This is one of those posts where the title pretty much says it all, but here’s the detailed version.

Recap: the 2013 paper

In Matt’s and my 2013 paper Caudal pneumaticity and pneumatic hiatuses in the sauropod dinosaurs Giraffatitan and Apatosaurus (Wedel and Taylor 2013b), we wrote about the Brontosaurus excelsus holotype 1980:

Much more convincing, however, are two isolated lateral fossae: one on the left side of caudal 9, the other on the right side of caudal 13 (Figure 10). Both of these are much larger than the aforementioned foramina – about 6 cm across – and have distinct lips. There is absolutely no trace of similar fossae in any of the other caudals, so these fossae represent a bilateral pneumatic hiatus of at least seven vertebrae

And we illustrated the right side of Ca13 in our figure 10:

Wedel and Taylor (2013:figure 10). An isolated pneumatic fossa is present on the right side of caudal vertebra 13 in Apatosaurus excelsus holotype YPM 1980. The front of the vertebra and the fossa are reconstructed, but enough of the original fossil is visible to show that the feature is genuine.

Fast forward to 2023

The Yale Brontosaurus has been dismounted and sent to RCI in Canada for some long overdue TLC. It’s being re-prepared, and Brian Curtice has seen the material close up. The news from Brian is not good: I quote some of his emails. First, on 26 January:

The 1980 caudal 13 it isn’t pneumatic. That whole hole is plaster. The 2 verts in front of it have similar damage but on the opposite side. It looks like they were damaged during preservation, excavation, or preparation.

Then on 27 January:

Quick caudal pneumatic update: other than the fact 1980 has a large number of what I dub nutrient foramina there isn’t any shiny surfaces, no odd sculpting, fluting, etc. the bone is exquisite in these areas but will soon be painted black.

Later that day:

It was also exceptionally difficult to sometimes tell what was actual bone. Barbour [1890 — ed.] is spot on at what Marsh had done. The preparators sometimes couldn’t be sure without acetone and an air scribe… I did the best I could but my goodness it was tough and may have errors. Thus I stayed towards what I was positive on.

On 3 February, I wrote back to Brian asking:

My question about the “pneumatic fossa” in caudal 13 is: why did they sculpt it like that? It would have been the simplest thing in the world to give it a simple flat lateral aspect, like the other caudals, so what made them put the fossa in? One possible answer is that that’s what the bone was actually like, but smashed up, and they “repaired” it. I guess we are unlikely ever to know.

He replied the same day:

There are 3 caudals (11-13, pics attached) with similarly damaged bone, punky and smashed and “beat up”, with 11 and 12 having the damage on the left and ventral and 13 on the right. I suspect they were lying close to one another. I couldn’t tell if it was trampling, but it didn’t seem like it was from being hacked from the ground.
[…]
As to why they did it? I suspect because 13’s damage wasn’t as jagged, they could plaster over it easier? We’ll never know for sure.

Brian sent a photo of the re-prepared caudal 13, showing … well, see for yourself:

Truthfully, I don’t find this especially compelling. But that’s about the inadequacy of photos for this kind of work. My inclination is to trust Brian’s interpretation, while wondering how Matt and I were both fooled back in June 2012 when we visited YPM together and spent significant time gazing at this caudal.

So what now?

The good news for us is that this doesn’t really change any of our arguments or conclusion in the 2013 paper. We said that there is previously undocumented evidence of caudal pneumaticity in apatosaurines[1] — and there still is, in the other specimen we figured, FMNH P25112, in our figure 9. And the significant conclusion of the papers was the intermittent and unpredictable pneumatization along the tails of sauropods is compelling evidence for extensive “cryptic pneumaticity” — that is, for soft-tissue pneumatization alongside vertebrae that did not penetrate the bone. That conclusion is still good.

But still: one of the data-points we relied on in making that argument no longer looks solid, and it feels like the honest thing is to document that. It probably doesn’t warrant a follow-up paper or even an erratum. But it does warrant a blog-post, and this is it.

Thanks to Brian for bringing it to our attention!

Notes

[1]. In the paper we said “in Apatosaurus“, not “in apatosaurines”. But that was back when Apatosaurus was the only recognized apatosaurine, so it amounted t0 the same thing. If we were writing it in the post-Tschopp-et-al. world of today, we’d say “in apatosaurines”.

References

 

Michelle Stocker with an apatosaur vertebra (left) and a titanosaur femur (right), both made from foam core board.

In the last post I showed the Brachiosaurus humerus standee I made last weekend, and I said that the idea had been “a gleam in my eye for a long time”. That’s true, but it got kicked into high gear late in 2021 when I got an email from a colleague, Dr. Michelle Stocker at Virginia Tech. She wanted to know if I had any images of big sauropod bones that she could print at life size and mount to foam core board, to demonstrate the size of big sauropods to the students in her Age of Dinosaurs course. We had a nice conversation, swapped some image files, and then I got busy with teaching and kinda lost the plot. I got back to Michelle a couple of days ago to tell her about my Brach standee, and she sent the above photo, which I’m posting here with her permission.

