“Scaled beasts” Giraffatitan skull
November 22, 2021
Back in June, I saw a series of tweets by sculptor and digital artist Ruadhrí Brennan, showing off the work he’d been doing on sculpting brachiosaurid skulls: Giraffatitan, Brachiosaurus (based on the Felch Quarry skull USNM 5730) and Europasaurus. Impressed, I asked if he would send a Giraffatitan skull, and here it is!

You can immediately see two things: one, it’s good. (I’ll have more to say about this.) And second, it’s small, It’s leaned up against a stack of smallish coins in this photo, to give me the true lateral perspective I wanted, and those coins (10p, 20p, 20p, 5p) also make a decent ad-hoc scalebar.
In fact, it’s sculpted at 1:10 scale — about 9 cm from the tip of the premaxilla to the rearmost projection of the parietals, implying about 90 cm total length for the skull MB.R.2223.1 (“t 1”) — a figure surprisingly difficult to find in the literature (can anyone help?) but consonant with how big it seems in real life.

At that scale, the detail is pretty amazing. Its not just that the overall proportions of the skull are so true, but the visible junctions between the bones — as for example between the paired ascending processes of the two premaxilae, as apparent in anterior view — but the texture of the bone, including things like vascular foramina for the lips but also just straight-up bone surface. It’s a lovely job.

This view is a pretty good match for what we used in the second Shedloads of Awesome post back in 2008 — in fact, let’s just put them side by side so we can compare more easily.

As you can see, I slightly muffed the photography of the model — I could do a better job of matching the aspect I tried. But we’re in the ballpark, and it’s easy to see from this angle how much the model skull really couldn’t be anything other than what it is. That said, there are a few places where it seems the bone junctions don’t quite match those of the real skull. Most obviously, in the real skull the lacrimal seems to laterally overlap the nasal dorsally and the maxilla/jugal ventrally, whereas in the model it fits in more neatly with both. But I am inclined to think this is not so much a mistake as a correction to allow for poor articulation and distortion in the original — a restoration, in other words.
Here’s a different oblique view:

The story here really is just what an odd shape this familiar skull is when viewed in this perspective, and a valuable reminder that we should all try to avoid getting too suckered in by the over-familiar lateral views of various things. 3D objects are weird. They trick you. That’s why, for example, two scapulae that look very different in photos might actually be very similar in reality: the difference is in the angle of the photograph, not in the photographed bones.
Anyway, moving on from that cautionary tale …
The key takeaway is really just that this Giraffatitan skull is very nice, and it leaves me wishing I also had the Camarsaurus one for comparison … even though camarsaurs are ugly and stupid.
Oh, what’s that you say? You want a Giraffatitan skull of your very own? Well, you can have one: get it from the Scaled Beasts shop!
My Brachiosaurus talk for Dinosaur Journey is now on YouTube
October 20, 2021
My Oct. 13 National Fossil Day public lecture, “Lost Giants of the Jurassic”, for the Museums of Western Colorado – Dinosaur Journey is now up on their YouTube channel. First 48 minutes are talk, last 36 minutes are Q&A with audience, moderated by Dr. Julia McHugh. New stuff from the 2021 field season — about which I’ll have more to say in the future — starts at about the 37-minute mark. Hit the 44-minute mark (and this and this) to find out what to do with all of the unwanted bird necks that will be floating around at the upcoming holidays.
Finally, big thanks to Brian Engh for finding our brachiosaur and for letting me use so much of his art, to John Foster, Kaelen Kay, Tom Howells, Jessie Atterholt, Thierra Nalley, and Colton Snyder for such a fun field season this year, and to Julia McHugh for giving me the opportunity to yap about one of my favorite dinosaurs!
Matt Wedel will be yapping about Brachiosaurus. Again.
October 7, 2021
I have the honor of giving the National Fossil Day Virtual Lecture for The Museums of Western Colorado – Dinosaur Journey, next Wednesday, October 13, from 7:00 to 8:00 PM, Mountain Daylight Time. The title of my talk is “Lost Giants of the Jurassic” but it’s mostly going to be about Brachiosaurus. And since I have a whole hour to fill, I’m gonna kitchen-sink this sucker and put in all the good stuff, even more than last time. The talk is virtual (via Zoom) and free, and you can register at this link.
