Here’s that ventral-view apatosaur cervical anaglyph you ordered
December 4, 2022
Just to wash our mouths out after all the theropod-related unpleasantness yesterday:
What we’re seeing here, in glorious 3D, is the 7th cervical vertebrae of BYU 1252-18531. This is an apatosaurine at the Brigham Young University Museum of Paleontology which the museum has catalogued as “Apatosaurus excelsus” (i.e. Brontosaurus excelsus), and which Tschopp et al. (2015) tentatively referred to Brontosaurus parvus, but which I suspect is most likely good old Apatosaurus louisae.
It’s in the rarely seen ventral view, which really emphasizes the ludicrously over-engineered cervical ribs. Get your 3D glasses on and marvel at how they come lunging out of the screen at you, like giant insects in a 1950s B-movie.
So beautiful.
Can we distinguish taphonomic distortion and (paleo)pathology from normal biological variation?
February 12, 2021

Taylor 2015: Figure 8. Cervical vertebrae 4 (left) and 6 (right) of Giraffatitan brancai lectotype MB.R.2180 (previously HMN SI), in posterior view. Note the dramatically different aspect ratios of their cotyles, indicating that extensive and unpredictable crushing has taken place. Photographs by author.
Here are cervicals 4 and 8 from MB.R.2180, the big mounted Giraffatitan in Berlin. Even though this is one of the better sauropod necks in the world, the vertebrae have enough taphonomic distortion that trying to determine what neutral, uncrushed shape they started from is not easy.

Wedel and Taylor 2013b: Figure 3. The caudal vertebrae of ostriches are highly pneumatic. This mid-caudal vertebra of an ostrich (Struthio camelus), LACM Bj342, is shown in dorsal view (top), anterior, left lateral, and posterior views (middle, left to right), and ventral view (bottom). The vertebra is approximately 5cm wide across the transverse processes. Note the pneumatic foramina on the dorsal, ventral, and lateral sides of the vertebra.
Here’s one of the free caudal vertebrae of an ostrich, Struthio camelus, LACM Ornithology Bj342. It’s a bit asymmetric–the two halves of the neural spine are aimed in slightly different directions, and one transverse process is angled just slightly differently than the other–but the asymmetry is pretty subtle and the rest of the vertebral column looks normal, so I don’t think this rises to the level of pathology. It looks like the kind of minor variation that is present in all kinds of animals, especially large-bodied ones.
This is a dorsal vertebra of a rhea, Rhea americana, LACM Ornithology 97479, in posteroventral view. Ink pen for scale. I took this photo to document the pneumatic foramina and related bone remodeling on the dorsal roof of the neural canal, but I’m showing it here because in technical terms this vert is horked. It’s not subtly asymmetric, it’s grossly so, with virtually every feature–the postzygapophyses, diapophyses, parapophyses, and even the posterior articular surface of the centrum–showing fairly pronounced differences from left to right.
That rhea dorsal looks pretty bad for dry bone from a recently-dead extant animal, but if it was from the Morrison Formation it would be phenomenal. If I found a sauropod vertebra that looked that good, I’d think, “Hey, this thing’s in pretty good shape! Only a little distorted.” The roughed-up surface of the right transverse process might give me pause, and I’d want to take a close look at those postzygs, but most of this asymmetry is consistent with what I’d expect from taphonomic distortion.
Which brings me to my titular question, which I am asking out of genuine ignorance and not in a rhetorical or leading way: can we tell these things apart? And if so, with what degree of confidence? I know there has been a lot of work on 3D retrodeformation over the past decade and a half at least, but I don’t know whether this specific question has been addressed.
Corollary question: up above I wrote, “It looks like the kind of minor variation that is present in all kinds of animals, especially large-bodied ones”. My anecdotal experience is that the vertebrae of large extant animals tend to be more asymmetric than those of small extant animals, but I don’t know if that’s a real biological phenomenon–bone is bone but big animals have larger forces working on their skeletons, and they typically live longer, giving the skeleton more time to respond to those forces–OR if the asymmetry is the same in large and small animals and it’s just easier to see in the big ones.