That’s OMNH 1670, a dorsal vertebra of the giant Oklahoma apatosaurine and a frequent guest here at SV-POW!, and MPEF-PV 3400/27, the right femur of the giant titanosaur Patogotitan, from Otero et al. (2020: fig. 8). (Incidentally, that femur is 236cm [7 feet, 9 inches] long, or 35cm longer than our brachiosaur humerus.) For this project Michelle vectorized the images so they wouldn’t look low-res, and she used 0.5-inch foam core board. She’s been using both standees in her Age of Dinosaurs class at VT (GEOS 1054) every fall semester, and she says they’re a lot of fun at outreach events. You can keep up with Michelle and the rest of the VT Paleobiology & Geobiology lab group at their research page, and follow them @VTechmeetsPaleo on Twitter.

Michelle’s standees are fully rad, and naturally I’m both jealous and desirous of making my own. I’ve been wanting a plywood version of OMNH 1670 forever. If I attempt a Patagotitan femur, I’ll probably follow Michelle’s lead and use foam core board instead of plywood — the plywood Brach humerus already gets heavy on a long trek from the house or the vehicle.

Speaking of, one thing to think about if you decide to go for a truly prodigious bone is how you’ll transport it. I can haul the Brach humerus standee in my Kia Sorento, but I have to fold down the middle seats and either angle it across the back standing on edge, or scoot the passenger seat all the way forward so I can lay it down flat. I could *maybe* get the Patagotitan femur in, but it would have to go across the tops of the passenger seats and it would probably rest against the windshield.

Thierra Nalley and me with tail vertebrae of Haplocanthosaurus (smol) and the giant Oklahoma apatosaur (ginormous), at the Tiny Titan exhibit opening.

As long as I’m talking about cool stuff other people have built, a formative forerunner of my project was the poster Alton Dooley made for the Western Science Center’s Tiny Titan exhibit, which features a Brontosaurus vertebra from Ostrom & McIntosh (1966) blown up to size of OMNH 1331, the largest centrum of the giant Oklahoma apatosaurine (or any known apatosaurine). I wouldn’t mind having one of those incarnated in plywood, either.

I’ll bet more things like this exist in the world. If you know of one — or better yet, if you’ve built one — I’d love to hear about it.

References

  • Alejandro Otero , José L. Carballido & Agustín Pérez Moreno. 2020. The appendicular osteology of Patagotitan mayorum (Dinosauria, Sauropoda). Journal of Vertebrate Paleontology, DOI: 10.1080/02724634.2020.1793158
  • Ostrom, John H., and John S. McIntosh. 1966. Marsh’s Dinosaurs. Yale University Press, New Haven and London. 388 pages including 65 absurdly beautiful plates.

Over on Mastodon (sign up, it’s great!), Jim Kirkland posted a baby Utahraptor caudal vertebrae for #FossilFriday. Here it is:

And after a bit of virtual prep work:

My first reaction was just “That’s pretty!“. My second, which I admit should have been my first, was “Wait a sec — how the heck do those things articulate?

The issue is that both the prezygs and the postzygs overhang the centrum by so much. If we imagine three of these babies consecutively, there are basically two options.

First, the centra articulate closely, with what we might feel intuitively is a reasonable cartilage gap; and the zygs cross over:

Does something like this ever happen? Not in sauropods, for sure, but it could be correct — if the zyg facets are some way short of the tips of their processes, so that the most distal parts of each process are pre-epipophyses and epipophyses rather than prezygs and postzygs per se.

The other interpretation is this, with the zygs overlapping near the end as in sensible dinosaurs, and much more spaced out centra:

If this is right, then (in this respect) baby Utahraptor tails resembled camel necks in having big intervertebral spaces, which in life were filled with big cartilage plugs.

 

.

.

.

SPOILER SPACE

.

.

.

Have a think about this before reading on.

.

.

.

SPOILER SPACE

.

.

.

 

 

OK, here is the horrible truth.

Dromaeosaur tails do overlap their zyg processes as in the first mock-up above: but they do much, much worse than this!

Here is the truly perverted figure 37 of Ostrom’s classic 1969 monograph on Deinonychus — the publication that catalysed the whole Dinosaur Renaissance:

As you can see, the zygapophyseal processes are grotesquely elongated, and overlap in long stiffening bundles with those of successive vertebrae (part C of the figure). The actual zyg facets are small, and close to the origins of these processes (see parts A and B of the figure). And the chevrons are also hideously protracted beyond their natural length to form stiffening bundles beneath the tail that complement those above the tail.

To add insult to injury, the chevrons even face in the wrong darned direction, extending anteriorly along the tail rather than posteriorly as in all decent animals. Yes: in Ostrom’s illustrations, we’re seeing the vertebrae in right lateral view, i.e. anterior is to the right.