The photo up top is from this July. That’s John Foster (standing) and me (crouching) with the complete right humerus of Brachiosaurus that we got out of the ground in 2019; that story is here. The humerus is in the prep lab at the Utah Field House of Natural History State Park Museum in Vernal, and if you go there, you can peer through the tall glass windows between the museum’s central atrium and the prep lab and see it for yourself.
If you’ve forgotten what a humerus like that looks like in context, here’s the mounted Brachiosaurus skeleton at the North American Museum of Ancient Life with my research student, Kaelen Kay, for scale. Kaelen is 5’8″ (173cm) and as you can see, she can just get her hand on the animal’s elbow. The humerus–in this case, a cast of the right humerus from the Brachiosaurus altithorax holotype–is the next bone up the line. Kaelen came out with us this summer and helped dig up some more of our brachiosaur–more on that story in the near future.
Want more Brachiosaurus? Tune in next week. Here’s that registration link again. I hope to see you there!
How big was the Archbishop?
June 2, 2021
Various Internet rumours have suggested that the Archbishop is a super-giant sauropod one third larger than the mounted Giraffatitan specimen MB.R.2181 (formerly HMN SII). This is incorrect.

Migeod’s assessment of the size of the animal was based on the vertebrae: “The [neck] vertebrae found give a 20-foot [6.10 m] length […] The length of the back including the sacral region was about 15 feet [4.57 m]. The eight or nine caudal vertebrae cover about 6 feet [1.83 m]” (Migeod 1931a:90). This gives the total preserved length of the skeleton as 41 feet (12.50 m). By comparison, Janensch (1950b:102) gives lengths of portions of the mounted skeleton of MB.R.2181 as 8.78m (neck), 3.92m (torso) and 1.07m (sacrum) for a torso-plus-sacrum length of 4.99m. On this basis, the preserved neck of NHMUK PV R5937 is only 69% as long as that of MB.R.2181, but since the first four vertebrae were missing and omitted from Migeod’s measurement, this factor cannot be taken at face value. More informative is the torso-plus-sacrum length, which in NHMUK PV R5937 is 92% the length of MB.R.2181.
This is consonant with measurements of individual elements, which compare as follows:
Table 4. Comparative measurements of Archbishop and Giraffatitan elements
Element | Measurement (cm) | Archbishop | Giraffatitan | Ratio |
---|---|---|---|---|
Torso plus sacrum | total length | 457 | 499 | 0.916 |
C10 (mC4) | centrum length | 99 | 100 | 0.990 |
C11 (mC3) | centrum length | 104 | 100[1] | 1.040 |
D4 (mD3) | centrum length | 27 | 36 | 0.750 |
Longest rib | length over curve | 235 | 263 | 0.894 |
Left scapulocoracoid | length over curve | 221 | 238[2] | 0.929 |
Right humerus | length | 146 | 213 | 0.685 |
Right humerus | width | 51 | 59 | 0.864 |
Right ilium | length | 98 | 123[3] | 0.797 |
Right ilium | height | 79 | 96[4] | 0.823 |
Femur | length | 122 | 196[5] | 0.622 |
Average | 0.846 |
Archbishop measurements taken from Migeod (1931a) and converted from imperial; Giraffatitan measurements are for MB.R.2181 except where noted, and are taken from Janensch (1950a:44) and Janensch (1961).
Notes.
[1] Janensch (1950a) did not report a total centrum length for C11, as its condyle had not been removed from the cotyle of C10; but since the length of its centrum omitting the condyle was, at 87 cm, identical to that of C10, it is reasonable to estimate its total length as also equal to that of C10.
[2] Janensch (1961:181) did not include measurements for the right scapula of MB.R.2181, which is incorporated into the mounted skeleton, but does give the proximodistal length of its right coracoid as 45 cm. Using the 193 cm length given for the similarly sized scapula Sa 9, we can deduce a reasonable total estimate of 238 cm for the scapulocoracoid.
