We’ve posted a lot here about how crazy the cervical vertebrae of apatosaurines are (for example: 1, 2, 3), and especially the redonkulosity of their cervical ribs. But I think you will agree with me that this is still an arresting sight:

That’s MWC 1946, a mid-cervical from the Mygatt-Moore Quarry that was figured by Foster et al. (2018: fig. 18 A-B) and referred with the rest of the Mygatt-Moore apatosaur material to Apatosaurus cf. louisae (entirely correctly, in my view). This is a ventral view, with the condyle down by the scale bar.

Here’s the same thing cropped from the background to emphasize its unbelievableness:

and mirrored and restored a bit in GIMP to give a taste of its probable appearance in life (if you had an apatosaur, an x-ray machine, and a lot of confidence about not getting stepped on):

For obvious reasons, my nickname for this specimen is the Brontosmasher.

Keep in mind that the centrum was full of air in life, whereas the cervical ribs and the bony struts that support them are just huge slabs of bone. I strongly suspect that the volume of bone in the cervical ribs and their supporting struts is vastly more than in the centrum and neural arch. I will soon have the ability to test that hypothesis–I have this specimen on loan from Dinosaur Journey for CT scanning and 3D modeling. Watch this space.

Many thanks to Julia McHugh at Dinosaur Journey for access to the specimen and assistance during my frequent visits.


  • Foster, J.R., Hunt-Foster, R.K., Gorman, M.A., II, Trujillo, K.C., Suarez, C.A., McHugh, J.B., Peterson, J.E., Warnock, J.P., and Schoenstein, H.E. 2018. Paleontology, taphonomy, and sedimentology of the Mygatt-Moore Quarry, a large dinosaur bonebed in the Morrison Formation, western Colorado—implications for Upper Jurassic dinosaur preservation modes: Geology of the Intermountain West 5: 23–93.

I am still building up to a big post on vertebral orientation, but in the meantime, check out this caudal vertebra of a Komodo dragon, Varanus komodoensis. This is right lateral view–the vert is strongly procoelous, and the articular ends of the centrum are really tilted relative to the long axis. I find this encouraging, for two reasons. First, it helped me clarify my thinking on how we ought to orient vertebrae, which Mike wrote about here and here. And second, it gives me some hope, because if we can figure out why tilting your articular surfaces makes functional sense in extant critters like monitors, maybe we can apply those lessons to sauropods and other extinct animals.

This is LACM Herpetology specimen 121971. Many thanks again to Neftali Camacho for access and assistance, and to Jessie Atterholt for basically doing all the other jobs while I was faffing about with this Komodo dragon.

Juvenile Tomistoma schlegelii, LACM Herpetology 166483, with me for scale. It wasn’t until I picked up the skull that I realized it was the same specimen I had looked at back when. I was looking at its neck in 2011, and its tail today, for reasons that will be revealed at the dramatically appropriate moment. I was only playing with the skull because it’s cute, an intricate little marvel of natural selection. Photos by Vanessa Graff (2011) and Jessie Atterholt (2018). Many thanks to collections manager Neftali Camacho for his hospitality and assistance both times!

Left lateral view

Have we ever posted decent photos of the Brachiosaurus altithorax caudals? Has anyone? I can’t remember either thing ever happening. When I need images of brachiosaur bits, including caudals, I usually go to Taylor (2009).

Taylor (2009: fig. 3)

Which is silly, not because Mike’s diagrams compiling old illustrations aren’t good – they definitely are – but because I’m sitting on a war chest of decent photos of the actual material. I am home sick with a sore throat today, and I can’t be arsed to (1) follow up on the “Down in Flames” post, (2) add anything thoughtful to the vertebral orientation discussion, or (3) crop or color-adjust these photos. You’re getting them just as they came out of my camera, from my trip to the Field Museum in 2012.

Here are the rest of the orthogonal views:

Right lateral view


Anterior view


Posterior view


Dorsal view of caudal 1


Dorsal view of caudal 2

And here’s a virtual walkaround using a series of oblique shots. Making a set like this is part of my standard practice now for important specimens during museum visits.








Now, I said up top that I wasn’t going to add anything thoughtful to the vertebral orientation discussion. I have thoughts on that, but I’m tired and hopped up on cold medicine and now ain’t the time. In lieu of blather, here are a couple of relevant photos.


I wanted to capture for my future self the pronounced non-orthogonality of the neural canal and centrum, so I rolled up a piece of paper and stuck it through the neural canal. I haven’t run the numbers, but in terms of “angle of the articular faces away from the neural canal”, these verts look like they’re right up there with my beloved Snowmass Haplocanthosaurus.

More on that next time, I reckon. In the meantime, all these photos are yours now (CC-BY, like everything on this site [that someone else hasn’t asserted copyright over]). Go have fun.


The most complete caudal vertebra of the Snowmass Haplocanthosaurus (Foster and Wedel 2014) in right lateral view: specimen photo, CT scout, 3D model, 3D print at 50% scale. The photos of the specimen and the 3D print probably match the worst with the others, because they are subject to perspective distortions that the digital reconstructions are free from.