All of this confirms that I was so, so right two decades ago to focus so completely on proper dinosaurs instead of these nasty mutant ones. Ugh.

Long-time readers will recall that I’m fascinated by neurocentral joints, and not merely that they exist (although they are pretty cool), but that in some vertebrae they migrate dorsally or ventrally from their typical position (see this and this).

A few years ago I learned that there is a term for the expanded bit of neural arch pedicle that contributes to the centrum in vertebrae with ventrally-migrated neurocentral joints: the bouton, which is French for ‘button’. Here’s an example in the unfused C7 of a subadult sheep. Somebody gifted me a handful of these things a few years ago, and I’ve been meaning to blog about them forever. Many thanks, mysterious benefactor. (I mean, only mysterious to me, because my memory is crap; I’m sure you know who you are, and if you ever read this, feel free to remind me. And thanks for the dead animal parts!)

Guess what? You have these things, too! Or at least you did; if you’re old enough to be reading this, your boutons fused with the rest of the separate bits of your vertebrae a long time ago, between the ages of 2 and 5 (according to Bagnall et al. 1977). Here’s a diagram from Schaefer et al. (2009: p.99) showing the separate centrum and neural arch elements in a thoracic vertebra of a human toddler. So, hey, cool, we all had boutons, just like sheep. And just like some sauropods. (You didn’t think I was going to do a whole OVATOD post without sauropods, did you?)

Here’s our old friend BIBE 45885, an unfused caudal neural arch (or perhaps neural ring) of Alamosaurus, which I’ve been freaking out over for five years now. Those fat bits of neural arch that very nearly close off the neural canal ventrally? Boutons, baby! Big, beautiful boutons. In this photo it looks like the paired boutons meet on the midline, but in fact they merely overlap from this point of view — there is a narrow (<1mm) squiggly gap between them. Given how narrow that gap is, I suspect the two boutons probably would have fused to each other before either of them fused to the centrum, if this particular animal hadn’t died first.

Here’s an unfused dorsal centrum of Giraffatitan, MB.R. 3823, which I yapped about in this post. This vertebra is the spiritual opposite of the Alamosaurus caudal shown above: instead of the neural canal being nearly enclosed by bits of the neural arch wrapping around ventrally, the neural canal is nearly enclosed dorsally by bits of the centrum sticking up on either side and wrapping around dorsally. As with the boutons of the Alamosaurus caudal, the two expanded bits of centrum stuff in this Giraffatitan dorsal approach each other very closely but don’t quite meet; you can fit a piece of paper between them, but not a heck of a lot more. In essence, those “two expanded bits of centrum stuff” are centrum boutons that project up into what I suppose we’ll keep calling a ‘neural arch’ even though it’s neither very neural nor an arch. Or perhaps anti-boutons? With apologies to Gould and Vrba (1982), here we have another missing term in the science of form.

Why do we, and sheep, and prolly lots of other mammals, and some sauropods, have boutons? Presumably to strengthen the neurocentral joints by expanding the joint surface area. I don’t know if anyone has ever tested that — if you do, please let me know in the comments.

Many thanks to Thierra Nalley, who may be the only person I know besides Mike who spends more time thinking about vertebrae than I do, for introducing me to the term ’bouton’ a few years ago. If for some reason you want to corrupt your sensibilities reading about primate vertebrae, you could do a lot worse than checking out Thierra’s papers.

I don’t expect we’ll have a ton of OVATOD posts, in part because there aren’t a heck of a lot of vertebra parts that we haven’t already blogged about. But who knows, maybe Mike will write about prepostepipophyses or something. Stay tuned!

References

  • Bagnall, K.M., Harris, P.F., and Jones, P.R.M. 1977. A radiographic study of the human fetal spine. 2. The sequence of development of ossification centers in the vertebral column. Journal of Anatomy 124(3): 791–802.
  • Gould, S.J. and Vrba, E.S. 1982. Exaptation—a missing term in the science of form. Paleobiology 8(1): 4-15.
  • Schaefer, M., Black, S., and Scheuer, L. 2009. Juvenile Osteology: A Laboratory and Field Manual. Academic Press, Burlington, MA, 369pp.

P.S. Can we all pitch in and make ’bouton’ the new ‘aglet‘? Please? Please?

Vertebrae of Haplocanthosaurus (A-C) and a giraffe (D-F) illustrating three ways of orienting a vertebra: articular surfaces vertical — or at least the caudal articular surface vertical (A and D), floor of the neural canal horizontal (B and E), and similarity in articulation (C and F). See the paper for details! Taylor and Wedel (2002: fig. 6).

This is a lovely cosmic alignment: right after the 15th anniversary of this blog, Mike and I have our 11th coauthored publication (not counting abstracts and preprints) out today.

