I was lucky enough to have Phil Mannion as one of the peer-reviewers for my recent paper (Taylor 2018) showing that Xenoposeidon is a rebbachisaurid. During that process, we got into a collegial disagreement about one of the autapomorphies that I proposed in the revised diagnosis: “Neural arch slopes anteriorly 30°–35° relative to the vertical”. (This same character was also in the original Xenoposeidon paper (Taylor and Naish 2007), in the slightly more assertive form “neural arch slopes anteriorly 35 degrees relative to the vertical”: the softening to “30°–35°” in the newer paper was one of the outcomes of the peer-review.)

The reason this is interesting is because the slope of the neural arch is measured relative to the vertical, which of course is 90˚ from the horizontal — but Phil’s comments (Mannion 2018) pushed me to ask myself for the first time: what actually is “horizontal”? We all assume we know horizontality when we see it, but what precisely do we mean by it?

Three notions of “horizontal”

The idiosyncratic best-preserved caudal vertebra of the Snowmass Haplocanthosaurus MWC 8028, illustrating three different versions of “horizontal”. A. horizontality defined by vertical orientation of the posterior articular surface. B. horizontality defined by horizontal orientation of the roof of the neural canal (in this case, rotated 24˚ clockwise relative to A). C. horizontality defined by optimal articulation of two instances of the vertebra, oriented such the a line joining the same point of both instances is horizontal (in this case, rotated 17˚ clockwise relative to A). Red lines indicate exact orthogonality according to the specified criteria. Green line indicate similar but diverging orientations: that of the not-quite-vertical anterior articular surface (A) and of the not-quite-horizontal base of the neural canal (B).

There are at least three candidate definitions, which we can see yield noticeably different orientations in the case of the Snowmass Haplocanthosaurus vertebra that Matt’s been playing with so much recently.

Definition A: articular surfaces vertical

In part A, I show maybe the simplest — or, at least, the one that is easiest to establish for most vertebrae. So long as you have a reasonably intact articular surface, just rotate the vertebra until that surface is vertical. If, as is often the case, the surface is not flat but concave or convex, then ensure the top and bottom of the surface are vertically aligned. This has the advantage of being easy to do — it’s what I did with Xenoposeidon — but it conceals complexities. Most obviously, what to do when the anterior and posterior articular surfaces are not parallel, in the 7th cervical vertebra of a giraffe?

Cervical vertebra 7 of Giraffa camelopardalis FMNH 34426, in left lateral view. Note that the centrum is heavily “keystoned” so that the anterior and posterior articular surfaces are 15-20˚ away from being parallel.

Another difficulty with this interpretation of horizontality is that it can make the neural canal jagged. Consider a sequence of vertebrae oriented as in part A, all at the same height: the neural canal would rise upwards along the length of each vertebra, before plunging down again on transitioning from the front of one to the back of the next. This is not something we would expect to see in a living animal: see for example the straight line of the neural canal in our hemisected horse head(*).

Definition B: neural canal horizontal

Which leads us to the second part of the illustration above. This time, the vertebra is oriented so that the roof of the neural canal is horizontal, which gives us a straight neural canal. Nice and simple, except …

Well, how do we define what’s horizontal for the neural canal? As the Haplocanthosaurus vertebra shows nicely, the canal is not always a nice, neat tube. In this vertebra, the floor is nowhere near straight, but dishes down deeply — which is why I used to the roof, rather than the floor of the canal. Rather arbitrary, I admit — especially as it’s often easier to locate the floor of the canal, as the anterior margin is often confluent with fossae anteriorly, posteriorly or both.

And as we can see, it makes a difference which we choose. The green line in Part B of the illustration above shows the closest thing to “horizontal” as it would be defined by the ventral margin of the neural canal — a straight line ignoring the depression and joining the anteriormost and posteriormost parts of the base of the canal. As you can see, it’s at a significantly different angle from the red line — about 6.5˚ out.

And then you have human vertebrae, where the dorsal margin of the neural canal is so convex in lateral view that you really can’t say where the anteriormost or posteriormost point is.

Left sides of hemisected human thoracic vertebrae, medial view. Note how ill-defined the dorsal margin of the neural canal is.

So can we do better? Can we find a definition of “horizontal” that’s not dependent of over-interpreting a single part of the vertebra?

Definition C: same points at same height in consecutive vertebrae

I’ve come to prefer a definition of horizontal that uses the whole vertebra — partly in the hope that it’s less vulnerable to yielding a distorted result when the vertebra is damaged. With this approach, shown in part C of the illustration above, we use two identical instances of the vertebrae, articulate them together as well as we can, then so orient them that the two vertebrae are level — that a line drawn between any point on one vertebra and its corresponding point on the other is horizontal. We can define that attitude of the vertebra as being horizontal.