Here’s one nice thing about having a 3D print of a specimen that you’re working on: you can hand it to other anatomists and paleontologists and get their take on its weird features, and it’s small enough and light enough that you can bring it halfway across the country to show in person to an entirely different set of colleagues. For all that we hear about humans being a visual species, we are also a tactile one, and in my admittedly limited experience, grokking morphology by handling 3D printed fossils is almost as good as – and for big, heavy, fragile sauropod vertebrae, sometimes better than – handling the real thing.

Many thanks to Julia McHugh at Dinosaur Journey for access to the specimen, John Yasmer at the Hemet Valley Medical Center for CT scanning, Thierra Nalley at Western University of Health Sciences for help with segmenting and visualization in Amira, and Gary Wisser, WesternU’s 3D visualization specialist, for the sweet print. Further bulletins as events warrant.


Foster, J.R., and Wedel, M.J. 2014. Haplocanthosaurus (Saurischia: Sauropoda) from the lower Morrison Formation (Upper Jurassic) near Snowmass, Colorado. Volumina Jurassica 12(2): 197–210. DOI: 10.5604/17313708 .1130144

Remember this broken Giraffatitan dorsal vertebra, which Janensch figured in 1950?

It is not only cracked in half, anteroposteriorly, it’s also unfused.

Here’s a better view of the broken face, more clearly showing that the neural canal is (a) much taller than wide – unlike all vertebrate spinal cords – and (b) almost entirely situated ventral to the neurocentral joint, getting close to the condition in the perverted Camarasaurus figured by Marsh.

Here’s a dorsal view, anterior to the top, with Mike’s distal forelimbs for scale.

Left lateral view.

Right lateral view – note the subtle asymmetries in the pneumatic foramen/camera. A little of that might be taphonomic distortion but I think much of it is real (and expected, most pneumatic systems produce asymmetries).

And postero-dorsal view, really showing the weird neural canal to good advantage. In this photo and in the pure dorsal view, you can see that the two platforms for the “neural arch” – which, as in the aforementioned Camarasaurus, is neither neural nor an arch – converge so closely as to leave only a paper-thin gap.

A few points arise. As explained in this post, it makes more sense to talk about the neurocentral joint migrating up or down relative to the neural canal, which is right where it always is, just dorsal to the articular faces of the centrum.

So far, in verts I’ve seen with “offset” neurocentral joints, the joint tends to migrate dorsally in dorsal vertebrae, putting the canal inside the developmental domain of the centrum (which now includes a partial or total arch in an architectural sense, even though the chunk of bone we normally call the neural arch develops as a separate bit) – as shown in the first post in this series. In sacral and caudal vertebrae, the situation is usually reversed, with the joint shifted down into what would normally be the centrum, and the canal then mostly or completely surrounded by the arch – as shown in the second post in the series. This post then doesn’t really add any new concepts, just a new example.

Crucially, we can only study this in the vertebrae of juveniles and subadults, because once the neurocentral joints are fused and remodeled, we usually can’t tell where the old joint surface was. So it’s like cervicodorsal and caudal dorsal pneumatic hiatuses, in that the feature of interest only exists for part of the ontogeny of the animal, and our sample size is therefore inherently limited. Not necessarily limited by material – most museums I’ve visited have a fair amount of juvenile and subadult material in the collections – but limited in published visibility, in that for many sauropods only the largest and most complete specimens have been monographically described.

So once again, the answer is simply to visit collections, look at lots of fossils, and stay alert for weird stuff – happily, a route that is open to everyone with a legitimate research interest.


  • Janensch, W. 1950. Die Wirbelsaule von Brachiosaurus brancai. Palaeontographica (Suppl. 7) 3:27-93.

I have used this photo in loads of talks, but as far as I can tell, this is the first time I’ve put it up on SV-POW! (I am certain that, having said that, someone will find a previous instance – if so, consider this an extremely inefficient and lazy form of search.) The vert is OMNH 1670, the most complete and nicest dorsal of the giant Oklahoma apatosaurine, probably a D5 or D6. That’s me back in 2004. Photo by my then fellow grad student in the Padian lab, Andrew Lee. I’m 6’2″ and have normally-proportioned human arms, but if you’re trying to figure out the scale, that vert is 135cm tall, with an anterior centrum face 38cm tall by 46cm wide (partly reconstructed but probably accurate). See this post for more details and a fairly exhaustive list of measurements.

Here’s a stupid thing: roughly 2-3 times a year I go to the field or to a museum and get hundreds of SV-POW!-able photos. Then I get back to the world and catch up on all of the work that piled up while I was away. And by the time I’m done with that, whatever motivating spark I had – to get some of those photos posted and talk about the exciting things I figured out – has dissipated.

Case in point – this bitchin’ shark, prepped in ventral view, which I saw last month in the natural history museum in Vienna. Look at that fat, muscular tail – this shark is swole.

That’s dumb. And this blog is in danger of slipping into senescence, and irrelevance.

So here’s my New Year blog resolution for 2018: I’m getting us back to our roots. I, or we – I am taking this plunge without consulting with Mike (surprise, buddy!) – will post a new, never-posted-before photo, at least once a week, for the whole year. It may not always be a sauropod vertebra, but if often will be, because that’s what I have the most of, and the most to yap about. And I will try to write something interesting about each photo, without lapsing into the logorrhea that has too often made this blog too exhausting to contemplate (at least from this side of the keyboard).

Wish me luck!