[3] Estimated by Janensch (1950b:99) based on cross-scaling from the fibula and ilium of Find J from the Upper Saurian Marl.
[4] This is the measurement provided by Janensch (1961:199) for the ilium Ma 2, which is incorporated into the mounted skeleton, and which Janensch (1950b:99) considered to match MB.R.2181 very precisely.
[5] Based on a restoration of the midshaft which Janench (1950b:99) calcuated based on other finds.
Individual lines of this table should each be treated with caution: Migeod’s measurements may have been unreliable, and in any case are underspecified: for example, we do not know whether, when he gave a vertebra’s length, he included overhanging prezygapophyses or the condyle. Similarly, we know that Migeod (1931:96) wrote that a rib “was as much as 92.5 inches long”, but we do not know for certain that, like Janensch, he measured the length over the curve rather than the straight-line distance between the ends. And when Migeod says that the ilium “measured 38.5 by 31 inches” we do not know that the height was measured “at the public process”, as Janensch (1961:199) specified.
With those caveats in place, nevertheless, a picture emerges of a sauropod somewhat smaller than MB.R.2181, though by no means negligible. On average, the measurements come out about 15% smaller than those of Giraffatitan.
But this average conceals a great deal of variation. The cervical vertebrae are comparable in length to those of MB.R.2181 (The total of 203 cm for C10 and C11 in the Archbishop, only 1.5% longer than 200 cm for MB.R.2181, is a difference well within the margin of measurement error). The Archbishop’s scapulocoracoid may have been 93% as long as in MB.R.2181. But the limb bones are signficantly shorter (87% for the humerus and a scarcely credible 62% for the femur), and the humeri at least bseem to be have been proportionally more robust in the Archbishop: only 2.86 times as long as wide, whereas the ratio is 3.61 in MB.R.2181. If Migeod’s measurements can be trusted, we have here an animal whose neck is as long as that of Giraffatitan, but whose limbs are noticably shorter. These proportions corroborate the hypothesis that the Archbishop is not a specimen of Giraffatitan.
Amazing things are out there waiting to be noticed
March 22, 2021
It is said that, some time around 1590 AD, Galileo Galilei dropped two spheres of different masses from the Leaning Tower of Pisa[1], thereby demonstrating that they fell at the same rate. This was a big deal because it contradicted Aristotle’s theory of gravity, in which objects are supposed to fall at a speed proportional to their mass.
Aristotle lived from 384–322 BC, which means his observably incorrect theory had been scientific orthodoxy for more than 1,900 years before being overturned[2].
How did this happen? For nearly two millennia, every scientist had it in his power to hold a little stone in one hand and a rock in the other, drop them both, and see with his own eyes that they fell at the same speed. Aristotle’s theory was obviously wrong, yet that obviously wrong theory remained orthodox for eighty generations.
My take is that it happened because people — even scientists — have a strong tendency to trust respected predecessors, and not even to look to see whether their observations and theories are correct. I am guessing that in that 1,900 years, plenty of scientists did indeed do the stone-and-rock experiment, but discounted their own observations because they had too much respect for Aristotle.
But even truly great scientists can be wrong.
Now, here is the same story, told on a much much smaller scale.
Well into the 2010s, it was well known that in sauropods, caudal vertebrae past the first handful are pneumatized only in diplodocines and in saltasaurine titanosaurs. As a bright young sauropod researcher, for example, I knew this from the codings in important and respected phylogenetic analysis such as those of Wilson (2002) and Upchurch et al. (2004).
Until the day I visited the Museum für Naturkunde Berlin and actually, you know, looked at the big mounted Giraffatitan skeleton in the atrium. And this is what I saw:
That’s caudal vertebrae 24–26 in left lateral view, and you could not wish to see a nicer, clearer pneumatic feature than the double foramen in caudal 25.
