Here’s a bunch of cool stuff that is either available now or happening soon:

Sauropod Dinosaurs book excerpt in Prehistoric Times

Been on the fence about the sauropod book Mark Hallett and I wrote? Now you can try before you buy – our chapter on titanosaurs is reprinted in the new issue of Prehistoric Times magazine. I know it’s on newsstands because I picked it up at the local Barnes & Noble yesterday. You can also buy the issue from the PT website, physically or in digital form, solo or as part of a subscription. Many thanks to PT editor and publisher Mike Fredericks for the visibility, the staff at Johns Hopkins University Press for permission, and most of all to Mark Hallett for making it happen. We hope you enjoy it.

Get more sauropods in Mark Hallett’s 2018 dinosaur calendar

Mark has a dinosaur calendar out from Pomegranate, and I’m happy to say that sauropods are featured 5 out of 12 months. The calendar has a nice mix of Hallett classics and some newer works, including the cover art from our book, as shown above. Get it direct from Pomegranate or from Amazon.

Vicki’s public talk on forensic anthropology in December

My better half, anthropologist and author Vicki Wedel, is giving a public talk about her work on the evening of Thursday, December 14, at the Western Science Center in Hemet, California. Her title will be, “Bones, ballistics, and blunt force trauma.” I assume the talk will start at 6:00, but check the WSC website for details. The painted skull above is from the natural history museum in Vienna, and it doesn’t have any connection to the talk other than Vicki thought it was rad and I needed a skull to illustrate the post. For more on Vicki and her work, see these posts: cold case, book.

2017VWedelLecture

UPDATE: Final details on Vicki’s talk are out. It will start at 6:00, she’ll be signing copies of her book, Broken Bones: Anthropological Analysis of Blunt Force Trauma, and admission is $5.

My public talk on sauropods and whales in January

In January it will be my turn to give a talk at the Western Science Center. I’m on for the evening of Thursday, January 18. Title is not quite finalized but it will probably something along the lines of, “Dinosaurs versus whales: what is the largest animal of all time, and how do we know?” That’s me with the gray whale skeleton at Long Marine Lab in Santa Cruz, back in 2006. I was helping Nick Pyenson measure whales, back when we were both grad students. Ancient blog posts about that here: gray, blue.

See me in Seattle at Norwescon over Easter weekend

If you want to see me star-struck, come to Norwescon, home of the Philip K. Dick Award, next spring, where I’ll be rubbing shoulders with some vastly more famous people. Hugo, Nebula, and World Fantasy Award winner Ken Liu will be the Writer Guest of Honor, legendary SF&F visionary Wayne Douglas Barlowe will be the Artist Guest of Honor, Green Ronin is the Spotlight Publisher, and, er, I will be the Science Guest of Honor. Yes, I’m alert to both the honor and the incongruity of the thing. When I’m not Freaking. Out. about hanging with two of my favorite creators, I’ll probably be giving talks on dinosaurs and astronomy (my other thing) and participating on some panels and signing books. I’ll try not to disappoint.

Advertisements

Here’s a dorsal vertebra of Camarasaurus in anterior view (from Ostrom & McIntosh 1966, modified by Wilson & Sereno 1998). It is one of the most disturbing things I have ever seen in a sauropod. It makes my skin crawl.

Here’s why: the centrum and the thing we habitually call the ‘neural arch’ aren’t fully fused, and as this modified version makes clear, the ‘neural arch’ is neither neural nor an arch. Instead of being bounded ventrally by the centrum and dorsally and laterally by the neural arch, the neural canal lies entirely below the synchondrosis between the not-really-an-arch and the centrum.

Why?! WHY WOULD YOU DO THAT, CAMARASAURUS? This is not ‘Nam. This is basic vertebral architecture. There are rules.

Look at c6 of Apatosaurus CM 555 here, behaving as all good vertebrae ought to. Neural arch be archin’, as the kids say.

And if you are seeking solace in the thought that maybe the artist just drew that Cam dorsal incorrectly, forget it. I’ve been to Yale and examined the original specimen. I’ve seen things, man!

Camarasaurus isn’t the only pervert around here. Check this out:

Unfused neural arch of a caudal vertebra of a juvenile Alamosaurus from Big Bend. And I mean, this is a neural arch. This may be the most neural of all neural arches, in that it contains the entire neural canal. It’s more of a neural…ring, I guess. That’s right, this Alamosaurus caudal is batting for the opposite team from the Cam dorsal above. And it’s a team that neither you nor I play on, because we have well-behaved normal-ass vertebrae with neural arches that actually arch, and then stop, like God and Richard Owen intended.

