Trying two new things this morning: grilling a turkey, and live-blogging on SV-POW!

I like to grill. Steak, chicken, kebabs, yams, pineapple, bananas–as long as it’s an edible solid, I’m up for it. But I’ve never grilled a turkey before. Neighbor, colleague, fellow paleontologist and grillmeister Brian Kraatz sent me his recipe, which is also posted on Facebook for the edification of the masses. See Brian’s excellent writeup for the whole process, I’m just going to hit the photogenic parts here. Oh, and usually I tweak any photos I post within an inch of their lives, but I don’t have time for that this morning, so you’re getting as close to a live, unedited feed as I can manage. Stay tuned for updates.

Enough of that. Let’s rock!

The process starts  more than a day in advance, with the brine. Salt water, fruit, onions, garlic, spices, and some apple juice.

The turkey needs to be entirely immersed in the brine for at least 24 hours. Doing this in a solid container would require an extra big container and too much  liquid to cover the bird. I follow Brian’s method of brining in a triple-layer of trash bags. You can see a turkey roaster peeking out underneath the trash bags. Helps with the carrying.

Put the turkey in the trash bags first, then pour in the brine. Unless you like huge messes.

The genius of the trash bag method on display. You can squeeze out all the air so that the volume of the bag is equal to just the turkey and the brine.

Into the fridge for a day.

First thing this morning: out come the giblets, and save the goodies from the brine. We’ll get back to the neck later.

The bird awaits.

Crucial step: putting in a drip pan. Keeps the coals off to the side for indirect heat, and catches the grease so you don’t burn down the neighborhood.

Putting in the herb butter. I used three short sticks of butter mixed with sage, lemon pepper, and Mrs. Dash. Working the skin away from the meat and then filling the space with butter was extremely nasty. This must be what diverticula feel like.

A chimney is helpful to get the coals going.

To eat is human; to grill is divine.

Smoke bombs: mesquite chips soaked in water, wrapped up in balls of tinfoil, with holes poked on top to let the smoke out.

Fruit and spices into the body cavity.

At this point, I was fairly certain that today would be the greatest day of my life. The turkey is centered over the drip pan, stuffed with goodness, subcutaneously loaded with herb butter, draped with bacon. You can see one of the smoke bombs sitting right on top of the coals.

Know what you’re getting into. This 15 lb bird just barely cleared the lid of my grill.

A little over an hour in. I installed foil heat shields to keep the wings and thighs from cooking too fast. It’s all about the indirect heat. Some of the bacon comes off now, as a mid-morning treat.

Okay, the bird is about halfway done, and I have to whip up some sustainer coals and another batch of smoke bombs. Further updates as and when. Happy Thanksgiving!

UPDATE

I was hoping to get some more pictures posted before we ate, but you know how it is in the kitchen on Thanksgiving Day (or, if you’re not an American, maybe you don’t know, so I’ll tell you: dogs and cats living together, we’re talking total chaos).

The turkey just before I pulled it off the grill. The heat shields turned out to be clutch, I would have completely destroyed the limbs without them. That’s going to be SOP from now on.

Ah yes, the bird, she turned out even more succulent than I hadda expected. Check out the pink shade of the meat just below the skin. I recognize that, from good barbeque, but I’ve never produced it before.

That’s it for the cooking part of today’s program. As for the ultimate fate of the bird…we ate a stupifying amount of it. I sent even more home with our guests. And the other half–yes, half–of this thunder beast is sitting in the fridge. Hello-o leftovers!

And hello-o science!

I was going to post some more pictures of the neck, but I didn’t get around to eating it, so…another time, perhaps. (UPDATE: it only took me 9 years and 1 month, go here and here.) In lieu, here’s Mike’s turkey vertebra in left lateral view (see the original in all its supersized glory here). Note the pneumatic foramen in the lateral wall of the centrum, just behind the cervical rib loop. This is actually kind of a lucky catch; a lot of times with chickens and turkeys, the pneumatic foramina are so far up in the cervical rib loop that they can’t be seen in lateral view.

It used to freak me out a little bit that birds often don’t have their pneumatic foramina in the middle of the lateral wall of the centrum, like sauropods. But a possible explanation occurred to me just this morning as I was planning this post. I think that birds have their pneumatic foramina right where you’d expect them, based on sauropods. I’ll explain why.