Taylor, Michael P., and Wedel, Mathew J. 2022. What do we mean by the directions “cranial” and “caudal” on a vertebra? Journal of Paleontological Techniques 25:1-24.

This one started back in 2018, with Mike’s post, What does it mean for a vertebra to be “horizontal”? That post and subsequent posts on the same topic (one, two, three) provoked interesting discussions in the comment threads, and convinced us that there was something here worth grappling with. We gave a presentation on the topic at the 1st Palaeontological Virtual Congress that December, which we made available as a preprint, which led to us writing the paper in the open, which led to another preprint (of the paper this time, not the talk).

Orienting vertebrae with the long axis of the centrum held horizontally seems simple enough, but choosing landmarks can be surprisingly complex. Taylor and Wedel (2022 fig. 5).

This project represented some interesting watersheds for us. It was not our first time turning a series of blog posts into a paper — see our 2013 paper on neural spine bifurcation for that — but it was our first time writing a joint paper in the open (Mike had started writing the Archbishop description in the open a few months earlier). It was also the last, or at least the most recent, manuscript that we released as a preprint, although we’ve released some conference presentations as preprints since then. I’m much less interested in preprints than I used to be, for reasons explained in this post, and I think Mike sees them as rather pointless if you’re writing the paper in the open anyway, which is his standard approach these days (Mike, feel free to correct me here or in the comments if I’m mischaracterizing your position).

So, we got it submitted, we got reviews, and then…we sat on them for a while. We have both struggled in the last few years with Getting Things Done, or at least Getting Things Finished (Mike’s account, my own), and this paper suffered from that. Part of the problem is that Mike and have far too many projects going at any one time. At last count, we have about 20 joint projects in various stages of gestation, and about 11 more that we’ve admitted we’re never going to get to (our To Don’t list), and that doesn’t count our collaborations with others (like the dozen or so papers I have planned with Jessie Atterholt). We simply can’t keep so many plates spinning, and we’re both working hard at pruning our project list and saying ‘no’ to new things — or, if we do think of new projects, we try to hand them off to others as quickly and cleanly as possible.

Two different ways of looking at a Haplocanthosaurus tail vertebra. Read on for a couple of recent real-life examples. Taylor and Wedel (2022: fig. 2).

Anyway, Mike got rolling on the revisions a few months ago, and it was accepted for publication sometime in late spring or early summer, I think. Normally it would have been published in days, but the Journal of Paleontological Techniques was moving between websites and servers, and that took a while. But Mike and I were in no tearing rush, and the paper is out today, so all is well.

One of the bits of the paper that I’m most proud of is the description of cheap and easy methods for determining the orientation of the neural canal. For neural canals that are open, either because they were fully prepped or never full of matrix to begin with, there’s the rolled-up-piece-of-paper method, which I believe first appeared on the blog back when I was posting photos of the tail vertebrae of the Brachiosaurus altithorax holotype. For neural canals that aren’t open, Mike came up with the Blu-tack-and-toothpick method, as shown in Figure 12 in the new paper:

A 3d print of NHMUK PV R2095, the holotype of Xenoposeidon, illustrating the toothpick method of determining neural canal orientation. Taylor and Wedel (2022: fig. 12).

I know both methods work because I recently had occasion to use them, studying the Haplocanthosaurus holotypes (see this post). For CM 572, the neural canal of the first caudal vertebra is full of matrix, so I used a variant of the toothpick method. I didn’t actually have Blu-tack or toothpicks, so I cut thin pieces of plastic from the edge of an SVP scale bar and stuck them in bits of kneadable eraser. It worked just fine:

The neural canal of caudal 2 was prepped, so I could use the rolled-up-piece-of-paper method:

(Incidentally, Mike and I refer to our low-tech orientation-visualizers as “neural-canal-inators”, in honor of Dr. Heinz Doofenshmirtz from Phineas and Ferb.)

In the above photos, notice how terribly thin the base of the neural arch is, antero-posteriorly. Both of these vertebrae are in pretty good shape, without much breakage or missing material, and their morphology is broadly consistent with that of other proximal caudals of Haplocanthosaurus, so we can’t write this off as distortion. As weird as it looks, this is just what Haplo proximal caudals were like. And with the neural canals held horizontally, the first two caudals end up oriented like so:

Now, as we pointed out in the paper, the titular question is not about determining the posture of the vertebrae in life, it’s about defining the directions ‘cranial’ and ‘caudal’ for isolated vertebrae — Mike asked the question back when for the holotype (single) dorsal vertebra of Xenoposeidon. But an interesting spin-off for me has been getting confronted with the weirdness of vertebrae whose articular surfaces are nowhere near orthogonal with their neural canals. I tilted those CM 572 Haplo caudals so that their neural canals were horizontal partly because that’s the preferred orientation that Mike and I landed on in the course of this work, but also partly because to me, that’s a more arresting image than the preceding ones with the articular faces held vertically. I’m both freaked out and fascinated, and that seems like a promising combination — there are mysteries here that cry out to be solved.