Scientifically, my question about these vertebrae is: well, that is, I mean to say, what!? I think they have damaged me in some fundamental way.

If you have anything more intelligent to add (or even less intelligent – consider the gauntlet thrown down!), the comment thread is open.

References

  • Ostrom, John H., and John S. McIntosh. 1966. Marsh’s Dinosaurs. Yale University Press, New Haven and London. 388 pages including 65 absurdly beautiful plates.
  • Wilson, J. A. and Paul C. Sereno. 1998. Early evolution and higher-level phylogeny of sauropod dinosaurs. Society of Vertebrate Paleontology, Memoir 5: 1-68.

Step 1: Include the Share-Alike provision in your Creative Commons license, as in the mysteriously popular CC BY-SA and CC BY-NC-SA.

Step 2: Listen to the crickets. You’re done. Congratulations! No-one will ever use your silhouette in a scientific paper, and they probably won’t use your stuff in talks or posters either. Luxuriate in your obscurity and wasted effort.

Pachyrhinosaurus canadensis by Andrew A. Farke, CC BY 3.0, courtesy of PhyloPic.org.

Background

PhyloPic is the incredibly useful thing that Mike Keesey made where makers upload silhouettes of organisms and then people can use them in papers, posters, talks, on t-shirts, bumper stickers, and so on.

At least, they can if the image license allows it. And tons of them don’t, because people include the stupid Non-Commercial (NC) and even stupider Share-Alike (SA) provisions in their image licenses. (Need a refresher on what those are? See the tutorial on licenses.)

Why are these things dumb? Well, you could make a case for NC, but it will still probably kill most potential uses of your images. Most journals are run by companies — well, most are run by incredibly rapacious corporations that extract insane profits from the collective suckerhood that is academia — and using such an image in a for-profit journal would break the Non-Commercial clause. Even open-access journals are a bit murky.

But Share-Alike is way, way worse. What it means is that any derivative works that use material released under CC-BY-SA have to be released under that license as well. Share-Alike came to us from the world of software, where it actually has some important uses, which Mike will expand upon in the next post. But when it comes to PhyloPic or pretty much any other quasi-academic arena, including the Share-Alike provision is misguided.

As of this writing, PhyloPic has two silhouettes of Panphagia. I can actually show you this one, because it doesn’t have the Share-Alike license attached. The other one is inaccessible. Image by Ricardo N. Martinez and Oscar A. Alcober, CC BY 3.0, courtesy of PhyloPic.org.

Why not Share-Alike?

Why is Share-Alike so dumb for PhyloPic? It’s a viral license that in this context accomplishes nothing for the creator. Because the downstream material must also be CC BY-SA (minimally, or CC BY-NC-SA), almost any conceivable use is prevented:

  • People can’t use the images in barrier-based journals, because they’re copyrighted.
  • People can’t use the images in almost all OA journals, because they’re CC BY, and authors can’t just impose a more restrictive license on them willy-nilly.
  • People can’t use the images in their talks or posters, unless they want to make their talks and posters CC BY-SA. Even people who do release their talks and posters out into the wild are probably going to use CC BY if they use anything; they care about being cited, not about forcing downstream users to adopt a pointlessly restrictive license.
  • People probably can’t use the images on t-shirts or bumper stickers; at least, I have a hard time imagining how a physical object could meet the terms of CC BY-SA, unless it’s being given away for free. And even if one could, most downstream creators probably won’t want the headache — they’ll grab a similar image released under a less restrictive license and move on.
  • I can’t even blog the CC BY-SA images because everything we put on this blog is CC BY (except where noted by a handful of more restrictive museum image use policies), and it would more than a little ironic to make this one post CC BY-SA, which it would have to be if it included CC BY-SA images.

You may think I’m exaggerating the problem. I’m not. If you look at the Aquilops paper (Farke et al. 2014), you’ll see a lot of ceratopsian silhouettes drawn by Andy Farke. We were making progress on the paper and when it came time to finish the illustrations, most of the silhouettes we needed had the Share-Alike provision, which made them useless to us. So Andy drew his own. And while he was doing that, I took some of my old sauropod drawings and converted them to silhouettes and uploaded them. Both of us used CC BY, because all we care about is getting cited. And now people are using — and citing! — Andy’s and my drawings in preference to others, some arguably better (at least for the sauropods), that have pointlessly restrictive licenses.

