Last time, I showed you a photo of the head and neck of the London Diplodocus and asked what was wrong. Quite a few of you got it right (including Matt when we were chatting, but I asked him not to give it away by posting a comment). The 100 SV-POW! dollars, with their cash value of $0.00, go to Orribec, who was the first to reply that the atlas (cervical 1) is upside-down.

Here is again, from the other side:

The Natural History Museum’s Carnegie Diplodocus cast, skull and anterior cervical vertebrae in left lateral view. Photograph by Mike Taylor.

I noticed this — when it seems the people putting up the skeleton did not, unless this is a deliberate joke — because I happened to be particularly tuned into atlas ribs at the time. You can see what appears a tiny rib hanging below the atlas, but no neural arch above it projecting up and back to meet the prezygapophyses of the axis (cervical 2). In fact the “cervical rib” on this left side is the neural arch of the right side, rotated 180 degrees about the axis of the neck.

Here’s how this should look, from the Carnegie Museum’s own Diplodocus:

The Carnegie Museum’s Diplodocus mount, skull and anterior cervical vertebrae in left lateral view. Photograph by Matt Lamanna.

In this picture, the atlas seems to be pretty much fused onto the axis, as seen in Gilmore (1936: figure 6) which Matt helpfully reproduced in Tutorial 36.

(Digression 1: you might think that this atlas is the real thing, since the Carnegie’s mount is the one with the real CM 84/94/307 material in it. But no: the atlas does not belong to any of those, which all lack this element. It seems to be a sculpture, but we can’t figure out what it’s based on.)

(Digression 2: you might notice that the London and Carnegie skulls are rather different. That’s because the London cast still has the original skull supplied in 1907, which is a sculpture based on CM 622 (rear) and USNM 2673 (the rest), while the Carnegie’s mount at some point had its skull replaced by a cast of CM 11161 — though no-one knows when.)

(Digression 3: the diplodocine originally catalogued as CM 662, on which the rear of the skull was based, was named as the holotype of a new species Diplodocus hayi by Holland (1924), traded to the Cleveland Museum of Natural History in 1956 where it was numbered CMNH 10670, then traded on the Houston Museum of Natural History in 1963 where istbecame HMNS 175, mounted in  Houston in 1975, remounted between 2013 and 2015, and finally moved to its own new genus Galeamopus by Tschopp et al. 2015. Yes, this stuff gets complicated.)

In fact, it’s amazing how much stuff we actually don’t know about these classic specimens, including the source of the atlas for both the Carnegie mount and the various casts — which are not the same. If only there was a single definitive publication that gathered everything that is known about these mounts. Oh well, maybe some day.

Now everyone knows that all the Carnegie Diplodocus mounts around the world were cast from the same molds, and so they all have the same altas <SCREEEECH> wait what?

The Muséum National d’Histoire Naturelle’s Carnegie Diplodocus cast, posterior part of skull and anterior cervical vertebrae in left lateral view. Photograph by Vincent Reneleau.

Here we are in Paris, and the atlas has these two honking great ribs. I have not seen these in any other Carnegie Diplodocus. I know they’re absent from the Berlin cast (thanks to Daniela Schwarz), from the Vernal re-cast (personal observation) and of course from the London cast. I would welcome observations (or even better, photos) from anyone who’s in a position to look at the Vienna, Bologna, Moscow, La Plata, Madrid or Mexico City casts.

So where did these atlas ribs come from? As with so much of this, no-one really knows. It’s especially mysterious as the Paris mount is supposed to be completely unchanged since its initial mounting. But some clue to the origin of the ribs in this mount is found in Holland (1906:249–250):

Accompanying the elements of the atlas sent to the writer for study by the kindness of Professor Osborn  [i.e. AMNH 969] are two bones, undoubtedly cervical ribs. They are both bones belonging on the right side of the centra. They are reported to have been found at the same place at which the atlas was found. The writer is inclined to think that the larger of these two bones (Fig. 20), was probably the rib of the atlas and indeed it requires but little effort to see that it might very well have served such a function, and that the smaller bone (Fig. 21) was the rib of the axis. Were the stump of the rib which remains attached to the axis in the Carnegie Museum, and which Mr. Hatcher has figured, removed, this smaller rib might take its place and would undoubtedly articulate very neatly to the facet

In case you’re too lazy to go and look at Holland’s illustrations for yourself, here they are.