Note that, while we use two “copies” of the vertebra in this method, we are nevertheless determining the horizontality of a single vertebra in isolation: we don’t need a sequence of consecutive vertebrae to have been preserved, in fact it doesn’t help if we do have them.

One practical advantage of this definition is that its unambiguous as regards what part of the vertebra is used: all of it; or any point on it, at the measurement stage. By contrast, method A requires us to choose whether to use the anterior or posterior articular surface, and method B requires a choice of the roof or floor of the neural canal.

Discussion

I have three questions, and would welcome any thoughts:

  1. Which of these definitions do you prefer, and why?
  2. Can you think of any other definitions that I missed?
  3. Does anyone know of any previous attempts to formalise this? Is it a solved problem, and Matt and I somehow missed it?

Answers in the comments, please!

References

(*) Yes, of course we have a hemisected horse head. What do you think we are, savages?

Advertisements

We’ve noted that the Taylor et al. SVPCA abstract and talk slides are up now up as part of the SVPCA 2015 PeerJ Collection, so anyone who’s interested has probably taken a look already to see what it was about. (As an aside, I am delighted to see that two more abstracts have been added to the collection since I wrote about it.)

It was my privilege to present a talk on our hypothesis that the distinctive and bizarre toblerone-shaped necks of apatosaurs were an adaptation for intraspecific combat. This talk was based on an in-progress manuscript that Matt is lead-authoring. Also on board is the third SV-POW!sketeer, the silent partner, Darren Naish; and artist/ethologist Brian Engh.

Here is our case, briefly summarised from five key slides. First, let’s take a look at what is distinctive in the morphology of apatosaur cervicals:

Screen Shot 2015-09-12 at 11.22.26

Here I’m using Brontosaurus, which is among the more extreme apatosaurs, but the same features are seen developed to nearly the same extent in Apatosaurus louisae, the best-known apatosaur, and to some extent in all apatosaurs.

Now we’ll look at the four key features separately.

Screen Shot 2015-09-12 at 11.22.57

First, the cervicals ribs of sauropods (and other saurischians, including birds) anchored the longus colli ventralis and flexor colli lateralis muscles — ventral muscles whose job is to pull the neck downwards. By shifting the attachments points of these muscles downwards, apatosaurs enabled them to work with improved mechanical advantage — that is, to bring more force to bear.

Screen Shot 2015-09-12 at 11.23.06

Second, by redirecting the diapophyses and parapophyses ventrally, and making them much more robust than in other sauropods, apatosaurs structured their neck skeletons to better resist ventral impacts.

Screen Shot 2015-09-12 at 11.23.15

Third, because the low-hanging cervical ribs created an inverted “V” shape below the centrum, they formed a protective cradle for the vulnerable soft-tissue that is otherwise exposed on the ventral aspect of the neck: trachea, oesophagus, major blood vessels. In apatosaurus, all of these would have been safely wrapped in layers of connective tissue and bubble-wrap-like pneumatic diverticula. The presence of diverticula ventral to the vertebral centrum is not speculative – most neosauropods have fossae on the ventral surfaces of their cervical centra, and apatosaurines tend to have foramina that connect to internal chambers as well (see Lovelace et al. 2007: fig. 4, which is reproduced in this post).

Screen Shot 2015-09-12 at 11.23.22

Fourth, most if not all apatosaurs have distinctive ventrally directed club-like processes on the front of their cervical ribs. (It’s hard to tell with Apatosaurus ajax, because the best cervical vertebra of that species is so very reconstructed.) How did these appear in life? It’s difficult to be sure. They might have appeared as a low boss; or, as with rhinoceros horns, they might even have carried keratinous spikes.

Putting it all together, we have an animal whose neck can be brought downwards with great force; whose neck was mechanically capable of resisting impacts on its ventral aspect; whose vulnerable ventral-side soft-tissue was well protected; and which probably had prominent clubs or spikes all along the ventral aspect of the neck. And all of this was accomplished at the cost of making the neck a lot heavier than it would have been otherwise. Off the cuff, it seems likely that the cervical series alone would have massed twice as much in apatosaurines as in diplodocines of the same neck length.

Doubling the mass of the neck is a very peculiar thing for a sauropod lineage to do – by the Late Jurassic, sauropods were the leading edge of an evolutionary trend to lengthen and lighten the neck that had been running for almost 100 million years, through basal ornithodirans, basal dinosauromorphs, basal saurischians, basal sauropodomorphs, and basal sauropods. Whatever the selective pressures that led apatosaurines to evolve such robust and heavy necks, they must have been compelling.

