… and I’m guessing that if you read this blog, you like at least one of these things.

Today sees the publication of a paper that I’m particularly pleased with, partly because it’s so far outside my usual area: The Concrete Diplodocus of Vernal — a Cultural Icon of Utah (Taylor et al. 2023). Let’s jump in by taking a look at the eponymous concrete Diplodocus:

Taylor et al. (2023:figure 5). The completed outdoor Diplodocus mount in a rare color photograph. Undated (but between 1957 and 1989). Scanned by Eileen Carr for the J. Willard Marriot Digital Library, image ID 415530. Used by permission, Uintah County Library Regional History Center.

(On of the things I love about this photo is that it has the same 1950s energy as the Carnegie Tyrannosaurus mount that I posted a while back.)

This paper tells the neglected story of how the Utah Field House museum in Vernal acquired the original Carnegie Diplodocus molds in 1957, after they had languished, unloved and overlooked, in their Pittsburgh basement for forty years; how they were used to cast a Diplodocus from actual concrete (one part cement to three parts aragonite, for those who care); how the molds then went on a series of adventures, never actually yielding another complete skeleton, before being lost or destroyed; how the concrete cast stood for 30 years before the harsh Utah weather degraded it past the point of safety; how it was then used to make a fresh set of molds, and replaced by a new lightweight cast taken from those molds; and how the molds were then used to create a new generation of Diplodocus casts.

It’s a long and fascinating story with lots of twists and turns that I necessarily omitted from that summary — which is why it runs to 27 pages in the lavishly illustrated PDF. I urge you to go and read it for yourself: we wrote it to be an engaging story, and I hope it’s a pretty easy read. (My wife found it interesting, and she once literally fell asleep while I was running a talk to solicit her feedback, so that’s really something.)

Taylor et al. (2023:figure 3). Field House Museum director G. Ernest Untermann (left), and his wife, Staff Scientist Billie Untermann (right), grouting the cast dorsal vertebrae of the Field House’s concrete Diplodocus. 24 January 1957. Scanned by Aric Hansen for the J. Willard Marriot Digital Library, image ID 1086940. Used by permission, Uintah County Library Regional History Center.

This paper was submitted on 2 November 2022, so it’s taken less than five months to go through peer review, editorial processes, typesetting with four(!) rounds of page proofs and online publication. This of course is how it should always be — it’s a bit stupid that I am drawing attention to this schedule like it’s something extraordinary, but the truth is that it is extraordinary. At any rate that makes it fifteen times faster than my long-delayed (mostly my fault) paper on neck incompleteness (Taylor 2022).

I got so deeply into this paper when I was lead-authoring it that the phrase “the Concrete Diplodocus of Vernal” really started to echo around in my head. That is why the paper ends by expressing this wish:

Our dearest hope for this paper is that it inspires someone to create a Dungeons and Dragons module in which the Concrete Diplodocus of Vernal is a quest artifact with magical powers.

But Mike, you ask — how did you, a scientist, find yourself writing a history paper? It’s a good question, and one with a complicated answer. Tune in next time to find out!

References

 

 

I recently discovered the blog Slime Mold Time Mold, which is largely about the science of obesity — a matter of more than academic interest to me, and if I may say to, to Matt.

I discovered SMTM through its fascinating discussions of scurvy and citrus-fruit taxonomy. But what’s really been absorbing me recently is a series of twenty long, detailed posts under the banner “A Chemical Hunger“, in which the author contests that the principle cause of the modern obesity epidemic is chemically-induced changes to the “lipostat” that tells our bodies what level of mass to maintain.

I highly recommend that you read the first post in this series, “Mysteries“, and see what you think. If you want to read on after that, fine; but even if you stop there, you’ll still have read something fascinating, counter-intuitive, well referenced and (I think) pretty convincing.

Anyway. The post that fascinates me right now is one of the digressions: “Interlude B: The Nutrient Sludge Diet“. In this post, the author tells us about “a 1965 study in which volunteers received all their food from a ‘feeding machine’ that pumped a ‘liquid formula diet’ through a ‘dispensing syringe-type pump which delivers a predetermined volume of formula through the mouthpiece'”, but they were at liberty to choose how many hits of this neutral-tasting sludge they took.