As usual, we have loads of people to thank. In addition to all those listed in the Acknowledgments of the new paper, I’m grateful to Matt Lamanna and Amy Henrici of the Carnegie Museum of Natural History for letting me play with study the Haplo specimens in their care. Mike and I also owe a huge thanks to the editorial team at the Journal of Paleontological Techniques. We reached out to them a few days ago to ask if it might be possible to get our in-press paper done and out in time for SV-POW!’s anniversary weekend, and they pitched in to make it happen.

What’s next? We weighed the evidence and formulated what the best solution we could think of. Now it’s up to the world to decide if that was a useful contribution. The comment thread is open — let’s find out.

This is the first 3D print of a dinosaur bone that I ever had access to: the third caudal vertebra of MWC 8028, the ‘new’ Haplocanthosaurus specimen from Snowmass, Colorado (Foster and Wedel 2014, Wedel et al. 2021). I’ve been carrying this thing around since 2018. It’s been an aid to thought. I touched on this before, in this post, but real sauropod vertebrae are almost always a giant pain to work with, given their charming combination of great weight, fragility, and irreplaceability. As opposed to scaled 3D prints, which are light, tough, and endlessly replaceable.

This was brought home to me again a couple of weeks ago, when I visited the Carnegie Museum, in Pittsburgh, Pennsylvania, and Research Casting International, in Trenton, Ontario, Canada. I was at each place to have another look at their haplocanthosaur specimens. The Carnegie is of course the home of CM 572, the type of H. priscus, and CM 879, the type of H. utterbacki (which has long been sunk into H. priscus, and rightly so — more on that another time, perhaps). RCI currently has CMNH 10380, the holotype of H. delfsi, for reprepping and remounting before it goes back to the Cleveland Museum of Natural History.

Caudals 1 through 6 of CM 572, the holotype of Haplocanthosaurus priscus.

The caudals of CM 572 and CM 879 aren’t that different in size — the centra max out at about 20cm (8in) in diameter, and the biggest, caudal 1 of CM 572, is 50cm (20in) tall. Still, given their weight and the number of thin projecting processes that could possibly break off, I handled them gingerly.

Caudals 1 through 5 of CM 10380, the holotype of Haplocanthosaurus delfsi.

The caudals of H. delfsi are a whole other kettle of fish. Caudal 1 has a max diameter of 36cm (14in) and a total height of 85cm (33.5in). I didn’t handle that one by myself unless I absolutely had to. Fortunately Garth Dallman of RCI helped a lot with the very literal heavy lifting, as did fellow researcher Brian Curtice, who was there at the same time I was.

Back to my beloved MWC 8028, the Snowmass haplocanthosaur. My colleagues and I are still working on it, and there will be more papers coming down the pike in due time (f’rinstance). I’m pretty sure that the main reason we’ve been able to get so much mileage out of this mostly incomplete and somewhat roadkilled specimen is that we’ve had 3D prints of key bones to play with. Now, I joke all the time about being a grownup who gets paid to play with dinosaur bones, but for once I’m not writing in jest when I say ‘play with’. That 3D printed caudal is basically a dinosaurian fidget toy for me, and I think it’s probably impossible to play with anatomical specimens without getting interested in their nooks and crannies and bits and bobs.

Another nice thing about it: I can throw it in my luggage, take it Oklahoma or Utah or Pennsylvania or Canada, and just plop it in someone’s hand and say, “Look at this weird thing. Have you ever seen that before?” I have done that, in all of those places, and it’s even more convenient and useful than showing CT slices on my laptop. I’ve watched my friends and colleagues run their fingers over the print, pinch its nearly non-existent centrum, poke at its weird neural canal, and really grokk its unusual morphology. And then we’ve had more productive conversations than we would have otherwise — they really Get It, because they’ve really handled it.

When I started writing this post, the title was a question, but that’s tentative to the point of being misleading. Three-D prints are obviously useful for sauropod workers because with very few exceptions our specimens are otherwise un-play-with-able. And playing with dinosaur bones turns out to be a pretty great way to make discoveries, and to share them.

(And yes, we’ll be publishing the CT scans and 3D models of MWC 8028 in due time, so you can play with it yourself.)

References

Among the numerous weird features of MWC 8028, the Snowmass Haplocanthosaurus, is the extreme biconcave profile of the caudal vertebrae, in which each centrum is basically reduced to a vertical plate of bone separating two cup-shaped articular surfaces. All four available caudals — found in different parts of the quarry, in different orientations — have essentially the same cross-section. For the diagram above, I just copied caudal 3, because it’s the most complete, so I could figure out the thickness and cross-sectional shape of a single intervertebral disc.

I drew a more realistic version, with the first three caudals at approximately the right scale, for our neural canal paper last year:

The first three caudal vertebrae of Haplocanthosaurus specimen MWC 8028 in midsagittal section, emphasizing the volumes of the neural canal (yellow) and intervertebral joint spaces (blue). Anterior is to the right. Wedel et al. (2021: fig. 2B).