The possibility that apatosaurs were pushing or crashing their necks ventrally in some form of combat accounts for all of the weird morphology documented above, and we know that sexual selection is powerful force that underlies a lot of bizarre structures in extant animals, and probably in extinct ornithodirans as well (see Hone et al. 2012, Hone and Naish 2013).

What form of combat, exactly? There are various possibilities, which we’ll discuss another time. But I’ll leave you with Brian Engh’s beautiful illustration of one possible form of combat: a powerful impact of one neck brought down onto the dorsal aspect of another.

ApatoNeckSmashRoughWeb

We’re aware that this proposal is necessarily somewhat speculative. But we’re just not able to see any other explanation for the distinctive apatosaur neck. Even if we’re wrong about the ventrolateral processes on the cervical ribs supporting bosses or spikes, the first three points remain true, and given how they fly in the face of sauropods’ long history of making their necks lighter, they fairly cry out for explanation. If anyone has other proposals, we’ll be happy to hear them.

References

  • Hone, D. W., Naish, D., & Cuthill, I. C. (2012). Does mutual sexual selection explain the evolution of head crests in pterosaurs and dinosaurs?. Lethaia 45(2):139-156.
  • Hone, D. W. E., & Naish, D. (2013). The ‘species recognition hypothesis’ does not explain the presence and evolution of exaggerated structures in non‐avialan dinosaurs. Journal of Zoology 290(3):172-180.
  • Lovelace, D. M., Hartman, S. A., & Wahl, W. R. (2007). Morphology of a specimen of Supersaurus (Dinosauria, Sauropoda) from the Morrison Formation of Wyoming, and a re-evaluation of diplodocid phylogeny. Arquivos do Museu Nacional, Rio de Janeiro 65(4):527-544.
Cervical rib cross-sections from Mamenchisaurus Giraffatitan and Diplodocus Klein et al 2012 fig 1

Klein et al. (2012: fig. 1)

We have good descriptions of the proximal parts of the cervical ribs for lots of sauropods. We also have histological cross-sections of a few, mostly thanks to the work of Nicole Klein and colleagues (Klein et al. 2012, Preuschoft and Klein 2013), although histological cross-sections of ribs were also figured as long ago as 1999, by Dalla Vecchia (1999: figs. 29 and 30), and as recently as this month, by Lacovara et al. (2014: supplementary figure 4).

What we have very, very few of is series of cross-sections that show how the cr0ss-section of a cervical rib changes along its length. There may be more out there (and if I have forgotten any, please remind me!), but at the moment I can only think of three such figures: two in Janensch (1950: figs. 83 and 85), both on Giraffatitan, and one in Klein et al. (2012: fig. 1), with cross-sections from Mamenchisaurus, Giraffatitan, and Diplodocus (shown at the top of the post).

Sauroposeidon cervical rib cross-sections v3

 

Rarer still are images that show cross-sections of overlapped cervical ribs, stacked in situ. You could use the information in Janensch (1950: figs. 83 and 85) to generate the stacked cross-sections, but you wouldn’t know the spacing between the ribs as they were in the ground. I think the image just above, of the cervical rib bundles in the Sauroposeidon holotype, OMNH 53062, may be the first of its kind–again, if you know of any others, please let me know. I took the notes for this figure back in 2004, sitting down with the holotype and some digital calipers to make sure I could scale everything correctly, I just hadn’t ever put it into a presentable form until now. The first C6 section (blue V-shape) is from right at the root where the capitulum and tuberculum meet and the posterior shaft of the rib begins.

It is by now well-understood that the long cervical ribs of sauropods and other dinosaurs are ossified tendons of the long hypaxial neck muscles, specifically the longus colli ventralis and flexor colli lateralis. We argued this back in 200o on comparative anatomical grounds (Wedel et al. 2000b: pp. 378-379), and it has now been demonstrated histologically (Klein et al. 2012, Lacovara et al. 2014). The system of stacked tendons is also found in most birds. Here’s the bundle of stacked tendons in a rhea neck, only slightly fanned out:

Rhea ventral tendons stacked - full

And the same neck, with both the epaxial and hypaxial muscles more fully separated:

Rhea neck muscles fanned - full

What I’d really like is an MRI of a rhea or ostrich neck, showing the stacked tendons and their associated belts of muscle, to compare with the stacked cervical ribs of Sauroposeidon and other sauropods. Anyone know of any?