This study had an absolutely sensational outcome: among the participants with healthy body-weight, the amount of nutrient sludge that they chose to feed themselves was almost exactly equal in caloric content to their diets before the experiment. But the grossly obese participants (weighing about 400 lb = 180 kg), chose to feed themselves a tiny proportion of their usual intake — about one tenth — and lost an astonishing amount of weight. All without feeling hunger.

Please do read the Slime Mold Time Mold write-up for the details. But I will let you in right now on the study’s very very significant flaw. The sample-size was two. That is, two obese participants, plus a control-group of two healthy-weight individuals. And clearly whatever conclusion we can draw from a study of that size is merely anecdotal, having no statistical power worth mentioning.

And now we come to the truly astonishing part of this. It seems no-one has tried to replicate this study with a decent-sized sample. The blog says:

If this works, why hasn’t someone replicated it by now? It would be pretty easy to run a RCT where you fed more than five obese people nutrient sludge ad libitum for a couple weeks, so this means either it doesn’t work as described, or it does work and for some reason no one has tried it. Given how huge the rewards for this finding would be, we’re going to go with the “it doesn’t work” explanation.

In a comment, I asked:

OK, I’ll bite. Why hasn’t anyone tried to replicate the astounding and potentially valuable findings of these studies? It beggars belief that it’s not been tried, and multiple times. Do you think it has been tried, but the results weren’t published because they were unimpressive? That would be an appalling waste.

The blog author replied:

Our guess is that it simple hasn’t been tried! Academia likes to pretend that research is one-and-done, and rarely checks things once they’re in the literature. We agree, someone should try to replicate!

I’m sort of at a loss for words here. How can it possibly be that, 58 years after a pilot study that potentially offers a silver bullet to the problem of obesity, no-one has bothered to check whether it works? I mean, the initial study is so old that Revolver hadn’t been released. Yet it seems to have just lain there, unloved, as the Beatles moved on through Sergeant Pepper, the White Album, Abbey Road et al., broke up, pursued their various solo projects, died (50% of the sample) and watched popular music devolve into whatever the heck it is now.

Why aren’t obesity researchers all over this?

I was googling around some photos, confirming to myself that turtles don’t have cervical ribs, when I stumbled across this monstrosity (and when I use that word I mean it as a compliment):

Softshell turtle Trionyx spinifera, cervicodorsal transition in ventral view, anterior to right. Copyright © Mike Dodd, used by kind permission. Original at https://www.amanita-photolibrary.co.uk/animals/trionyx_spinifera_1496.htm

The specimen is from the collection amassed by Caroline Ponds, formerly a reader in Zoology at Oxford, who picked up most of her specimens as roadkill in Milton Keynes. She has donated this collection to WildCRU (Wildlife Conservation Research Unit) just outside Oxford, just 90 minutes away from me.

The hot news here is of course the zygapophseal articulation between what I am interpreting as the last cervical and the first dorsal. Let’s take a closer look:

As you can see the prezygapophyses of the first dorsal are cylindrical, wrapping smoothly around from a fairly traditional anterodorsal-facing aspect through anterior, anteroventral, ventral, and even posteroventrally-facing. There is no hint of inclination towards the midline as in sane prezygapophyses.

And, providing perfect mates to those prezygs, the postzygapophyses of the last cervical wrap around producing a negative cylinder that encloses the positive one.

This leaves me with questions. Lots of them. For example:

  1. Did I even identify the vertebrae right, or is that “first dorsal” really the last cervical, based on its not carrying a rib? It looks like it’s trying to bear a rib, but not quite carrying it off. (For now I will assume my identification is correct.)
  2. What is the centrum articulation like here? Sadly, it’s obscured in the photo. My guess would be positive cylinder on the front of the dorsal, and a small contact point on the back of the cervical — but it really is just a guess.
  3. Is this unique to Trionyx spinifera, or do all cryptodiran turtles do this to some extent?
  4. If this condition is common among cryptodires, are there  species that take it to an even greater extreme?
  5. What do pleurodire turtles do here?
  6. Why haven’t I spent more of my like looking at the cervicodorsal transitions of turtles?

I’m currently working on a paper about the AMNH’s rearing Barosaurus mount. (That’s just one of the multiple reasons I am currently obsessed by Barosaurus.) It’s a fascinating process: more of a history project than a scientific one. It’s throwing up all sorts of things. Here’s one.