If either of those questions has been addressed, I’d be grateful for pointers in the comments, and thanks in advance. If one or both have not been addressed, I think they’re interesting but Mike and I have plenty of other things to be getting on with and we’re not planning to work on either one, hence the “Hey, you! Want a project?” tag.
References
- Taylor, Michael P. 2015. Almost all known sauropod necks are incomplete and distorted. PeerJ Preprints 3:e1767. doi:10.7287/peerj.preprints.1418v1
- Wedel, Mathew J., and Michael P. Taylor. 2013. Caudal pneumaticity and pneumatic hiatuses in the sauropod dinosaurs Giraffatitan and Apatosaurus.PLOS ONE 8(10):e78213. 14 pages. doi:10.1371/journal.pone.0078213 [PDF]
Long before Matt and others were CT-scanning sauropod vertebrae to understand their internal structure, Werner Janensch was doing it the old-fashioned way. I’ve been going through old photos that I took at the Museum für Naturkunde Berlin back in 2005, and I stumbled across this dorsal centrum:
You can see a transverse crack running across it, and sure enough the front and back are actually broken apart. Here there are:

The same dorsal vertebral centrum of ?Giraffatitan, bisected transversely in two halves. Left: anterior half in posterior view; right: posterior half in anterior view. I had to balance the anterior half on my shoe to keep it oriented corrrectly for the photo.
This does a beautiful job of showing the large lateral foramina penetrating into the body of the centrum and ramifying further into the bone, leaving only a thin midline septum.
But students of the classics will recognise this bone immediately as the one that Janensch (1947:abb. 2) illustrated the posterior half of in his big pneumaticity paper:
It’s a very strange feeling, when browsing in a collection, to come across a vertebra that you know from the literature. As I’ve remarked to Matt, it’s a bit like running into, say, Cameron Diaz in the corner shop.
Reference
- Janensch, W. 1947. Pneumatizitat bei Wirbeln von Sauropoden
und anderen Saurischien. Palaeontographica, supplement
7:1-25.
A nice pneumatic Allosaurus cervical dorsal
October 12, 2019
Spotted this beauty in the collections at Dinosaur Journey this past summer. With the front end of the centrum blown off, taphonomy once again proves to be the poor man’s CT machine, giving us a great look at the pneumatic spaces inside the vertebra.
EDIT, Oct. 13, 2019 — WHOOPS! That ain’t a cervical. Based on the plates in Madsen (1976), it’s a dead ringer for the second dorsal vertebra.

Vertebrae C7 through D3 of Allosaurus fragilis in anterior view, from plates 14-16 in Madsen (1976). Abbreviations: dp, diapophysis; li, interspinous ligament scar; nc, neural canal; ns, neural spine; pp, parapophysis; pr, prezygapophysis.
Reference
Madsen, Jr., J.H. 1976. Allosaurus fragilis: a revised osteology. Utah Geological and Mining Survey Bulletin 109: 1-163.
How our week at the Carnegie Museum went
March 17, 2019
In a word, amazingly. After 6 days (counting public galleries last Sunday), 4300 photos, 55 videos, dozens of pages of notes, and hundreds of measurements, we’re tired, happy, and buzzing with new observations and ideas.
We caught up with some old friends. Here Mike is showing an entirely normal and healthy level of excitement about meeting CM 584, a specimen of Camarasaurus from Sheep Creek, Wyoming. You may recognize this view of these dorsals from Figure 9 in our 2013 PeerJ paper.
We spent an inordinate amount of time in the public galleries, checking out the mounted skeletons of Apatosaurus and Diplodocus (and Gilmore’s baby Cam, and the two tyrannosaurs, and, and…).
I had planned a trip to the Carnegie primarily to have another look at the Haplocanthosaurus holotypes, CM 572 and CM 879. I was also happy for the chance to photograph and measure these vertebrae, CM 36034, which I think have never been formally described or referred to Haplocanthosaurus. As far as I know, other than a brief mention in McIntosh (1981) they have not been published on at all. I’m planning on changing that in the near future, as part of the larger Haplocanthosaurus project that now bestrides my career like a colossus.