That observation led directly to Matt’s and my 2013 paper on caudal pneumaticity in Giraffatitan and Apatosaurus (Wedel and Taylor 2013) and clued us into how much more common pneumatic hiatuses are then we’d realised. It also birthed the notion of “cryptic diverticula” — those whose traces are not directly recorded in the fossils, but whose presence can be inferred by traces on other vertebrae. And that led to our most recent paper on pneumatic variation in sauropods (Taylor and Wedel 2021) — from which you might recognise the photo above, since a cleaned-up version of it appears there as Figure 5.
The moral
Just because “everyone knows” something is true, it doesn’t necessarily mean that it actually is true. Verify. Use your own eyes. Even Aristotle can be wrong about gravity. Even Jeff Wilson and Paul Upchurch can be wrong about caudal pneumaticity in non-diplodocines. That shouldn’t in any way undermine the rightly excellent reputations they have built. But we sometimes need to look past reputations, however well earned, to see what’s right in front of us.
Go and look at fossils. Does what you see contradict what “everyone knows”? Good! You’ve discovered something!
References
- Taylor, Michael P., and Mathew J. Wedel. 2021. Why is vertebral pneumaticity in sauropod dinosaurs so variable? (version 5) Qeios 1G6J3Q.5. doi:10.32388/1G6J3Q.5
- Upchurch, Paul, Paul M. Barrett and Peter Dodson. 2004. Sauropoda. pp. 259–322 in D. B. Weishampel, P. Dodson and H. Osmólska (eds.), The Dinosauria, 2nd edition. University of California Press, Berkeley and Los Angeles. 861 pp.
- Wedel, Mathew J., and Michael P. Taylor 2013. Caudal pneumaticity and pneumatic hiatuses in the sauropod dinosaurs Giraffatitan and Apatosaurus. PLOS ONE 8(10):e78213. 14 pages. doi: 10.1371/journal.pone.0078213
- Wilson, Jeffrey A. 2002. Sauropod dinosaur phylogeny: critique and cladistic analysis. Zoological Journal of the Linnean Society 136:217–276.
Notes
1. There is some skepticism about whether Galileo’s experiment really took place, or was merely a thought experiment. But since the experiment was described by Galileo’s pupil Vincenzo Viviani in a biography written in 1654, I am inclined to trust the contemporary account ahead of the unfounded scepticism of moderns. Also, Viviani’s wording, translated as “Galileo showed this by repeated experiments made from the height of the Leaning Tower of Pisa in the presence of other professors and all the students” reads like a documentary account rather than a romanticization. And a thought experiment, with no observable result, would not have demonstrated anything.
2. Earlier experiments had similarly shown that Aristotle’s gravitational theory was wrong, including in the works of John Philoponus in the sixth century — but Aristotle’s orthodoxy nevertheless survived until Galileo.
Can we distinguish taphonomic distortion and (paleo)pathology from normal biological variation?
February 12, 2021

Taylor 2015: Figure 8. Cervical vertebrae 4 (left) and 6 (right) of Giraffatitan brancai lectotype MB.R.2180 (previously HMN SI), in posterior view. Note the dramatically different aspect ratios of their cotyles, indicating that extensive and unpredictable crushing has taken place. Photographs by author.
Here are cervicals 4 and 8 from MB.R.2180, the big mounted Giraffatitan in Berlin. Even though this is one of the better sauropod necks in the world, the vertebrae have enough taphonomic distortion that trying to determine what neutral, uncrushed shape they started from is not easy.

Wedel and Taylor 2013b: Figure 3. The caudal vertebrae of ostriches are highly pneumatic. This mid-caudal vertebra of an ostrich (Struthio camelus), LACM Bj342, is shown in dorsal view (top), anterior, left lateral, and posterior views (middle, left to right), and ventral view (bottom). The vertebra is approximately 5cm wide across the transverse processes. Note the pneumatic foramina on the dorsal, ventral, and lateral sides of the vertebra.
Here’s one of the free caudal vertebrae of an ostrich, Struthio camelus, LACM Ornithology Bj342. It’s a bit asymmetric–the two halves of the neural spine are aimed in slightly different directions, and one transverse process is angled just slightly differently than the other–but the asymmetry is pretty subtle and the rest of the vertebral column looks normal, so I don’t think this rises to the level of pathology. It looks like the kind of minor variation that is present in all kinds of animals, especially large-bodied ones.