So we have this ridiculous situation where a ton of great images on PhyloPic are essentially unusable, because people put them up under a license that sounds cool but actually either outright blocks or at least has a chilling effect on almost any conceivable use.

Is this a good silhouette of Camarasaurus? Maybe, maybe not. But that’s beside the point: this is currently the only silhouette of Camarasaurus on PhyloPic that you can actually use. By Mathew Wedel, CC BY 3.0, courtesy of PhyloPic.org.

What I do about this

Here’s my take: I care about one thing and one thing only, which is credit. All I need is CC BY. If someone wants to take my stuff and put it in a product and charge a profit, I say go for it — because legally every copy of that product has to have my name on it somewhere, credited as the creator of the image. I may not be making any money off that product, but I’m at least getting exposure. If I go CC BY-NC, then I also don’t get any money, and now I don’t even get that exposure. Why would I hack my own foot off like that? And I don’t use CC BY-SA because I don’t write software, so it has only downsides to offer me.

Now, there are certainly artists in the world with sufficient talent to sell t-shirts and prints. But even for them I’m skeptical that CC BY-NC has much to offer for their PhyloPic silhouettes. I know we’re all nuts around here for monochrome filled outlines of dead animals, but let’s be real, they’re a niche market at best for clothing and lifestyle goods. Personally I’d rather get the citations than prevent someone in Birmingham or Bangkok from selling cladogram t-shirts with tiny copies of my drawings, and I think that would still be true even if I was a professional artist.

What you should do about this

I suspect that a lot of people reading this post are dinosaur enthusiasts. If you are, and you’d like to get your name into published scientific work (whether you pursue writing and publishing yourself or not), get drawin’, and upload those babies using CC-BY. Make sure it is your own original work, not just a skin thrown over someone else’s skeletal recon, and don’t spam PhyloPic with garbage. But if you can execute a technical drawing of a critter, there’s a good chance it will be used and cited. Not only because there are still holes in PhyloPic’s coverage, but because so many otherwise great images on PhyloPic are locked up behind restrictive licenses. To pick an example nearly at random, PhyloPic has two silhouettes of Pentaceratops, and both of them are useless because of the Share-Alike provision in their licenses. You have an opportunity here. Don’t tarry.

If you already uploaded stuff to PhyloPic using CC BY-SA for whatever reason (it sounded cool, Joe Chill murdered your folks, you didn’t realize that it was academic reuse equivalent of radioactive syphilis), change it or replace it. Because all it is doing right now is driving PhyloPic users to other people’s work. Really, honestly, all you are doing is wasting your time by uploading this stuff, and wasting the time of PhyloPic users who have to hover over your pictures to find out that they’re inaccessible.

You don’t get any credit if no-one ever uses your stuff. Or, more precisely, you get 100% of a pie that doesn’t exist. That’s dumb. Stop doing it.

Reference

Farke, A.A., Maxwell, W.D., Cifelli, R.L., and Wedel, M.J. 2014. A ceratopsian dinosaur from the Lower Cretaceous of Western North America, and the biogeography of Neoceratopsia. PLoS ONE 9(12): e112055. doi:10.1371/journal.pone.0112055

jvp-fig-12

Fig. 14. Vertebrae of Pleurocoelus and other juvenile sauropods. in right lateral view. A-C. Cervical vertebrae. A. Pleurocoelus nanus (USNM 5678, redrawn fromLull1911b: pl. 15). B. Apatosaurus sp. (OMNH 1251, redrawn from Carpenter &McIntosh 1994: fig. 17.1). C. Camarasaurus sp. (CM 578, redrawn from Carpenter & McIntosh 1994: fig. 17.1). D-G. Dorsal vertebrae. D. Pleurocoelus nanus (USNM 4968, re- drawn from Lull 1911b: pl. 15). E. Eucamerotus foxi (BMNH R2524, redrawn from Blows 1995: fig. 2). F. Dorsal vertebra referred to Pleurocoelus sp. (UMNH VP900, redrawn from DeCourten 1991: fig. 6). G. Apatosaurus sp. (OMNH 1217, redrawn from Carpenter & McIntosh 1994: fig. 17.2). H-I. Sacral vertebrae. H. Pleurocoelus nanus (USNM 4946, redrawn from Lull 1911b: pl. 15). I. Camarasaurus sp. (CM 578, redrawn from Carpenter & McIntosh 1994: fig. 17.2). In general, vertebrae of juvenile sauropods are characterized by large pneumatic fossae, so this feature is not autapomorphic for Pleurocoelus and is not diagnostic at the genus, or even family, level. Scale bars are 10 cm. (Wedel et al. 2000b: fig. 14)