The real colossus of the trip was CM 555, which we’ve already blogged about a couple of times. Just laying out all of the vertebrae and logging serial changes was hugely useful.
Incidentally, in previous posts and some upcoming videos, we’ve referred to this specimen as Brontosaurus excelsus, because McIntosh (1981) said that it might belong to Apatosaurus excelsus. I was so busy measuring and photographing stuff that it wasn’t until Friday that I realized that McIntosh made that call because CM 555 is from the same locality as CM 563, now UWGM 15556, which was long thought to be Apatosaurus excelsus but which is now (i.e., Tschopp et al. 2015) referred to Brontosaurus parvus. So CM 555 is almost certainly B. parvus, not B. excelsus, and in comparing the specimen to Gilmore’s (1936) plates of CM 563, Mike and I thought they were a very good match.
Finding the tray of CM 555 cervical ribs was a huge moment. It added a ton of work to our to-do lists. First we had to match the ribs to their vertebrae. Most of them had field numbers, but some didn’t. Quite a few were broken and needed to be repaired – that’s what I’m doing in the above photo. Then they all had to be measured and photographed.
It’s amazing how useful it was to be able to reassociate the vertebrae with their ribs. We only did the full reassembly for c6, in part because it was the most complete and perfect of all of the vertebrae, and in part because we simply ran out of time. As Mike observed in his recent post, it was stunning how the apatosaurine identity of the specimen snapped into focus as soon as we could see a whole cervical vertebra put back together with all of its bits.
We also measured and photographed the limb bones, including the bite marks on the radius (above, in two pieces) and ulna (below, one piece). Those will of course go into the description.
And there WILL BE a description. We measured and photographed every element, shot video of many of them, and took pages and pages of notes. Describing even an incomplete sauropod skeleton is a big job, so don’t expect that paper this year, but it will be along in due course. CM 555 may not be the most complete Brontosaurus skeleton in the world, but our ambition is to make it the best-documented.
In the meantime, we hopefully left things better documented than they had been. All of the separate bits of the CM 555 vertebrae – the centra, arches, and cervicals ribs – now have the cervical numbers written on in archival ink (with permission from collections manager Amy Henrici, of course), so the next person to look at them can match them up with less faffing about.
We have people to thank. We had lunch almost every day at Sushi Fuku at 120 Oakland Avenue, just a couple of blocks down Forbes Avenue from the museum. We got to know the manager, Jeremy Gest, and his staff, who were unfailingly friendly and helpful, and who kept us running on top-notch food. So we kept going back. If you find yourself in Pittsburgh, check ’em out. Make time for a sandwich at Primanti Bros., too.
We owe a huge thanks to Calder Dudgeon, who took us up to the skylight catwalk to get the dorsal-view photos of the mounted skeletons (see this post), and especially to Dan Pickering, who moved pallets in collections using the forklift, and moved the lift around the mounted skeletons on Tuesday. Despite about a million ad hoc requests, he never lost patience with us, and in fact he found lots of little ways to help us get our observations and data faster and with less hassle.
Our biggest thanks go to collections manager Amy Henrici, who made the whole week just run smoothly for us. Whatever we needed, she’d find. If we needed something moved, or if we needed to get someplace, she’d figure out how to do it. She was always interested, always cheerful, always helpful. I usually can’t sustain that level of positivity for a whole day, much less a week. So thank you, Amy, sincerely. You have a world-class collection. We’re glad it’s in such good hands.
What’s next? We’ll be posting about stuff we saw and learned in the Carnegie Museum for a long time, probably. And we have manuscripts to get cranking on, some of which were already gestating and just needed the Carnegie visit to push to completion. As always, watch this space.
