Museum of Natural History that is labeled Brachiosaurus, but it’s not been written up yet, and after showing photos of it to colleagues, I’m not 100% certain that it’s Brachiosaurus (I’m not certain that it isn’t, either, but further study is needed). And there’s at least one humerus with a skeleton that was excavated by the University of Kansas and sold by the quarry owner to a museum in Korea (I had originally misunderstood this; some but not all of the material from that quarry went to KU), that is allegedly Brachiosaurus, but that one seems to have fallen into a scientific black hole. I can’t say anything about its identification because I haven’t seen the material.

Happy and relieved folks the morning after the Brachstraction: Yara Haridy, Matt Wedel, John and Ruby Foster, and the Bartletts: Kaler, Wes, Cobin, Resha, Jayleigh, and Thayne. Jacketed Brachiosaurus humerus for scale. Photo by Brian Engh.

So our pair of humeri from the Salt Wash of Utah are only the 3rd and 4th that I can confidently say are from Brachiosaurus. And they’re big. Both are at least 62cm wide across the proximal end, and the complete one is 201cm long. To put that into context, here’s a list of the longest sauropod humeri ever found:

  1. Brachiosaurus, Potter Creek, Colorado: 213cm
  2. Giraffatitan, MB.R.2181/SII specimen, Tanzania: 213cm
  3. Brachiosaurus, holotype, Colorado: ~213cm (preserved length is 203cm, but the distal end is eroded, and it was probably 213cm when complete)
  4. Giraffatitan, XV3 specimen, Tanzania: 210cm
  5. *** NEW Brachiosaurus, FHPR 17108, Utah: 201cm
  6. Ruyangosaurus (titanosaur from China): ~190cm (estimated from 135cm partial)
  7. Turiasaurus (primitive sauropod from Spain): 179cm
  8. Notocolossus (titanosaur from Argentina): 176cm
  9. Paralititan (titanosaur from Egypt): 169cm
  10. Patagotitan (titanosaur from Argentina): 167.5cm
  11. Dreadnoughtus (titanosaur from Argentina): 160cm
  12. Futalognkosaurus (titanosaur from Argentina): 156cm

As far as we know, our intact humerus is the 5th largest ever found on Earth. It’s also pretty complete. The holotype humerus has an eroded distal end, and was almost certainly a few centimeters longer in life. The Potter Creek humerus was missing the cortical bone from most of the front of the shaft when it was found, and has been heavily restored for display, as you can see in one of the photos above. Ours seems to have both the shaft and the distal end intact. The proximal end has been through some freeze-thaw cycles and was flaking apart when we found it, but the outline is pretty good. Obviously a full accounting will have to wait until the bone is fully prepared, but we might just have the best-preserved Brachiosaurus humerus yet found.

Me with a cast of the Potter Creek humerus in the collections at Dinosaur Journey in Fruita, Colorado. The mold for this was made from the original specimen before it was restored, so it’s missing most of the bone from the front of the shaft. Our new humerus is just a few cm shorter. Photo by Yara Haridy.

Oh, our Brachiosaurus is by far the westernmost occurrence of the genus so far, and the stratigraphically lowest, so it extends our knowledge of Brachiosaurus in both time and space. It’s part of a diverse dinosaur fauna that we’re documenting in the Salt Wash, that minimally also includes Haplocanthosaurus, Camarasaurus, and either Apatosaurus or Brontosaurus, just among sauropods. There are also some exciting non-sauropods in the fauna, which we’ll be revealing very soon.

A chunk of matrix from the brachiosaur quarry. The black bits are fossilized plants.

And that’s not all. Unlike most of the other dinosaur fossils we’ve found in the Salt Wash, including the camarasaur, apatosaur, and haplocanthosaur vertebrae I’ve shown in recent posts, the humeri were not in concrete-like sandstone. Instead, they came out of a sandy clay layer, and the matrix is packed with plant fossils. It was actually kind of a pain during the excavation, because I kept getting distracted by all the plants. We did manage to collect a couple of buckets of the better-looking stuff as we were getting the humerus out, and we’ll be going back for more.