The question of whether sauropod cervicals got longer through ontogeny came up in the comment thread on Mike’s “How horrifying was the neck of Barosaurus?” post, and rather than bury this as a comment, I’m promoting it to a post of its own.

The short answer is, yeah, in most sauropods, and maybe all, the cervical vertebrae did lengthen over ontogeny. This is obvious from looking at the vertebrae of very young (dog-sized) sauropods and comparing them to those of adults. If you want it quantified for two well-known taxa, fortunately that work was published 16 years ago – I ran the numbers for Apatosaurus and Camarasaurus to see if it was plausible for Sauroposeidon to be synonymous with Pleurocoelus, which was a real concern back in the late ’90s (the answer is a resounding ‘no’). From Wedel et al. (2000b: pp. 368-369):

Despite the inadequacies of the type material of Pleurocoelus, and the uncertainties involved with referred material, the genus can be distinguished from Brachiosaurus and Sauroposeidon, even considering ontogenetic variation. The cervical vertebrae of Pleurocoelus are uniformly short, with a maximum EI of only 2.4 in all of the Arundel material (Table 4). For a juvenile cervical of these proportions to develop into an elongate cervical comparable to those of Sauroposeidon, the length of the centrum would have to increase by more than 100% relative to its diameter. Comparisons to taxa whose ontogenetic development can be estimated suggest much more modest increases in length.

Carpenter & McIntosh (1994) described cervical vertebrae from juvenile individuals of Apatosaurus and Camarasaurus. Measurements and proportions of cervical vertebrae from adults and juveniles of each genus are given in Table 4. The vertebrae from juvenile specimens of Apatosaurus have an average EI 2.0. Vertebrae from adult specimens of Apatosaurus excelsus and A. louisae show an average EI of 2.7, with an upper limit of 3.3. If the juvenile vertebrae are typical for Apatosaurus, they suggest that Apatosaurus vertebrae lengthened by 35 to 65% relative to centrum diameter in the course of development.

The vertebrae from juvenile specimens of Camarasaurus have an average EI of 1.8 and a maximum of 2.3. The relatively long-necked Camarasaurus lewisi is represented by a single skeleton, whereas the shorter-necked C. grandis, C. lentus, and C. supremus are each represented by several specimens (McIntosh, Miller, et al. 1996), and it is likely that the juvenile individuals of Camarasaurus belong to one of the latter species. In AMNH 5761, referred to C. supremus, the average EI of the cervical vertebrae is 2.4, with a maximum of 3.5. These ratios represent an increase in length relative to diameter of 30 to 50% over the juvenile Camarasaurus.

If the ontogenetic changes in EI observed in Apatosaurus and Camarasaurus are typical for sauropods, then it is very unlikely that Pleurocoelus could have achieved the distinctive vertebral proportions of either Brachiosaurus or Sauroposeidon.

apatosaurus-cm-555-c6-centrum-and-arch-united

C6 of Apatosaurus CM 555 – despite having an unfused neural arch and cervical ribs, the centrum proportions are about the same as in an adult.

A few things about this:

  1. From what I’ve seen, the elongation of the individual vertebrae over ontogeny seems to be complete by the time sauropods are 1/2 to 2/3 of adult size. I get this from looking at mid-sized subadults like CM 555 and the hordes of similar individuals at BYU, the Museum of Western Colorado, and other places. So to get to the question posed in the comment thread on Mike’s giant Baro post – from what I’ve seen (anecdata), a giant, Supersaurus-class Barosaurus would not necessarily have a proportionally longer neck than AMNH 6341. It might have a proportionally longer neck, I just haven’t seen anything yet that strongly suggests that. More work needed.
  2. Juvenile sauropod cervicals are not only shorter than those of adults, they also have less complex pneumatic morphology. That was the point of the figure at the top of the post. But that very simple generalization is about all we know so far – this is an area that could use a LOT more work.
  3. I’ve complained before about papers mostly being remember for one thing, even if they say many things. This is the canonical example – no-one ever seems to remember the vertebrae-elongating-over-ontogeny stuff from Wedel et al. (2000b). Maybe that’s an argument for breaking up long, kitchen-sink papers into two or more separate publications?