It’s a drawing, sure, but it’s based on a true story, because we have CT scans of all the vertebrae (and we’re going to publish them, soon, along with the reconstructed verts). 

(NB: I’m using “intervertebral disc” as a convenient shorthand for “whatever soft tissues filled the joint space”. But I do think it was a big, fat, fibrocartilaginous disc, not wildly different from the ones in the human vertebral column. It’s not totally impossible that there was some combination of crazy thick articular cartilage and a synovial cavity — there is some precedent in extant salamanders and lizards — but that seems way less likely, for reasons I’ll go into in detail elsewhere. Incidentally, the notion is floating around that reptiles have only synovial intervertebral joints, but this is simply false: intervertebral discs are present in some squamates [Winchester and Bellairs 1977] and in the tails of birds [Baumel 1988].)

I should point out that the other specimens of Haplocanthosaurus also have biconcave caudal vertebrae, but the concavities are much shallower. So what we’re seeing in MWC 8028 is an extreme version of something we see in other individuals of the same genus.

Now, because the caudal centra and joint spaces are roughly radially symmetrical, their relative cross-sectional areas, in these mid-sagittal sections, should be good proxies for their relative volumes. You can imagine the generating the volume of a centrum by rotating its cross-section through 180 degrees, ditto for the joint space (ignoring tilt since both the centrum and joint space are tilted). We’ll have this math worked out in more detail in the next paper, along with volumes from the 3D models, but the upshot is this:

The volume of the intervertebral discs is about twice that of the vertebral centra. If we ignore the neural arch and spine and the transverse processes, and focus only on the weight-bearing column formed by the proximal caudal centra and intervertebral discs, that column is 2/3 cartilage and only 1/3 bone. 

Why, tho?

I spent some time brainstorming with Alton Dooley and we came up with a whole slate of hypotheses. We don’t necessarily like any of them very much, we’re just trying to cast the widest possible net, to make sure we haven’t overlooked any possibilities, no matter how remote they might seem. Here’s what we have so far:

Non-biological:

1. taphonomic distortion

Abnormal biology:

2. congenital malformation

3. pathology

Ontogenetic:

4. incomplete ossification (animal died without laying down the ‘missing’ bone)

5. senescence (the ‘missing’ bone was removed by some process related to aging)

Functional:

6. increased or decreased movement between vertebrae

7. weight reduction

8. shock absorption

What else? 

To reiterate, we’re in the hypothesis-generating stage, not the hypothesis-evaluating stage. So we’re not interested in whether any of these hypotheses are likely. (In point of fact, I think the ones we have so far all suck.) We just want all of the ideas that aren’t impossible.

The comment field is open!

References

Science doesn’t always get done in the right order.

In the course of the research for my paper with Mike this past spring, “Why is vertebral pneumaticity in sauropod dinosaur so variable?”, published in Qeios in January, I had a couple of epiphanies. The first was that I had collated enough information to map the sites at which arteries and veins enter and exit the vertebrae in most tetrapods. The second was that, having done that, I’d also made a map of (almost) all the places that diverticula enter the vertebrae to pneumatize them. This is obviously related to the thesis we laid out in that paper, that postcranial skeletal pneumaticity is so variable because pneumatic diverticula follow pre-existing blood vessels as they develop, and blood vessels themselves are notoriously variable. In fact, if you had to summarize that thesis in one diagram, it would probably look like the one above, which I drew by hand in my research notebook in early March.

Only that’s not quite correct. I didn’t have those epiphanies “in the course of the research”, I had them after the pneumatic variation paper was done and published. And at the time they felt less like epiphanies and more like a series of “Holy crap” realizations:

  1. Holy crap, that diagram would have been really helpful when we were writing the pneumatic variation paper, since it establishes, almost tautologically, that diverticula invade vertebrae where blood vessels already have. In a rational world, Mike and I would have done this project first, and the pneumatic variation paper would have stood on its shoulders.
  2. Holy crap, how have I been working on vertebral pneumaticity for more than two decades without ever creating a map of all the places a vertebra can be pneumatized, or even realizing that such a map would be useful?
  3. Holy crap, how have I been working on dinosaur bones — and specifically their associated soft tissues — for more than two decades without wondering exactly how the blood was getting into and out of each bone? 

Arguably, not only should Mike and I have done this project first, I should have taken a stab at it way back when I was working on my Master’s thesis. Better late than never, I guess.

I used a sauropod caudal as my vertebral archetype because it has all the bits a tetrapod vertebra can have, including the hemal arch or chevron. This was important, because Zurriaguz et al. (2017) demonstrated that the chevrons are pneumatic in some titanosaurs. 