As you can seen in Part 1 of Brian’s Jurassic Reimagined documentary series, we’re not out there headhunting dinosaurs, we’re trying to understand the whole environment: the dinosaurs, the plants, the depositional system, the boom-and-bust cycles of rain and drought–in short, the whole shebang. So the plant fossils are almost as exciting for us as the brachiosaur, because they’ll tell us more about the world of the early Morrison.

The Barletts: Thayne, Jayleigh, Resha, Cobin, Wes, and Kaler.

Among the folks I have to thank, top honors go to the Bartlett family. They came to work, they worked hard, and they were cheerful and enthusiastic through the whole process. Even the kids worked–Thayne was one of the driving forces keeping the wagon moving down the gulch, and the younger Bartletts helped Ruby uncover and jacket a couple of small bits of bone that were in the way of the humerus flip. So Wes, Resha, Thayne, Jayleigh, Kaler, and Cobin: thank you, sincerely. We couldn’t have done it without you all, and Molly and Darla!

EDIT: I also need to thank Casey Cordes–without his rope and winch skills, the jacket would still be out in the desert. And actually everyone on the team was clutch. We had no extraneous human beings and no unused gear. It was a true team effort.

The full version of the art shown at the top of this post: a new life restoration of Brachiosaurus by Brian Engh.

From start to end, this has been a Brian Engh joint. He found the humerus in the first place, and he was there for every step along the way, including creating the original paleoart that I’ve used to bookend this post. When Brian wasn’t prospecting or digging or plastering (or cooking, he’s a ferociously talented cook) he was filming. He has footage of me walking up to the humerus for the first time last May and being blown away, and he has some truly epic footage of the horses pulling the humerus out for us. All of the good stuff will go into the upcoming installments of Jurassic Reimagined. He bought the wagon and the boat winch with Patreon funds, so if you like this sort of thing–us going into the middle of nowhere, bringing back giant dinosaurs, and making blog posts and videos to explain what we’ve found and why we’re excited–please support Brian’s work (link). Also check out his blog, dontmesswithdinosaurs.com–his announcement about the find is here–and subscribe to his YouTube channel, Brian Engh Paleoart (link), for the rest of Jurassic Reimagined and many more documentaries to come.

(SV-POW! also has a Patreon page [link], and if you support us, Mike and I will put those funds to use researching and blogging about sauropods. Thanks for your consideration!)

The happiest I have ever been in the field. Photo by Yara Haridy.

And for me? It’s been the adventure of a lifetime, by turns terrifying and exhilarating. I missed out on the digs where Sauroposeidon, Brontomerus, and Aquilops came out of the ground, so this is by far the coolest thing I’ve been involved with finding and excavating. I got to work with old friends, and I made new friends along the way. And there’s more waiting for us, in “Brachiosaur Gulch” and in the Salt Wash more generally. After five years of fieldwork, we’ve just scratched the surface. Watch this space!

Media Coverage

Just as I was about to hit ‘publish’ I learned that this story has been beautifully covered by Anna Salleh of the Australian Broadcasting Corporation. I will add more links as they become available.

References

If you’re thinking that it’s about time to look at some sauropod vertebrae from the Salt Wash member of the Morrison Formation, well, you’re gol-durned right, pardner. Let’s ride.

Here’s a vertebra sticking out of the rock. For once it’s not in cross-section. We’re simply looking at the posterior surface of a dorsal vertebra and bits of its associated ribs. Let’s stand it up correctly:

And, well, heck, Alex, I’d like to go ahead and solve the puzzle:

Figure on the right from Wedel and Taylor (2013a), and composed in turn from plates in Hatcher (1901, Diplodocus), Hatcher (1903, Haplocanthosaurus), and Gilmore (1936, Apatosaurus).

