The stupidest head

August 21, 2019

Left: Homo sapiens, head, neck and upper trunk in right lateral view (unprepared specimen). Right: Camarasaurus sp., skull in left lateral view. Photograph at the Natural History Museum of Utah, Salt Lake City, Utah. 2016.

Advertisements

In a word, amazingly. After 6 days (counting public galleries last Sunday), 4300 photos, 55 videos, dozens of pages of notes, and hundreds of measurements, we’re tired, happy, and buzzing with new observations and ideas.

We caught up with some old friends. Here Mike is showing an entirely normal and healthy level of excitement about meeting CM 584, a specimen of Camarasaurus from Sheep Creek, Wyoming. You may recognize this view of these dorsals from Figure 9 in our 2013 PeerJ paper.

We spent an inordinate amount of time in the public galleries, checking out the mounted skeletons of Apatosaurus and Diplodocus (and Gilmore’s baby Cam, and the two tyrannosaurs, and, and…).

I had planned a trip to the Carnegie primarily to have another look at the Haplocanthosaurus holotypes, CM 572 and CM 879. I was also happy for the chance to photograph and measure these vertebrae, CM 36034, which I think have never been formally described or referred to Haplocanthosaurus. As far as I know, other than a brief mention in McIntosh (1981) they have not been published on at all. I’m planning on changing that in the near future, as part of the larger Haplocanthosaurus project that now bestrides my career like a colossus.

The real colossus of the trip was CM 555, which we’ve already blogged about a couple of times. Just laying out all of the vertebrae and logging serial changes was hugely useful.

Incidentally, in previous posts and some upcoming videos, we’ve referred to this specimen as Brontosaurus excelsus, because McIntosh (1981) said that it might belong to Apatosaurus excelsus. I was so busy measuring and photographing stuff that it wasn’t until Friday that I realized that McIntosh made that call because CM 555 is from the same locality as CM 563, now UWGM 15556, which was long thought to be Apatosaurus excelsus but which is now (i.e., Tschopp et al. 2015) referred to Brontosaurus parvus. So CM 555 is almost certainly B. parvus, not B. excelsus, and in comparing the specimen to Gilmore’s (1936) plates of CM 563, Mike and I thought they were a very good match.

Finding the tray of CM 555 cervical ribs was a huge moment. It added a ton of work to our to-do lists. First we had to match the ribs to their vertebrae. Most of them had field numbers, but some didn’t. Quite a few were broken and needed to be repaired – that’s what I’m doing in the above photo. Then they all had to be measured and photographed.

It’s amazing how useful it was to be able to reassociate the vertebrae with their ribs. We only did the full reassembly for c6, in part because it was the most complete and perfect of all of the vertebrae, and in part because we simply ran out of time. As Mike observed in his recent post, it was stunning how the apatosaurine identity of the specimen snapped into focus as soon as we could see a whole cervical vertebra put back together with all of its bits.

We also measured and photographed the limb bones, including the bite marks on the radius (above, in two pieces) and ulna (below, one piece). Those will of course go into the description.

And there WILL BE a description. We measured and photographed every element, shot video of many of them, and took pages and pages of notes. Describing even an incomplete sauropod skeleton is a big job, so don’t expect that paper this year, but it will be along in due course. CM 555 may not be the most complete Brontosaurus skeleton in the world, but our ambition is to make it the best-documented.

In the meantime, we hopefully left things better documented than they had been. All of the separate bits of the CM 555 vertebrae – the centra, arches, and cervicals ribs – now have the cervical numbers written on in archival ink (with permission from collections manager Amy Henrici, of course), so the next person to look at them can match them up with less faffing about.

We have people to thank. We had lunch almost every day at Sushi Fuku at 120 Oakland Avenue, just a couple of blocks down Forbes Avenue from the museum. We got to know the manager, Jeremy Gest, and his staff, who were unfailingly friendly and helpful, and who kept us running on top-notch food. So we kept going back. If you find yourself in Pittsburgh, check ’em out. Make time for a sandwich at Primanti Bros., too.