 

For the actual presentation I redrew the vessels on top of a scan of a Camarasaurus caudal from Marsh, which Mike found and cleaned up (modified from Marsh 1896: plate 34, part 4, and plate 39, part 3c). 

We deliberately used an unfused caudal to emphasize that ‘ribs’ — technically, costal elements — are present, they just fuse to the neural arch and centrum rather than remaining separate, mobile elements like dorsal ribs.

Anyway, I’m yapping about this now because this project is rolling: Mike and I submitted an abstract on it for the 3rd Palaeontological Virtual Congress, and a short slideshow on the project is now up at the 3PVC site for attendees to look at and comment on. The congress started last Wednesday and runs through Dec. 15, after which I’m sure we’ll submit the abstract and slide deck somewhere as a preprint, and then turn it into a paper as quickly as possible.

I’ll probably have more to say on this in a day or so, but for now the comment field is open, and your thoughts are welcome.

References

 

A. Recovered skeletal elements of Haplocanthosaurus specimen MWC 8028. B. Caudal vertebra 3 in right lateral view. C. The same vertebra in posterior view. Lines show the location of sections for D and E. D. Midsagittal CT slice. The arrow indicates the ventral expansion of the neural canal into the centrum. E. Horizontal CT slice at the level of the neural arch pedicles, with anterior toward the top. Arrows indicate the lateral expansions of the neural canal into the pedicles. B-E are shown at the same scale. Wedel et al. (2021: fig. 1).

New paper out today:

Wedel, Mathew; Atterholt, Jessie; Dooley, Jr., Alton C.; Farooq, Saad; Macalino, Jeff; Nalley, Thierra K.; Wisser, Gary; and Yasmer, John. 2021. Expanded neural canals in the caudal vertebrae of a specimen of Haplocanthosaurus. Academia Letters, Article 911, 10pp. DOI: 10.20935/AL911 (link)

The paper is new, but the findings aren’t, particularly. They’re essentially identical to what we reported in our 1st Paleo Virtual Conference slide deck and preprint, and in the “Tiny Titan” exhibit at the Western Science Center, just finally out in a peer-reviewed journal, with better figures. The paper is open access and free to the world, and it’s short, about 1600 words, so this recap will be short, too.

A. Photograph of a 3D-printed model of the first three caudal vertebrae of Haplocanthosaurus specimen MWC 8028, including endocasts of the neural canal (yellow) and intervertebral joints (blue), in right lateral view, and with the neural canal horizontal. B. Diagram of the same vertebrae in midsagittal section, emphasizing the volumes of the neural canal (yellow) and intervertebral joint spaces (blue). Anterior is to the right. Wedel et al. (2021: fig. 2).

John Foster and I described Museum of Western Colorado (MWC) specimen 8028, a partial skeleton of Haplocanthosaurus from Snowmass, Colorado, in late 2014. One weird thing about that specimen (although not the only weird thing) is that the neural canals of the tail vertebrae are bizarrely expanded. In most vertebrae of most critters, the neural canal is a cylindrical tunnel, but in these vertebrae the neural canals are more like spherical vacuities.

John and I didn’t know what to make of that back in 2014. But a few years later I started working with Jessie Atterholt on bird anatomy, which led me to do a little project on the whole freaking zoo of weird stuff that birds and other dinosaurs do with their neural canals, which led to the 1PVC presentation, which led to this. 

Caudal vertebra 3 of Haplocanthosaurus specimen MWC 8028 in left posterolateral (A), posterior (B), and right posterolateral (C) views, with close-ups (D and E). In A and B, a paintbrush is inserted into one of the lateral recesses, showing that the neural canal is wider internally than at either end. Wedel et al. (2021: fig. 3).

Of course there will be more posts and more yapping, as signaled by the ‘Part 1’ in the post title. Although I am extremely satisfied with the streamlined, 1600-word missile of information and reasoning that just dropped, there are parts that I want to unpack, that haven’t been unpacked before. But the paper launched at midnight-thirty, Pacific Daylight Time, I’m up way too late finishing this first post, and I reckon the rest will keep for a few hours at least.

Anatomical features of the neural canal in birds and other dinosaurs. A. MWC 9698, a mid caudal vertebra of Apatosaurus in posterodorsal view. Arrows highlight probable vascular foramina in the ventral floor of the neural canal. B. LACM 97479, a dorsal vertebra of Rhea americana in left anterolateral view. Arrows highlight pneumatic foramina inside the neural canal. C. A hemisected partial synsacrum of a chicken, Gallus domesticus, obtained from a grocery store. Anterior is to the right. The bracket shows the extent of the dorsal recess for the glycogen body, which only spans four vertebrae. Arrows highlight the transverse grooves in the roof of the neural canal for the lumbosacral organ. D. Sagittal (left) and transverse (right) CT slices through the sacrum of a juvenile ostrich, Struthio camelus. The bracket shows the extent of the lumbosacral expansion of the spinal cord. Indentations in the roof of the neural canal house the lumbosacral organ. In contrast to the chicken, the ostrich has a small glycogen body that does not leave a distinct osteological trace. Yellow arrows show the longitudinal troughs in the ventral floor of the neural canal that house the ventral eminences of the spinal cord. Wedel et al. (2021: fig. 4).