UPDATE: I had the discovery sequence wrong–this is one of the bones that was first found by photographer Guy Tal, who then put ReBecca Hunt-Foster onto the area. ReBecca has since gone on to become Monument Paleontologist at Dinosaur National Monument, but at the time she was working as a BLM paleontologist out of the Moab office. ReBecca then brought out some more of us out to take a look, and that was the genesis of my work with her and John in the Salt Wash.

John Foster and Cary Woodruff were both there when I saw this vertebra for the first time. I think we set a new record for a consensus among paleontologists in concluding that this vertebra belongs to Haplocanthosaurus. The super-tall, cathedral-esque laminae arching over the neural canal and the up-tilted transverse processes are absolutely diagnostic, and not present in any other Morrison sauropods. Haplocanthosaurus is one of the rarer sauropods in the Morrison, so it’s nice to have one in our Salt Wash fauna. Not least because of all the other awesome sauropods out there, it’s this weird little duck that my destiny seems to have become intertwingled with (exhibits A, B, C, D, E, and counting).

Speaking of: did you remember that the Western Science Center exhibit on the Snowmass Haplocanthosaurus is still up for a couple more months? Have you seen it? Go see it!

Life restoration of Haplocanthosaurus by Brian Engh, for the Western Science Center exhibit.

So, hey, rock and roll, we have Haplocanthosaurus, and that is legitimately exciting. Between that and Camarasaurus (covered here) we have the primitive-and-unspecialized end of the Morrison sauropods sewn up. Anything bigger or more exotic? Why, yes, in fact. Stay tuned.

This is another “Road to Jurassic Reimagined, Part 2″ post. You know the drill: Part 1 is here, Part 2 will be going up here in the near future, Part 3 will be along sometime after that.

References

In the last post, we looked at some sauropod vertebrae exposed in cross-section at our field sites in the Salt Wash member of the Morrison Formation. This time, we’re going to do it again! Let’s look at another of my faves from the field, with Thuat Tran’s hand for scale. And, er, a scale bar for scale:

And let’s pull the interesting bits out of the background:

Now, confession time. When I first saw this specimen, I interpeted it as-is, right-side up. The round thing in the middle with the honeycomb of internal spaces is obviously the condyle of a vertebra, and the bits sticking out above and below on the sides frame a cervical rib loop. I figured the rounded bit at the upper right was the ramus of bone heading for the prezyg, curved over as I’ve seen it in some taxa, including the YPM Barosaurus. And the two bits below the centrum would then be the cervical ribs. And with such big cervical rib loops and massive, low-hanging cervical ribs, it had to an apatosaurine, either Apatosaurus or Brontosaurus.

Then I got my own personal Cope-getting-Elasmosaurus-backwards moment, courtesy of my friend and fellow field adventurer, Brian Engh, who proposed this:

Gotta say, this makes a lot more sense. For one, the cervical ribs would be lateral to the prezygs, just as in, oh, pretty much all sauropods. And the oddly flat inward-tilted surfaces on what are now the more dorsal bones makes sense: they’re either prezyg facets, or the flat parts of the rami right behind the prezyg facets. The missing thing on what is now the right even makes sense: it’s the other cervical rib, still buried in a projecting bit of sandstone. That made no sense with the vert the other way ’round, because prezygs always stick out farther in front than do the cervical ribs. And we know that we’re looking at the vert from the front, otherwise the backwards-projecting cervical rib would be sticking through that lump of sandstone, coming out of the plane of the photo toward us.