The atlas rib:

The axis rib:

Holland went on:

In case the view entertained by the writer is correct, the form of the atlas and the axis with their attached ribs would be as given in the accompanying sketch (Fig. 22) rather than as given in the figure which has been published by Mr. Hatcher. Such a location of these parts has in its favor the analogy of the crocodilian skeleton.

Here is that composite atlas/axis complex:

(This arrangement with closely appressed atlas and axis ribs should ring a bell for anyone who’s looked much at croc necks, as for example in Taylor and Wedel 2013:figure 19.)

The atlas ribs on the Paris mount look a decent match for the one illustrated by Holland (1906:figure 20), so it seems a reasonable guess that they were sculpted based on that element. But that only leaves us with two more mysteries:

  1. Why do we see these atlas ribs only on the Paris cast, not in the Carnegie original or any of the other casts (that I know of)?
  2. Why does this cast have atlas ribs based on one of Holland’s elements, but not axis ribs based on the other?




Last Saturday I was at a wedding at Holy Trinity Brompton, a London church that is conveniently located a ten-minute stroll from the Natural History Museum. As I am currently working on a history paper concerning the Carnegie Diplodocus, I persuaded my wife, my eldest son and his fiancée to join me for a quick scoot around the “Dippy Returns” exhibition.

Here is a photo that I took:

Something is wrong here — and I don’t just mean the NHM exhibition’s stygian lighting.

Who can tell me what it is? $100 in SV-POW! Dollars(*) awaits the first person to get it right in the comments.


(*) Cash value: $0.00.

When I visited Dinosaur National Monument in October with Brian Engh and Yara Haridy, we spent a decent amount of time checking out DNM 28, a skull and associated bits of Camarasaurus. In particular, I got some shots of the axis (the second cervical vertebra behind the head), and it got me thinking about pneumaticity in this unusual element. Why I failed to get a full set of orthogonal shots is quite beyond my capacity, but we can roll with what I have. Before we go on, you might want to revisit Tutorial 36 to brush up on the general parts of the atlas-axis complex.

Here’s the axis in left lateral view (so, anterior to the left).

And a labeled version of the same. A few things to note:

  • One oddity of sauropod axes (and of axes of most critters) is that not only are the articular facets of the prezygapophyses not set forward of the neural arch, they’re set backward, well behind the forward point of the arch.
  • The dens epistrophei or odontoid process is sticking out immediately below the neural canal. This is the tongue of bone that articulated with the atlas (first cervical vertebra) in life.
  • Check out the prominent epipophysis above the postzygapophysis, which anchored the long dorsal neck muscles. (For more on epipophyses, see these posts, and especially this one.)
  • The diapophysis and parapophysis articulated with a cervical rib, which is not shown here. In fact, I don’t remember seeing it in the drawer that this vert came from. The atlantal and axial cervical ribs are small, apparently fused late in life if they fused at all, and are easily lost through taphonomic processes.
  • At least three pneumatic features are visible in this lateral view: the lateral fossa on the centrum, which is referred to as the “pleurocoel” in a lot of older literature; a ventral fossa that lies between the parapophysis and the midline ventral keel; and a fossa on the neural arch, behind the postzygodiapophyseal lamina. In the nomenclature of Wilson et al. (2011), this is the postzygocentrodiapophyseal fossa.

“Postzygocentrodiapophyseal fossa” is a mouthful, but I think it’s the only way to go. To be unambiguous, anatomical terminology needs to references specific landmarks, and the schemes proposed by Wilson (1999) for vertebral laminae and Wilson et al. (2011) for vertebral fossae are the bee’s knees in my book.