The first part of the explanation is that instead of wearing their pneumatic cavities on the outside, like this Giraffatitan cervical, bird vertebrae tend to be inflated from within, with just a few tiny foramina outside. The second part is that birds have HUGE cervical rib loops compared to sauropods. If the sauropod vert shown above had its rib on, the resulting loop would be fairly dainty, the osteological equivalent of a bracelet. The cervical rib loops of birds are more like tubes, they’re so antero-posteriorly elongated.

So take the brachiosaur cervical shown above and shrink all of the external pneumatic spaces by several inches. The cavities on the arch and spine would close up entirely, and the complex of fossae and foramina on the lateral side of the centrum would be reduced to a small hole right behind the cervical rib. Then stretch out the cervical rib loop in the fore-aft direction and voila, you’d have something like a turkey cervical, with a little tiny pneumatic foramen tucked up inside the cervical rib loop.

This doesn’t explain why bird verts are inflated from within instead of being eroded from without, or why sauropods had such dinky cervical rib loops (mechanical what, now?), or why pneumatic diverticula tend to make the biggest holes in the front half of the centrum, adjacent to the cervical ribs. I just think that maybe bird and sauropod pneumaticity are not as different as they  appear at first glance. Your thoughts are welcome.

Necks lie

May 31, 2009

Since we’re spending a few days on neck posture, I thought I’d expand on what Mike said about bunnies in the first post: in most cases, it is awfully hard to tell the angle of the cervical column when looking at a live animal. Because necks lie.

horse neckTake this horse (borrowed from here). You can see that the external outline of the neck, which is what you would see in the living animal, is pointed in a different direction than the cervical column.

horse neck 2And here’s why. Many mammals carry their heads and necks so that the cranio-cervical joint is up high and the head is angled down from it. At the base of the neck, tall neural spines on the anterior thoracic vertebrae support the nuchal ligament, which lifts the body profile far above the cervical vertebrae. Basically, the cervicals run from the lower or middle part of the neck at its base to near the top of the neck at the head end.

horse neck 3This mismatch holds no matter how the neck and head are oriented. When the animal lowers its head to graze, the cervical column is still angled up relative to the apparent angle of the neck defined by its dorsal and ventral margins.

But if you think that’s bad, you ain’t seen nothin’ yet.

Budgie skeleton 480

In most of the smaller birds, like this budgie (from Evans 1969:fig. 5-6) the neck is much longer and more flexible than you would think based on the external profile. And check out the mismatch between the cervical column (in front) and the trachea (behind). That’s not drawn incorrectly; the trachea is outside the bundle of neck muscles that encloses the vertebrae, and it is free to slide around all over the place, and does so in many birds.

Also note that while the neck is extended past vertical, the extension occurs in the middle of the neck, not at the shoulder. The neck actually goes down from the craniocervical joint, not up. My guess is that there is a lot of this in climbing taxa that hold their torsos elevated. Vultures come to mind here, too. A useful reminder that in natural history we are usually dealing with norms, not laws.

colomba_livia 480

In the pigeon, note again the fact that the mid-cervicals are angled up much more sharply than is the external profile of the neck. In fact, the external profile of the neck is angled forward while the mid-cervicals are angled backward. This excellent reconstruction is from this page, which has several others which also show that necks lie.

Vidal-et-al-1986-fig5a-v2

Lest anyone think that the pigeon was either an outlier or a case of artistic embellishment, here’s yet another rabbit, this time from Vidal et al. (1986: fig. 5a). Again, the mid-cervicals–actually, almost all of the cervicals–are angled backward, but the neck as a whole is pointing slightly forward.

As an aside, I think possibly it has blown some people’s minds that we have used so many rabbits as examples, both in the paper and in our blog coverage. What can we say? Rabbits are awesome.

greater-flamingo-ng 480

Of course not all necks lie. With flamingos, what you see is what you get.

Giraffes: 20 feet of reticulated irony

Herd-of-reticulated-giraffe

Let’s see here: necks not vertical.

Male-masai-giraffe-right-and-juvenile---showing-colour-variation

Necks not vertical.

Masai-giraffe-feeding-from-tall-tree

Trying . . . very . . . hard . . . and . . . just . . . getting . . . to . . . vertical!

(I know it looks like the neck is just slightly less than vertical, but remember that necks lie, and the cervical column is steeper. In this animal, you could drop a plumb bob from the ear and it would track the course of the cervical vertebrae just about perfectly.)