This is a dorsal vertebra of a rhea, Rhea americana, LACM Ornithology 97479, in posteroventral view. Ink pen for scale. I took this photo to document the pneumatic foramina and related bone remodeling on the dorsal roof of the neural canal, but I’m showing it here because in technical terms this vert is horked. It’s not subtly asymmetric, it’s grossly so, with virtually every feature–the postzygapophyses, diapophyses, parapophyses, and even the posterior articular surface of the centrum–showing fairly pronounced differences from left to right.
That rhea dorsal looks pretty bad for dry bone from a recently-dead extant animal, but if it was from the Morrison Formation it would be phenomenal. If I found a sauropod vertebra that looked that good, I’d think, “Hey, this thing’s in pretty good shape! Only a little distorted.” The roughed-up surface of the right transverse process might give me pause, and I’d want to take a close look at those postzygs, but most of this asymmetry is consistent with what I’d expect from taphonomic distortion.
Which brings me to my titular question, which I am asking out of genuine ignorance and not in a rhetorical or leading way: can we tell these things apart? And if so, with what degree of confidence? I know there has been a lot of work on 3D retrodeformation over the past decade and a half at least, but I don’t know whether this specific question has been addressed.
Corollary question: up above I wrote, “It looks like the kind of minor variation that is present in all kinds of animals, especially large-bodied ones”. My anecdotal experience is that the vertebrae of large extant animals tend to be more asymmetric than those of small extant animals, but I don’t know if that’s a real biological phenomenon–bone is bone but big animals have larger forces working on their skeletons, and they typically live longer, giving the skeleton more time to respond to those forces–OR if the asymmetry is the same in large and small animals and it’s just easier to see in the big ones.
If either of those questions has been addressed, I’d be grateful for pointers in the comments, and thanks in advance. If one or both have not been addressed, I think they’re interesting but Mike and I have plenty of other things to be getting on with and we’re not planning to work on either one, hence the “Hey, you! Want a project?” tag.
References
- Taylor, Michael P. 2015. Almost all known sauropod necks are incomplete and distorted. PeerJ Preprints 3:e1767. doi:10.7287/peerj.preprints.1418v1
- Wedel, Mathew J., and Michael P. Taylor. 2013. Caudal pneumaticity and pneumatic hiatuses in the sauropod dinosaurs Giraffatitan and Apatosaurus.PLOS ONE 8(10):e78213. 14 pages. doi:10.1371/journal.pone.0078213 [PDF]
My favorite t-shirt
February 1, 2021
If you’ve been around SV-POW! for long, you’ve seen me in this shirt:

“Retro Brontosaurus Dinosaur T-shirt” by Dinosaur Tees, modeled by Matt Wedel, cast right forelimb of Brachiosaurus for scale.
I found it on Amazon. Well, actually the first one I found was this rather dapper plesiosaur:
One of the things I like best about the recent movies in Legendary Pictures’ MonsterVerse — Godzilla (2014), Kong: Skull Island, Godzilla: King of the Monsters, and the upcoming Godzilla vs Kong — is Monarch, the shadowy organization tasked with finding and studying giant monsters. By the time of King of the Monsters, Monarch is basically SHIELD, with bases scattered around the globe and a giant flying carrier-aircraft, the USS Argo.
I prefer the scrappier, always-on-the-verge-of-being-shut-down Monarch from the 1973-set Kong: Skull Island. And, as you’ve probably guessed by now, I was instantly taken with that plesiosaur t-shirt because in my headcanon it was the official garb of Monarch’s Loch Ness division in the 1970s. I had to go with the sauropod version, though, for obvious reasons — maybe Monarch has a Mokele-mbembe division (not so far out since old M-M shows up as a dot on a map in King of the Monsters).
I have zero stake in Dinosaur Tees, mind. I just dig their retro dinosaur shirts. Find them here.