In 1992, the year after the mount went up, S. O. Landry gave a talk at the annual meeting of American Zoologist about this mount. I don’t even remember now where I saw a reference to this, or how I found it, but the untitled abstract is on JSTOR, as part of the society’s abstracts volume. Here it is, in its entirety:

I thought he’d made some good points, so I wanted to figure out whether he’d ever gone on from this 31-year-old abstract and published a paper about it.

Based on the surname, initials and affiliation, I searched here and there, and turned up a few bits and pieces. I learned that he was  a Professor of Biology at SUNY at Binghamton, specialising in hystricomorph rodents. I found out that his wife Helen died in 2007 after 57 years’ marriage. (That’s not just idle curiosity: it’s how I discovered that his first name was Stuart.) I found a photograph of him, taken in 1975, with Assemblyman James L. Tallon, and learned in the process that his middle name was Omer. I found that he was at one time the Graduate Dean at SUNY Binghamton, and opposed the 1972 rise in tuition fees from $800 per year to $1200–$1500. I learned that his BS was from Harvard College and his Ph.D from UC Berkeley, and that he is still listed as a professor emeritus at SUNY Binghamton. I discovered that he “pooh-poohs the idea that young students’ minds are “tabula rasas” – blank slates”. I know that in 1966 he translated C. C. Robin’s Voyage to the Interior of Louisiana from its original French. I learned that he was born in 1924 and died in 2015 at the age of 90, and served in the Battle of the Bulge.  More troublingly, I discovered that his father, also named Stuart Omer Landry, was known for writing racist tracts for the Pelican Publishing Company, but that he himself rose above that heritage and became known for his progressive politics.

I don’t know what to make of any of this. It seems that he never published anything substantive about Barosaurus, so in that sense, I have lost interest in him. But isn’t it strange that in trying to answer the simple question “Did the S. O. Landry who wrote an abstract about rearing Barosaurus write anything else on the subject?” has wound up opening the book of someone’s life like this?

And how strange that someone with 90 years of rich, complex life and numerous academic achievements should be, to me, just the guy who wrote an untitled abstract about Barosaurus that one time.

Remember this classic XKCD comic?

You should talk to the girl down the hall; I think you'd like her. Lemme know if you find out why she's ordering all those colored plastic balls.

Well, this is me over the last couple of weeks:Isn't it weird how looking at those cervicals in either lateral OR dorsal views gives a completely misleading idea of their shape?

It is said that, some time around 1590 AD, Galileo Galilei dropped two spheres of different masses from the Leaning Tower of Pisa[1], thereby demonstrating that they fell at the same rate. This was a big deal because it contradicted Aristotle’s theory of gravity, in which objects are supposed to fall at a speed proportional to their mass.

Aristotle lived from 384–322 BC, which means his observably incorrect theory had been scientific orthodoxy for more than 1,900 years before being overturned[2].

How did this happen? For nearly two millennia, every scientist had it in his power to hold a little stone in one hand and a rock in the other, drop them both, and see with his own eyes that they fell at the same speed. Aristotle’s theory was obviously wrong, yet that obviously wrong theory remained orthodox for eighty generations.

My take is that it happened because people — even scientists — have a strong tendency to trust respected predecessors, and not even to look to see whether their observations and theories are correct. I am guessing that in that 1,900 years, plenty of scientists did indeed do the stone-and-rock experiment, but discounted their own observations because they had too much respect for Aristotle.

But even truly great scientists can be wrong.

Now, here is the same story, told on a much much smaller scale.

Well into the 2010s, it was well known that in sauropods, caudal vertebrae past the first handful are pneumatized only in diplodocines and in saltasaurine titanosaurs. As a bright young sauropod researcher, for example, I knew this from the codings in important and respected phylogenetic analysis such as those of Wilson (2002) and Upchurch et al. (2004).

Until the day I visited the Museum für Naturkunde Berlin and actually, you know, looked at the big mounted Giraffatitan skeleton in the atrium. And this is what I saw:

That’s caudal vertebrae 24–26 in left lateral view, and you could not wish to see a nicer, clearer pneumatic feature than the double foramen in caudal 25.

That observation led directly to Matt’s and my 2013 paper on caudal pneumaticity in Giraffatitan and Apatosaurus (Wedel and Taylor 2013) and clued us into how much more common pneumatic hiatuses are then we’d realised. It also birthed the notion of “cryptic diverticula” — those whose traces are not directly recorded in the fossils, but whose presence can be inferred by traces on other vertebrae. And that led to our most recent paper on pneumatic variation in sauropods (Taylor and Wedel 2021) — from which you might recognise the photo above, since a cleaned-up version of it appears there as Figure 5.