VidalEtAl1986-fig2-cat

Cat, not trying at all: cervical column past vertical (Vidal et al. 1986: fig. 2).

Vidal-et-al-1986-fig5bcRat, taking its ease (top): cervical column vertical. Guinea pig, straight chillin’ (bottom): cervical column past vertical (Vidal et al. 1986: fig. 5 b and c).

Here’s the irony: for  practically as long as sauropod neck posture has been contentious, giraffes have been held up as THE example of the most extreme (dude!) elevated neck postures out there. But in fact giraffes have to really reach to achieve vertical cervical postures that “ordinary” animals like cats, rats, guinea pigs, chickens, and, yes, rabbits, reach or exceed all the time.

Good paleobiology has to start with good biology. It’s high time that the sauropod neck posture debate got a reality infusion. Giraffe necks are extreme in terms of length, but not in terms of posture.

Speaking of sauropods…

All right, you’ve suffered long enough. Here’s your sauropod vert. Care to guess what it is?

cervical

References

  • Evans, H.E. 1969. Anatomy of the budgerigar; pp. 45-112 in Petrak, M.L. (ed.), Diseases of Cage and Aviary Birds. Lea and Febiger, Philadelphia.
  • Vidal, P.P., Graf, W., and Berthoz, A. 1986. The orientation of the cervical vertebral column in unrestrained awake animals. Experimental Brain Research 61: 549­-559.

Seeing the photograph in the last post of the Mamenchisaurus hochuanensis cast at the Field Museum in Chicago reminded me of a picture I’ve been meaning to post for a while. M.hoch, as I like to call it (we’re on familiar terms) is known primarily from its type specimen CCG V 20401, which was nicely described and figured by Young and Zhao in 1972. There are several pretty good quality casts of this specimen around the world: I first saw one in the car-park of the Copenhagen Geological Museum, and Chicago was the third time I saw it (and by far the best due to the excellent sight-lines from the balcony, lighting and help from the museum staff) .

The second time I saw a cast of this specimen it was actually the same one that I’d seen in Copenhagen: it was owned by the Homogea Museum in Trzic, Slovenia, and its loan to Copenhagen had expired. By happy coincidence my day-job took me to Slovenia, only 40 km or so from Trzic, so on a spare day I took a taxi to the museum where I was shown to the M.hoch cast.

Remember that bit in The Hitch-Hiker’s Guide to the Galaxy where Arthur Dent is told that the plans for demolishing his house have been on display at the council office for six months? In fact, let me quote:

“The notice was posted at the office, sir.”
“Your ‘office’ was in a basement. I had to look all over the building just to find it.”
“That’s where the office is located!”
“It was dark.”
“The lights were out!”
“So were the stairs.”
“But still, you found the notice, sir?”
“Oh, yes. It was quite ‘clearly’ posted in a locked filing cabinet in a disused lavatory with a sign on the door saying ‘Beware of the leopard.'”

That’s how I felt when I saw the Mamenchisaurus cast:

Mamenchisaurus hochuanensis in the Basement of Doom

Yes, it’s in a basement. Yes, the lights were out (though, to be fair, the stairs were not). Yes, the basement is flooded (a trick that Douglas Adams missed) and for good measure the light you can see there, a portable floodlight, is powered by an extension lead that runs through the flooding. However, they didn’t have a filing cabinet big enough, so it was at least on display in the basement.

The good news is that I was able, from bits and pieces in the corner of the basement, to assemble a scaffold from which I could view the elevated cervicals:

The Scaffold of Doom!

As you can see, it consists of a trolley frame with a piece of decomposing and warped chipboard on top, surmounted by a stepladder. Unfortunately, this is a pretty tall dinosaur and those cervicals are a good 4 m off the ground, so the only way I could see the dorsal surface was by perching right on the top rung of the ladder. I do have photographic evidence, taken by a workman who was doing something mysterious in the corner of the basement, although it’s not great quality — about as good as the typical Loch Ness Monster photo:

Mike Taylor and the Scaffold of Doom!

Yes, that’s me, risking life and limb in the cause of sauropod vertebrae.

Sadly the result of all this was not very useful: the very poor lighting meant that the photos I took are low on detail, difficult to interpret, and of little scientific value. On the positive side, it was later that same month that I was in Chicago to see the better cast of the same animal, so I got all the photos I needed in the end.

Reference