Reference

Wedel, M.J., Cifelli, R.L., and Sanders, R.K. 2000b. Osteology, paleobiology, and relationships of the sauropod dinosaur Sauroposeidon. Acta Palaeontologica Polonica 45:343-388.

At the Prehistoric Museum in Price, Utah, our host Ken Carpenter invited us to jump right into the Camarasaurus pit and start pulling apart their beautiful specimen. We did. Here is Matt, looking as happy as I’ve ever seen him:

IMG_2485

The pit is the central exhibit of the museum’s palaeontology hall. You can look down on its Jurassic scene from the balcony above:

IMG_2266

Theres a very nice Stegosaurus and an Allosaurus in pursuit of some kind of ornithopod, but needless to say the star of the show is the dead Camarasaurus that lies on the ground, well associated but partially articulated.

It’s a beautifully undistorted specimen, and we were amazed and delighted when Ken not only gave us permission to hop over the barrier and get closer to it, but even to move the elements around to better measure and photograph them. We spend the morning with the baby, concentrating on four anterior cervicals, and could happily have spent much, much longer.

IMG_2481

A shot across the room at ground level:

IMG_2484

 

Further bulletins as and when we find time to post. Can’t write more now, we’re off to the big wall of awesome at Dinosaur National Monument!

Today, we were at the BYU Museum of Paleontology, which is in a ridiculously scenic setting with snow-capped mountains on the horizon in almost every direction.

IMG_2054

We got through a lot of good work in collections, and we’ll show you some photos from there in due course. But for today, here are a couple of pictures from the public galleries.

First, here in a single photo is definitive proof that the “Toroceratops hypothesis” is wrong:

DSCN0815

Say what you want about ontegenetic trajectories, that huge and well ossified Triceratops is not a juvenile of anything.

Good, glad we go that sorted out.

Meanwhile, at the even better end of the gallery, here is a very nice — and very well lit — cast of the famous articulated juvenile Camarasaurus specimen CM 11338 described by Gilmore (1925):

DSCN0842

Further bulletins as events warrant.

References

Gilmore, Charles W. 1925. A nearly complete articulated skeleton of
Camarasaurus, a saurischian dinosaur from the Dinosaur National
Monument, Utah. Memoirs of the Carnegie Museum 10:347-384.

 

Wedel 2005 Morrison sauropod cervicals 1 - Diplodocus

When I was back in Oklahoma in March, I met with Anne Weil to see some of the new Apatosaurus material she’s getting out of her Homestead Quarry. It’s nice material, but that’s a post for another day. Anne said something that really resonated with me, which was, “I love it when you guys post about vertebral morphology, because it helps me learn this stuff.” Okay, Anne, message received. This will begin to make things right.

Wedel 2005 Morrison sauropod cervicals 2 - Barosaurus and centra shapes

I spent a week at BYU back in 2005, collecting data for my dissertation. One of the first things I had to do was teach myself how to identify the vertebrae of different sauropods, because BYU has just about all of the common Morrison taxa. These are the notes I made back then.

Wedel 2005 Morrison sauropod cervicals 3 - Brachiosaurus and Apatosaurus

I always planned to do something with them – clean them up, get them into a more usable form. There are a lot of scribbly asides that are probably hard for others to read, and it would be more useful if I put the easily confused taxa next to each other – Barosaurus next to Brachiosaurus, for example. And I didn’t go into serial changes at all.

Wedel 2005 Morrison sauropod cervicals 4 - Camarasaurus and Haplocanthosaurus

Still, hopefully someone will find these useful. If there are things I missed or got wrong, the comment thread is open. And if you want all four spreads in one convenient package, here’s a PDF: Wedel 2005 notes on Morrison sauropod cervicals

Mike and I leave for the Sauropocalypse tomorrow. I’m hoping to post at least a few pretty pictures from the road, as I did for the Mid-Mesozoic Field Conference two years ago. Stand by…