The moral

Just because “everyone knows” something is true, it doesn’t necessarily mean that it actually is true. Verify. Use your own eyes. Even Aristotle can be wrong about gravity. Even Jeff Wilson and Paul Upchurch can be wrong about caudal pneumaticity in non-diplodocines. That shouldn’t in any way undermine the rightly excellent reputations they have built. But we sometimes need to look past reputations, however well earned, to see what’s right in front of us.

Go and look at fossils. Does what you see contradict what “everyone knows”? Good! You’ve discovered something!

 

References

Notes

1. There is some skepticism about whether Galileo’s experiment really took place, or was merely a thought experiment. But since the experiment was described by Galileo’s pupil Vincenzo Viviani in a biography written in 1654, I am inclined to trust the contemporary account ahead of the unfounded scepticism of moderns. Also, Viviani’s wording, translated as “Galileo showed this by repeated experiments made from the height of the Leaning Tower of Pisa in the presence of other professors and all the students” reads like a documentary account rather than a romanticization. And a thought experiment, with no observable result, would not have demonstrated anything.

2. Earlier experiments had similarly shown that Aristotle’s gravitational theory was wrong, including in the works of John Philoponus in the sixth century — but Aristotle’s orthodoxy nevertheless survived until Galileo.

 

What a dream I had!

January 31, 2021

Oh, hey, so you know how the most tedious thing you can ever hear is someone recounting one of their dreams? I want to tell you about a dream I had last night.

Brian Curtice’s grandfather was in a position of authority to express condemnation of a group of people who had lost the electronic archives of the Daily Telegraph, but declined to do so. So I became part of a woke mob that went to Curtice’s house to express our displeasure to him. I got distracted by an outbuilding when we arrived, went in, and found that it contained the Sonorosaurus type material, which for some reason included two really nice scapulocoracoids. At that point my Index Data colleague Wayne (also part of the woke mob) wandered in and I expressed to him that I was having second thoughts about this whole protest and that my first concern now was protecting the holotype against the more indiscriminate members of the mob. But I kept thinking to myself “Why is this material even here? If anything, it should be in an outbuilding at Kevin Ratkevic’s house.” Then Wayne and I spotted a bunch of computer monitors running software that Curtice had written earlier in his life, and it became apparent that he was the creator of a Commodore 64 adventure game called Pilgrim for which the publishers had ripped off an 8×8 old-English-style character set that I had used in a game I’d published with them.

Ratkevic (1988:figure 4).Lower hind limb including tibia, fibula, and nearly complete left pes of Sonorasaurus thompsoni holotype ASDM 500. Elements found associated but not articulated. Entire assembled length 137 cm. Photo by Jeanne Broome.

So. I never remember dreams in this kind of detail. The fact that I did on this on occasion is strange to me — but then, these are strange times. A quick run-down of what is and isn’t true:

  • So far as I know, the Daily Telegraph archives have not been lost.
  • Brian Curtice is a sauropod palaeontologist, maybe best known for his work reassessing Jensen’s Dry Mesa sauropods (e.g. Curtice et al. 1996, Curtice and Stadtman 2001); I have no idea if he has a grandfather and whether he has any involvement with archives.
  • I do not know where Brian lives, or whether he has any fossils at his house. I highly doubt he has holotypes.
  • The holotype of Sonorasaurus does not include any shoulder-girdle material, but it was indeed described by Ratkevich (1988) — but Ron, not Kevin.
  • There really was a Commodore 64 adventure game called Pilgrim, published by CRL, and they really did re-use — without my permission — the character set I had defined in The Causes of Chaos, which I had published with them not long before.
  • But Pilgrim was by Rod Pike, and I very highly doubt that Brian Curtice, even if he was a C64 programmer in the early-mid 90s, ever published any games with a UK-based software house.

Matt’s response when I told him about this dream:

Just got to the scapulocoracoids and LLOL
“my first concern now was protecting the holotype against the more indiscriminate members of the mob.” LLOL x infinity
Well, I gotta tell you, that was a ride.
Jurassic-Park-style, through your hindbrain.
It had everything!
Woke mobs, holotypes, old school adventure games, intellectual property (at the start and at the end)
lost archives
this is so specific in so many weirdly-specialized areas that whole schools may spring up to interpret it. You might accidentally found a new religion.