References
- McIntosh JS. 1981. Annotated catalogue of the dinosaurs (Reptilia, Archosauria) in the collections of Carnegie Museum of Natural History. Bulletin of Carnegie Museum of Natural History 18:1-67
- 2015) A specimen-level phylogenetic analysis and taxonomic revision of Diplodocidae (Dinosauria, Sauropoda) PeerJ3: (e857 https://dx.doi.org/10.7717/peerj.857
Everything’s better with cervical ribs
March 15, 2019
You’ll remember that we’ve been playing with CM 555, a subadult apatosaurine of indeterminate species, though John McIntosh assigned it to Brontosaurus (then Apatosaurus) excelsus. At the start of the week, we had the centra and neural arches of cervicals 1-14, plus there were some appendicular elements on a shelf that we’d not yet gone to. But then today, Matt found this drawer:
It contained a nice selection of cervical ribs that were part of the same specimen. Jackpot!
[You might notice that some of them have the specimen number 584 written on them. The history is that CM 555 and CM 584 came out of the same quarry, but most of the bones were initially thought to belong to a camarasaur which was designated CM 584. John McIntosh (1981:25) identified them as belonging to an apatosaurine, and they are now considered to be part of CM 555. The limb bones are catalogued separately as CM 556, but recognised as likely belonging to the same individual.]
Most of these ribs had field numbers written on them which were able to use to associate them with individual cervicals; and those that lacked these numbers, we could associate anyway, because the options were limited to a relatively small number of gaps. The upshot is that we know which vertebra each of these belongs to.
We have both ribs of C6, which is probably the best preserved single vertebra — centrum and arch — so I was able to rebuild the vertebra from its component parts. Matt was impressed:
And to be fair, I was pretty darned impressed myself:
Truly, this is a beautiful specimen. It was already pretty lovely, but putting the cervical ribs in place changed everything. It was totally transformed from a nice diplodocid cervical to an absolutely rock-solid slam-dunk apatosaurine — one to make grown men weep.
Here it is in right posterolateral view, just generally being awesome.
References
- McIntosh, John S. 1981. Annotated catalogue of the dinosaurs (Reptilia, Archosauria) in the collections of Carnegie Museum of Natural History. Bulletin of the Carnegie Museum 18:1–67.
Apatosaurus is — still — Just Plain Wrong
November 30, 2018
We’ve posted a lot here about how crazy the cervical vertebrae of apatosaurines are (for example: 1, 2, 3), and especially the redonkulosity of their cervical ribs. But I think you will agree with me that this is still an arresting sight:
That’s MWC 1946, a mid-cervical from the Mygatt-Moore Quarry that was figured by Foster et al. (2018: fig. 18 A-B) and referred with the rest of the Mygatt-Moore apatosaur material to Apatosaurus cf. louisae (entirely correctly, in my view). This is a ventral view, with the condyle down by the scale bar.
Here’s the same thing cropped from the background to emphasize its unbelievableness:
and mirrored and restored a bit in GIMP to give a taste of its probable appearance in life (if you had an apatosaur, an x-ray machine, and a lot of confidence about not getting stepped on):
For obvious reasons, my nickname for this specimen is the Brontosmasher.
Keep in mind that the centrum was full of air in life, whereas the cervical ribs and the bony struts that support them are just huge slabs of bone. I strongly suspect that the volume of bone in the cervical ribs and their supporting struts is vastly more than in the centrum and neural arch. I will soon have the ability to test that hypothesis–I have this specimen on loan from Dinosaur Journey for CT scanning and 3D modeling. Watch this space.
Many thanks to Julia McHugh at Dinosaur Journey for access to the specimen and assistance during my frequent visits.
Reference
- Foster, J.R., Hunt-Foster, R.K., Gorman, M.A., II, Trujillo, K.C., Suarez, C.A., McHugh, J.B., Peterson, J.E., Warnock, J.P., and Schoenstein, H.E. 2018. Paleontology, taphonomy, and sedimentology of the Mygatt-Moore Quarry, a large dinosaur bonebed in the Morrison Formation, western Colorado—implications for Upper Jurassic dinosaur preservation modes: Geology of the Intermountain West 5: 23–93.