We owe a huge thanks to Calder Dudgeon, who took us up to the skylight catwalk to get the dorsal-view photos of the mounted skeletons (see this post), and especially to Dan Pickering, who moved pallets in collections using the forklift, and moved the lift around the mounted skeletons on Tuesday. Despite about a million ad hoc requests, he never lost patience with us, and in fact he found lots of little ways to help us get our observations and data faster and with less hassle.

Our biggest thanks go to collections manager Amy Henrici, who made the whole week just run smoothly for us. Whatever we needed, she’d find. If we needed something moved, or if we needed to get someplace, she’d figure out how to do it. She was always interested, always cheerful, always helpful. I usually can’t sustain that level of positivity for a whole day, much less a week. So thank you, Amy, sincerely. You have a world-class collection. We’re glad it’s in such good hands.

What’s next? We’ll be posting about stuff we saw and learned in the Carnegie Museum for a long time, probably. And we have manuscripts to get cranking on, some of which were already gestating and just needed the Carnegie visit to push to completion. As always, watch this space.

References

Coproliteposting time!

October 28, 2018

I wasted some time today making memes. I blame the Paleontology Coproliteposting group on Facebook.

Of course I started out by making fun of the most mockable sauropod. This one’s for you Cam-loving perverts out there. You know who you are.

This one was inspired by the thiccthyosaur meme, which irritatingly enough I cannot find right now. Oh no, wait, here it is.

I’m laughing through the tears.

For previous adventures in meme-ing, see this post.

Thanks to everyone who’s engaged with yesterday’s apparently trivial question: what does it mean for a vertebra to be “horizontal”? I know Matt has plenty of thoughts to share on this, but before he does I want to clear up a couple of things.

This is not about life posture

First, and I really should have led with this: the present question has nothing to do with life posture. For example, Anna Krahl wrote on Twitter:

I personally find it more comprehensible if the measurements relate to something like eg. the body posture. This is due to my momentary biomech./functional work, where bone orientation somet is difficult to define.

I’m sympathetic to that, but we really need to avoid conflating two quite different issues here.

Taylor, Wedel and Naish (2009), Figure 1. Cape hare Lepus capensis RAM R2 in right lateral view, illustrating maximally extended pose and ONP: skull, cervical vertebrae 1-7 and dorsal vertebrae 1-2. Note the very weak dorsal deflection of the base of the neck in ONP, contrasting with the much stronger deflection illustrated in a live rabbit by Vidal et al. (1986: fig. 4). Scalebar 5 cm.

If there’s one thing we’ve learned in the last couple of decades, it’s that life posture for extinct animals is controversial — and that goes double for sauropod necks. Heck, even the neck posture of extant animals is terribly easy to misunderstand. We really can’t go changing what we mean by “horizontal” for a vertebra based on the currently prevalent hypothesis of habitual posture.

Also, note that the neck posture on the left of the image above is close to (but actually less extreme than) the habitual posture of rabbits and hares: and we certainly wouldn’t want to illustrate vertebrae as “horizontal” when they’re oriented directly upwards, or even slightly backwards!

Instead, we need to imagine the animal’s skeleton laid out with the whole vertebral column in a straight line — sort of like Ryder’s 1877 Camarasaurus, but with the tail also elevated to the same straight line.

Ryder’s 1877 reconstruction of Camarasaurus, the first ever made of any sauropod, modified from Osborn & Mook (1921, plate LXXXII).

Of course, life posture is more important, and more interesting, question than that of what constitutes “horizontal” for an individual vertebra — but it’s not the one we’re discussing right now.

In method C, both instances are identically oriented

I’m not sure how obvious this was, but I didn’t state it explicitly. In definition C (“same points at same height in consecutive vertebrae”), I wrote:

We use two identical instances of the vertebrae, articulate them together as well as we can, then so orient them that the two vertebrae are level

What I didn’t say is that the two identical instances of the vertebrae have to be identically oriented. Here’s why this is important. Consider that giraffe C7 that we looked at last time, with its keystoned centrum. if you just “articulate them together as well as we can” without that restriction, you end up with something like this:

Which is clearly no good: there’s no way to orient that such that for any given point on one instance, the corresponding point on the other is level with it. What you need instead is something like this:

In this version, I’ve done the best job I can of articulating the two instances in the same attitude, and arranged them such that they are level with each other — so that the attitude shown here is “horizontal” in sense C.