I have a ton of people to thank. John Foster, obviously, for initiating the line of research that led here. Julia McHugh for access to the MWC collections, and for being an excellent sounding board regarding the Morrison Formation, sauropod dinosaurs, and crafting ambitious but tractable research projects. Anne Weil for helping me be methodical in thinking through the logic of the paper, and Mike Taylor for helping me get it polished. Niels Bonde, Steven Jasinski, and David Martill for constructive reviews, which were published alongside the paper. We couldn’t take all of their suggestions because of space limitations, but figures 3 and 4 were born because they asked for them, and that’s not a small thing. Vicki and London Wedel for putting up with me at various points in this project, especially in the last few days as I’ve been going bonkers correcting page proofs. And finally, because I’m the one writing this blog post, my coauthors: Jessie Atterholt, Alton Dooley, Saad Farooq, Jeff Macalino, Thierra Nalley, Gary Wisser, and John Yasmer, for their contributions and for their patience during the unusually long gestation of this very short paper.

More to say about all that in the future. For now, yay, new paper. Have fun with it. Here’s the link again.

References

It is said that, some time around 1590 AD, Galileo Galilei dropped two spheres of different masses from the Leaning Tower of Pisa[1], thereby demonstrating that they fell at the same rate. This was a big deal because it contradicted Aristotle’s theory of gravity, in which objects are supposed to fall at a speed proportional to their mass.

Aristotle lived from 384–322 BC, which means his observably incorrect theory had been scientific orthodoxy for more than 1,900 years before being overturned[2].

How did this happen? For nearly two millennia, every scientist had it in his power to hold a little stone in one hand and a rock in the other, drop them both, and see with his own eyes that they fell at the same speed. Aristotle’s theory was obviously wrong, yet that obviously wrong theory remained orthodox for eighty generations.

My take is that it happened because people — even scientists — have a strong tendency to trust respected predecessors, and not even to look to see whether their observations and theories are correct. I am guessing that in that 1,900 years, plenty of scientists did indeed do the stone-and-rock experiment, but discounted their own observations because they had too much respect for Aristotle.

But even truly great scientists can be wrong.

Now, here is the same story, told on a much much smaller scale.

Well into the 2010s, it was well known that in sauropods, caudal vertebrae past the first handful are pneumatized only in diplodocines and in saltasaurine titanosaurs. As a bright young sauropod researcher, for example, I knew this from the codings in important and respected phylogenetic analysis such as those of Wilson (2002) and Upchurch et al. (2004).

Until the day I visited the Museum für Naturkunde Berlin and actually, you know, looked at the big mounted Giraffatitan skeleton in the atrium. And this is what I saw:

That’s caudal vertebrae 24–26 in left lateral view, and you could not wish to see a nicer, clearer pneumatic feature than the double foramen in caudal 25.

That observation led directly to Matt’s and my 2013 paper on caudal pneumaticity in Giraffatitan and Apatosaurus (Wedel and Taylor 2013) and clued us into how much more common pneumatic hiatuses are then we’d realised. It also birthed the notion of “cryptic diverticula” — those whose traces are not directly recorded in the fossils, but whose presence can be inferred by traces on other vertebrae. And that led to our most recent paper on pneumatic variation in sauropods (Taylor and Wedel 2021) — from which you might recognise the photo above, since a cleaned-up version of it appears there as Figure 5.

The moral

Just because “everyone knows” something is true, it doesn’t necessarily mean that it actually is true. Verify. Use your own eyes. Even Aristotle can be wrong about gravity. Even Jeff Wilson and Paul Upchurch can be wrong about caudal pneumaticity in non-diplodocines. That shouldn’t in any way undermine the rightly excellent reputations they have built. But we sometimes need to look past reputations, however well earned, to see what’s right in front of us.

Go and look at fossils. Does what you see contradict what “everyone knows”? Good! You’ve discovered something!

 

References

Notes

1. There is some skepticism about whether Galileo’s experiment really took place, or was merely a thought experiment. But since the experiment was described by Galileo’s pupil Vincenzo Viviani in a biography written in 1654, I am inclined to trust the contemporary account ahead of the unfounded scepticism of moderns. Also, Viviani’s wording, translated as “Galileo showed this by repeated experiments made from the height of the Leaning Tower of Pisa in the presence of other professors and all the students” reads like a documentary account rather than a romanticization. And a thought experiment, with no observable result, would not have demonstrated anything.

2. Earlier experiments had similarly shown that Aristotle’s gravitational theory was wrong, including in the works of John Philoponus in the sixth century — but Aristotle’s orthodoxy nevertheless survived until Galileo.