And as for Monarch — at least in its early incarnation, as a ragtag group of underfunded folks from wildly differing backgrounds that goes to remote places to search for monsters — I flatter myself that I have a not-entirely-different job.
What a dream I had!
January 31, 2021
Oh, hey, so you know how the most tedious thing you can ever hear is someone recounting one of their dreams? I want to tell you about a dream I had last night.
Brian Curtice’s grandfather was in a position of authority to express condemnation of a group of people who had lost the electronic archives of the Daily Telegraph, but declined to do so. So I became part of a woke mob that went to Curtice’s house to express our displeasure to him. I got distracted by an outbuilding when we arrived, went in, and found that it contained the Sonorosaurus type material, which for some reason included two really nice scapulocoracoids. At that point my Index Data colleague Wayne (also part of the woke mob) wandered in and I expressed to him that I was having second thoughts about this whole protest and that my first concern now was protecting the holotype against the more indiscriminate members of the mob. But I kept thinking to myself “Why is this material even here? If anything, it should be in an outbuilding at Kevin Ratkevic’s house.” Then Wayne and I spotted a bunch of computer monitors running software that Curtice had written earlier in his life, and it became apparent that he was the creator of a Commodore 64 adventure game called Pilgrim for which the publishers had ripped off an 8×8 old-English-style character set that I had used in a game I’d published with them.

Ratkevic (1988:figure 4).Lower hind limb including tibia, fibula, and nearly complete left pes of Sonorasaurus thompsoni holotype ASDM 500. Elements found associated but not articulated. Entire assembled length 137 cm. Photo by Jeanne Broome.
So. I never remember dreams in this kind of detail. The fact that I did on this on occasion is strange to me — but then, these are strange times. A quick run-down of what is and isn’t true:
- So far as I know, the Daily Telegraph archives have not been lost.
- Brian Curtice is a sauropod palaeontologist, maybe best known for his work reassessing Jensen’s Dry Mesa sauropods (e.g. Curtice et al. 1996, Curtice and Stadtman 2001); I have no idea if he has a grandfather and whether he has any involvement with archives.
- I do not know where Brian lives, or whether he has any fossils at his house. I highly doubt he has holotypes.
- The holotype of Sonorasaurus does not include any shoulder-girdle material, but it was indeed described by Ratkevich (1988) — but Ron, not Kevin.
- There really was a Commodore 64 adventure game called Pilgrim, published by CRL, and they really did re-use — without my permission — the character set I had defined in The Causes of Chaos, which I had published with them not long before.
- But Pilgrim was by Rod Pike, and I very highly doubt that Brian Curtice, even if he was a C64 programmer in the early-mid 90s, ever published any games with a UK-based software house.
Matt’s response when I told him about this dream:
Just got to the scapulocoracoids and LLOL
“my first concern now was protecting the holotype against the more indiscriminate members of the mob.” LLOL x infinity
Well, I gotta tell you, that was a ride.
Jurassic-Park-style, through your hindbrain.
It had everything!
Woke mobs, holotypes, old school adventure games, intellectual property (at the start and at the end)lost archivesthis is so specific in so many weirdly-specialized areas that whole schools may spring up to interpret it. You might accidentally found a new religion.
All right, folks: interpret for me!
References
- Curtice, Brian D., Kenneth L. Stadtman and Linda J. Curtice. 1996. A reassessment of Ultrasauros macintoshi (Jensen, 1985). The continental Jurassic (M. Morales, ed.): Museum of Northern Arizona Bulletin 60:87–95.
- Curtice, Brian D. and Kenneth L. Stadtman. 2001. The demise of Dystylosaurus edwini and a revision of Supersaurus vivianae. Western Association of Vertebrate Paleontologists and Mesa Southwest Museum and Southwest Paleontologists Symposium, Bulletin 8:33–40.
- Ratkevich, Ron. 1998. New Cretaceous brachiosaurid dinosaur, Sonorasaurus thompsoni gen et sp. nov, from Arizona. Journal of the Arizona-Nevada Academy of Science 31:71–82.