As it happens, this is also just about horizontal in sense B — the floor of the neural canal is presumably at the same height as the top of the centrum as it meets the neural arch.

But “horizontal” in sense A (posterior articular surface vertical) fails horribly for this vertebra:

To me, this image alone is solid evidence that Method A is just not good enough. Whatever we mean by “horizontal”, it’s not what this image shows.

References

This is SUSA 515, a partial skeleton of Camarasaurus on display in the Museum of Moab. (SUSA stands for Southeastern Utah Society of Arts & Sciences.) It was described by John Foster in 2005.

I like this thing. The neural spines are blown off so you can see right down into the big pneumatic cavities in the dorsal vertebrae. And unlike the plastered, painted, and retouched-to-seeming-perfection mounted skeletons in most museums, this specimen reflects how most sauropod specimens look when they come out of the ground. With a few dorsal centra, a roadkilled sacrum, and some surprisingly interesting caudals, it puts me strongly in mind of MWC 8028, the Snowmass Haplocanthosaurus (another John Foster joint: see Foster and Wedel 2014).

Frankly, it doesn’t look like much: 17 centra and some odd bits of pelvis. Surely, with so many good Camarasaurus specimens in the world, this one couldn’t possibly have anything new to tell us about the anatomy of that genus. And yet, it has a couple of unusual features that make it worthy of attention. My colleagues and I are working on those things right now, and you’ll be hearing more about this specimen in the very near future.

References

We all know that apatosaurines have big honkin’ cervical ribs (well, most of us know that). But did they also have unusually large neural spines?

The question occurred to me the other day when I was driving home from work. I was thinking about C10 of CM 3018, the holotype of Apatosaurus louisae, and I thought, “Man, that is a lot of neural spine right there.”

Why was I thinking about C10, particularly? I traced and also stacked Gilmore’s (1936) drawing for my 2002 paper with Kent Sanders, and recycled the trace for my 2007 prosauropod paper, and recycled the stack-o-C10s for my 2013 PeerJ paper with Mike. So for better or worse C10 is my mental shorthand for A. louisae, the same way that their respective C8s seem to capture the essence of Giraffatitan and Sauroposeidon.

I decided that the quick-and-dirty solution was to compare the vertebrae of A. louisae with those of Diplodocus carnegii, the default reference diplodocid, and see how they stacked up. With the cotyles scaled to the same vertical diameters, this is what we get for C9 and C10 of CM 3018 (lighter gray, background, traced from Gilmore 1936) vs CM 84/94 (darker gray, foreground, traced from Hatcher 1901):

The A. louisae verts are a hair taller, proportionally, than those of D. carnegii, but not by much. The difference is trivial compared to the differences in centrum length and cervical rib size.

So where did I get this apparently erroneous impression that Apatosaurus had giant neural spines? Maybe it’s not that the neural spines of apatosaurines in particular are so large, but rather than diplodocids of all types have large neural spines compared to non-diplodocids. Here are the same vertebrae compared for D. carnegii (dark gray, background) and Camarasaurus supremus (black, foreground, traced from Osborn and Mook 1921):

I deliberately picked the longest C9 in the AMNH collection, and the least-distorted C10. The first surprise for me was how well this C. supremus C9 hangs with D. carnegii in terms of proportions. That is one looooong Cam vert. In any other sauropod, it would probably be beautiful. But because it’s Camarasaurus it attained its length in the most lumpen possible way, with the diapophysis way up front, the neural spine apex way at the back, and in the middle just…more vertebra. Like a stretch limo made from a Ford Pinto, or Mike’s horrifying BOBA-horse.