Here’s what I now think is going on:

I’m still convinced that the bits of bone on what is now the left side of the image are framing a cervical rib loop. And as we discussed in the last post, the only Morrison sauropods with such widely-set cervical ribs are Camarasaurus and the apatosaurines. So what makes this an apatosaurine rather than a camarasaur? I find several persuasive clues:

  • If we have this thing the right way up, those prezygs are waaay up above the condyle, at a proportional distance I’ve only seen in diplodocids. See, for example, this famous cervical from CM 3018, the holotype of A. louisae (link).
  • The complexity of the pneumatic honeycombing inside the condyle is a much better fit for an apatosaurine than for Camarasaurus–I’ve never seen that level of complexity in a camarasaur vert.
  • The bump on what we’re now interpreting as the cervical rib looks suspiciously like one of the ventrolateral processes that Kent Sanders and I identified in apatosaurine cervicals back in our 2002 paper. I’ve never seen them, or seen them reported, in Camarasaurus–and I’ve been looking.
  • Crucially, the zygs are not set very far forward of the cervical ribs. By some rare chance, this is pretty darned close to a pure transverse cut, and the prezygs, condyle (at its posterior extent, anyway), and the one visible cervical rib are all in roughly the same plane. In Camarasaurus, the zygs strongly overhang the front end of the centrum in the cervicals (see this and this).

But wait–aren’t the cervical ribs awfully high for this to be an apatosaurine? We-ell, not necessarily. This isn’t a very big vert; max centrum width here is 175mm, only about a third the diameter of a mid-cervical from something like CM 3018. So possibly this is from the front of the neck, around the C3 or C4 position, where the cervical ribs are wide but not yet very deep. You can see something similar in this C2-C5 series on display at BYU:

Or, maybe it’s just one of the weird apatosaurine verts that has cervical rib loops that are wide, but not very deep. Check out this lumpen atrocity at Dinosaur Journey–and more importantly, the apatosaur cervical he’s freaking out over:

UPDATE just a few minutes later: Mike reminded me in the comments about the Tokyo apatosaurine, NSMT-PV 20375, which has wide-but-not-deep cervical ribs. In fact, C7 (the vertebra on the right in this figure) is a pretty good match for the Salt Wash specimen:

UpchurchEtAl2005-apatosaurus-plate2-C3-6-7

NSMT-PV 20375, cervical vertebrae 3, 6 and 7 in anterior and posterior views. Modified from Upchurch et al. (2005: plate 2).

UPDATE the 2nd: After looking at it for a few minutes, I decided that C7 of the Tokyo apatosaurine was such a good match for the Salt Wash specimen that I wanted to know what it would look like if it was similarly sectioned by erosion. In the Salt Wash specimen, the prezygs are sticking out a little farther than the condyle and cervical rib sections. The red line in this figure is my best attempt at mimicking that erosional surface on the Tokyo C7, and the black outlines on the right are my best guess as to what would be exposed by such a cut (or pair of cuts). I’ve never seen NSMT-PV 20375 in person, so this is just an estimate, but I don’t think it can be too inaccurate, and it is a pretty good match for the Salt Wash specimen.

Another way to put it: if this is an apatosaurine, everything fits. Even the wide-but-not-low-hanging cervical ribs are reasonable in light of some other apatosaurines. If we think this is Camarasaurus just because the cervical ribs aren’t low-hanging, then the pneumatic complexity, the height of the prezygs, and the ventrolateral process on the cervical rib are all anomalous. The balance of the evidence says that this is an apatosaurine, either a small, anterior vert from a big one, or possibly something farther back from a small one. And that’s pretty satisfying.

One more thing: can we take a moment to stand in awe of this freaking thumb-sized cobble that presumably got inside the vertebra through one its pneumatic foramina and rattled around until it got up inside the condyle? Where, I’ll note, the internal structure looks pretty intact despite being filled with just, like, gravel. As someone who spends an inordinate amount of time thinking about how pneumatic vertebrae get buried and fossilized, I am blown away by this. Gaze upon its majesty, people!

This is another “Road to Jurassic Reimagined, Part 2″ post. As before, Part 1 is here, Part 2 will be going up here in the near future. As always, stay tuned.

References