All right, folks: interpret for me!

References

  • Curtice, Brian D., Kenneth L. Stadtman and Linda J. Curtice. 1996. A reassessment of Ultrasauros macintoshi (Jensen, 1985). The continental Jurassic (M. Morales, ed.): Museum of Northern Arizona Bulletin 60:87–95.
  • Curtice, Brian D. and Kenneth L. Stadtman. 2001. The demise of Dystylosaurus edwini and a revision of Supersaurus vivianae. Western Association of Vertebrate Paleontologists and Mesa Southwest Museum and Southwest Paleontologists Symposium, Bulletin 8:33–40.
  • Ratkevich, Ron. 1998. New Cretaceous brachiosaurid dinosaur, Sonorasaurus thompsoni gen et sp. nov, from Arizona. Journal of the Arizona-Nevada Academy of Science 31:71–82.

You! Shall not! Pass!

August 22, 2020

OK, technically this is MB.R.3822, a dorsal vertebra of Giraffatitan brancai formerly known as HMN Ar1, in posterior view, rendered from a 3D scan provided by Heinrich Mallison.

But you can’t tell me that when you look at that you don’t see Gandalf shouting at a balrog.

I think we’ve all had enough of the Impact Factor as a way of measuring the quality of journals. From Ginny Barbour’s forensic account of negotiating PLoS Medicine’s IF back in 2006, via Stephen Curry’s measured rant back in 2012 (“if you use impact factors you are statistically illiterate”) and Björn Brembs’ survey of how very widespread IF negotations are in 2016, to all the recent negotiations with Clarivate about which journals should even have IFs, it’s become increasingly obvious that the Impact Factor is not a metric, it’s a negotiation.

And of course this means that the reason any journal has the particular IF it has is competely opaque.

The world needs a much more transparent metric of journal quality, and I am here to offer it! The Objective Quality Factor (QOF) is assigned in a wholly straightforward way that anyone can understand:

Your journal obtains an OQF of x by paying me x pounds.

That’s it. As soon as I acknowledge your payment, you have the right to display your OQF on the journal home page and in marketing materials.

If another journal in your field obtains a higher OQF than yours, and you need to regain your journal’s position at the top of the totem pole, all you need do is send me more money.

Payments via PayPal to ebay@miketaylor.org.uk please!

We’re just back from an excellent SVPCA on the Isle of Wight. We’ll write more about it, but this time I just want to draw attention to a neat find. During a bit of down time, Matt and Vicki were wandering around West Cowes (the town where the scientific sessions were held), when they stumbled across a place called That Shop. Intrigued by all the Lego figures in the window, they went in, and Matt found a small section of fossils. Including … an Iguanodon pelvis, supposedly certified as such by the Dinosaur Isle museum.

21A47352-31E1-43EE-B1E0-6432C6D7D366

Here it is: I imagine that whoever classified it read this elongate concave surface as part of the acetabulum. Matt’s hypothesis is that they mistook it for a sacral vertebra and that became “pelvis” via over-simplification.

It’s about 18 cm in a straight line across the widest part, or 20 cm around the curve.

Here is an actual documentary record of Matt’s moment of discovery:

Yep, you got it! It’s a sauropod vertebra! (Matt would never have spent good money on a stinkin’ appendicular element of a stinkin’ ornithopod.)

Specifically, it’s the bottom half of the front part of the centrum of a dorsal vertebra:

Eucamerotus” dorsal vertebra NHMUK PV R88 in right lateral and anterior views. Non-faded portions show the location of the Wedel Specimen. Modified from Hulke (1880: plate IV).

In these photos, we’re looking down into it more or less directly dorsal view, with anterior to the left. Click through the photos, and — once you know what you’re looking at — you can clearly see the pneumatic spaces: nice patches of finished bone lining the camellae, with trabecular bone in between.

Clearly there’s nowhere near enough of this to say what it is with any certainty. But our best guess is that it seems compatible with a titanosauriform identity, quite possibly in same space as the various Wealden sauropod dorsals that have been assigned to Ornithopsis or Eucamerotus.

References

  • Hulke, J. W.  1880.  Supplementary Note on the Vertebræ of Ornithopsis, Seeley, = Eucamerotous, Hulke. Quarterly Journal of the Geological Society 36:31–35.  doi:10.1144/GSL.JGS.1880.036.01-04.06