Nomenclatural issues aside, how do we know that these fossae were all pneumatic? Well, they’re invasive, there’s no other soft-tissue system that makes invasive fossae like that in archosaur vertebrae (although crocs sometimes have shallow fossae that are filled with cartilage or fat), and the same fossae sometimes have unambiguous pneumatic foramina in other vertebrae or in other sauropods.

Most of the features labeled above are also visible on the right side of the vertebra, although the ventral fossa is a little less well-defined in this view, and I can’t make out the prezyg facet. Admittedly, some of the uncertainty here is because of my dumb shadow falling across the vertebra. Specimen photography fail!

The paired ventral fossae are more prominent in this ventral view, on either side of the midline ventral keel (anterior is to the top).

And here’s a labeled version of the same ventral view.

Finally, here’s the posterior view. It’s apparent now that the neural spine is a proportionally huge slab of bone, like a broad, tilted shield between the postzygapophyses (which are also quite large for the size of this vertebra). The back side of the neural spine is deeply excavated by a complex fossa with several subfossae (kudos again to Jeff Wilson [1999] for that eminently useful term).

Here’s the same shot with some features of interest labeled. If I’ve read Wilson et al. (2011) correctly, the whole space on the back side of the neural spine and above the postzygs could be considered the spinopostzygapophyseal fossa, but here I’ve left the interspinous ligament scar (ILS) unshaded, on the expectation that the pneumatic diverticula that created that fossa were separated on the midline by the interspinous ligament. I might have drawn the ILS too conservatively, conceivably the whole space between the large deeply-shadowed subfossae was occupied by the interspinous ligament.

I’m particularly interested in those three paired subfossae, which for convenience I’m simply calling A, B, and C. Subfossa A may just be the leftover space between the spinopostzgyapophyseal laminae laterally and the interspinous ligament medially. I think subfossa B is invading the ramus of bone that goes to the epipophysis and postzygapophysis, but I didn’t think to check and see how far it goes (that might require CT anyway).

Subfossa C is the most intriguing. Together, those paired fossae form a couple of shallow pits, just on either side of the midline, and aimed straight forward. They can’t be centropostzygapophyseal fossae, which used to be called peduncular fossae, because they’re not in the peduncles on either side of the neural canal, they’re up above the lamina that connects the two postzygapophyses. Could they be ligament attachments? Maybe, but I’m skeptical for at least four reasons:

  1. Although interspinous ligament attachments often manifest as pits in the cervical vertebrae of birds, in sauropods they usually form rugosities or even spikes of bone that stick out, not inward. Furthermore, these pits are smooth, not rough like the interspinous ligament scars of birds.
  2. The interspinous ligament in tetrapods is typically a single, midline structure, and these pits are paired.
  3. Similar pits in front of the neural spine are present in some sauropod caudals, and they appear to be pneumatic (see Wedel 2009: p. 11 and figure 9).
  4. Pits at the base of the neural spine seem to be fairly uncommon in sauropod vertebrae. If they were attachment scars from the universally-present interspinous ligaments, we should expect them to be more prominent and more widespread.

But if these paired pits are not ligament scars, what are they? Why are they present, and why are they so distinct? Sometimes (often?) subfossae and accessory laminae look like the outcome of pneumatic diverticulum and bone reacting to each other (I almost wrote ‘playing together’), in what looks like a haphazard process of adaptation to local loading. But the symmetry of these pits argues against them being incidental or random. They don’t seem to be going anywhere, so maaaybe they are the first hoofbeats of the embossed laminae and “unfossae” that we see in the vertebrae of more derived sauropods (for which see this post), but again, their symmetry in size and placement isn’t really consistent with the “developmental program gone wild” appearance of “unfossae”. I really don’t know what to make of them, but if you have ideas, arguments, or observations to bring to bear, the comment field is open.

In summary, sauropod axes are more interesting than I thought, even in a derpasaurus like Cam. I’ll have to pay more attention to them going forward.