Inevitable and entirely justified Cam-bashing aside, it’s striking how much smaller the whole neural arch-and-spine complex is in C. supremus than in D. carnegii. And remember that D. carnegii is itself a bit smaller than Apatosaurus, spine-wise. Is this maybe a diplodocoid-vs-macronarian thing, at least in the Morrison? Here’s the C10 stack with Brachiosaurus included, represented by BYU 12867 (which I think is probably a C10 based on both centrum proportions and neural spine shape – see Wedel et al. 2000b for details), and with labels added because it’s getting a little nuts:

I like this; it shows a lot. Here are some things to note:

  • The diplodocids don’t just have taller neural spines, their pre- and postzygapophyses are also higher than in the macronarians. That’s gotta mean something, right? All else being equal, putting the zygs farther from the intervertebral joints would reduce the flexibility of the neck. Maybe diplodocoids could get away with it because they had more cervicals, or maybe their necks were stiffened for some reason.
  • The zygs being set forward of their respective centrum ends in the macronarians really comes through here.
  • The Brachiosaurus vert isn’t that different from a stretched (and de-uglified) Cam vert, with a slightly higher neural spine to help support the longer neck. (Maybe this is why Cam inspires such visceral revulsion: it reads as a failed brachiosaur.)
  • This emphasizes the outlier status of Apatosaurus in the cervical rib department. It bears repeating: the cervical ribs of Camarasaurus are certainly wide, but they’re not nearly as massive or ventrally expanded as in apatosaurines.

So far, pretty interesting. I’d like to add Barosaurus and Haplocanthosaurus to round out the “big six” Morrison sauropods. I known Haplo has big, tall, almost apatosaurine neural spines (as shown above, with arrows highlighting the epipophyses), but for Baro I’d have to actually do the comparison to see where it falls out.

The idea of bringing in Barosaurus also forces the question, previously glossed over, of how legit it is to compare C10s of all these animals when their cervical counts differed. C. supremus is thought to have had 12 vertebrae in its neck, Brachiosaurus 13 (based on Giraffatitan), A. louisae and D. carnegii 15, and Barosaurus probably 16. It would be more informative to graph neural spine height divided by cotyle diameter along the column for all of these critters, plus Kaatedocus and Galeamopus. But that’s a lot of actual work, and as much fun as it sounds (really, I’d rather be doing that), I have summer teaching to prep for and field gear to wrangle. So I’ll have to revisit this stuff another time.

References

Back in the spring of 1998, Kent Sanders and I started CT scanning sauropod vertebrae. We started just to get a baseline for the Sauroposeidon project, but in time the data we collected formed the basis for my MS thesis, and for a good chunk of my dissertation as well. Mostly what we had available to scan was Morrison material. Between imperfect preservation, inexpert prep (by WPA guys back in the ’30s), and several moves over the decades, most of the verts from the Oklahoma Morrison have their neural spines and cervical ribs broken off. One of the first things I had to figure out was how to tell broken vertebrae of Camarasaurus from those of Apatosaurus (at the time; Brontosaurus is back in contention now). Here’s a thing I made up to help me sort out cervical centra of Camarasaurus and whatever the Oklahoma apatosaurine turns out to be. It’s a recent production, but it embodies stuff from my notebooks from 20 years ago. Should be useful for other times and places in the Morrison as well, given the broad spatiotemporal overlap of Camarasaurus and the various apatosaurines.

For a related thing in the same vein, see Tutorial 30: how to identify Morrison sauropod cervicals.

More elephant seals soon, I promise.

UPDATE 20 Feb 2018

Ken Carpenter sent this by email, with a request that I post it as a comment. Since it includes an image, I’m appending to the post, because it makes an important point that I neglected to mention.

Camar post cerv

Ken: Sorry, Matt. Not so easy. The last cervical of Camarasaurus from the Cleveland Lloyd Quarry is more apatosaurine-like than Camarasaurus-like based on your posting. Note the position of both zygapohyses with both ends of the centrum.

My response: Yes, good catch. I meant to say in the post that my distinguishing characters break down at the cervico-dorsal transition. Even so, in this Cleveland Lloyd vert the postzyg is still forward of a line drawn directly up from the cotyle. I’ve never seen that in an apatosaurine–going into the dorsal series, the postzygs tend to be centered over a line projected up from the rim of the cotyle. (If anyone knows of counterexamples, speak up!)

For distinguishing cervico-dorsals, apatosaurines tend to have much taller neural spines than Camarasaurus, and this carries on through the rest of the dorsal series. In apatosaurine dorsals, the height of the spine above the transverse processes always equals or exceeds the height of the arch below the transverse processes. In Camarasaurus, the height of the dorsal neural spines is always less than or equal to the height of the arch. The shapes of the spines are fairly different, too. Maybe that will be the subject of a future post.