Incidentally, I think the cervical ribs and cervical rib bundles of sauropods are one line of evidence for sauropod necks having been rather slenderly-muscled. The long, multi-segment muscles like the longus colli ventralis are the outermost components of the muscular envelope that surrounds the vertebrae, as you can see in the rhea dissection photos. In sauropod specimens with articulated cervical ribs, the ribs do not deviate from one another or fan out. Rather, they lie in vertically stacked bundles that run from one capitulum-tuberculum intersection to the next. So the depth of that intersection–the “root” of the cervical rib of any given vertebra–plus the thickness of the ribs stacked underneath it, is pretty much the thickness of the muscular envelope around the neck, or at least around the ventral half. And the cervical ribs are typically pretty close to the vertebral centra–only weirdos like Apatosaurus and Erketu displace them very far ventrally (see Taylor and Wedel 2013a: fig. 7 and this post). So, thin jackets of muscle around proportionally large vertebrae–or, if you like, corn-on-the-cob rather than shish-kebabs.

As for why sauropods have long cervical ribs, Mike and I discussed some possibilities in our 2013 PeerJ paper (Taylor and Wedel 2013a), and Preuschoft and Klein addressed the issue last fall in PLOS ONE (Preuschoft and Klein 2013). My favorite hypothesis is that long tendons allow an animal to shift the bulk of the muscle–and therefore the center of gravity–toward the base of the neck, but that long unossified tendons can be distorted through stretching, which wastes muscular energy. Ossifying those long tendons is like putting bony wheelbarrow handles on each vertebra, allowing the muscles to move the vertebra from a distance without so much wasted energy, and probably with finer positional control.

That’s a nifty hypothesis in need of testing, anyway. In fact, cervical ribs and their associated muscles could stand a lot more attention on both the descriptive and analytical fronts. I know that Liguo Li has some research in the works on different conformations of hypaxial muscles, tendons, and cervical ribs in birds (you know, when she’s not describing bizarre new titanosaurs like Yongjinglong — see Li et al. 2014). If you saw Peter Dodson give their talk at SVP last fall, you probably remember some stunning images of dissected bird necks. As a famous legislator once said, we shall watch her career with great interest.

References

 

You know the drill: lotsa pretty pix, not much yap.

IMG_5024

Our first stop of the day was the Fruita Paleontological Area, which has a fanstastic diversity of Morrison animals, including the mammal Fruitafossor and the tiny ornithopod Fruitadens.

IMG_5027

Plus it’s a pretty epic landscape, especially with the clouds and broken light we had this morning.

IMG_5039

I found a bone! Several bits, actually, a few meters away from the Fruitadens type quarry. I’d like to think that this proximal femur might be Fruitadens, but I don’t know the diagnostic characters and haven’t had time to look them up. Anyone know how diagnostic this honorary shard of excellence might be?

IMG_5052

After lunch, John Foster took us on a short hike to the quarry where Elmer Riggs got the back half of the Field Museum Apatosaurus. The front half came from a site in southern Utah, several decades later.

IMG_5056

The locals brought Riggs out in the 1930s for the dedication of two monuments–this one at the Apatosaurus quarry, and another like it at the Brachiosaurus quarry some miles away. Tragically, both monuments have the names of the dinosaurs misspelled!

IMG_5088

In the afternoon we visited the Mygatt-Moore Quarry and the Camarasaurus site in Rabbit Valley. Can you see the articulated Camarasaurus neck in this photo?

IMG_5076

Here’s a hint: the neural arches of two posterior cervical vertebrae in transverse horizontal cross-section.

IMG_5092

This Camarasaurus is apparently a permanent feature. If you’re wondering why no-one has excavated it, it’s because it’s buried in sandstone that is stupid-dense. The expenditure of time and resources just isn’t worth it, when right down the hill dinosaurs are pouring out of the much softer sediments of the Mygatt-Moore Quarry like water from a hydrant. This is the lesson I am learning about the Morrison: finding dinosaurs is easy. Finding dinosaurs you can get out of the ground and prepare–that’s something else.

IMG_5094

Our last stop of the day was Gaston Design, where Rob Gaston showed us how he molds, casts, and mounts everything from tiny teeth to good-sized skeletons.

IMG_5110

Like this Deinosuchus that is about to chomp on Jim Kirkland. Jim doesn’t look too worried.

IMG_5117

Here’s a nice cast of a busted sauropod dorsal, probably from Apatosaurus or Diplodocus, showing the pneumatic internal structure. Compare to similar views of dorsals in this post and this one. This is actually one half of a matched set that includes both halves of the centrum. I left with one of those sets of my own, a few dollars poorer and a whole lot happier.

IMG_5120

The end–for now.

Illustration talk slide 47

Illustration talk slide 48

Illustration talk slide 49

Illustration talk slide 50

That last one really hurts. Here’s the original image, which should have gone in the paper with the interpretive trace next to it rather than on top of it:

Sauroposeidon C6-C7 scout

The rest of the series.

Papers referenced in these slides:

Illustration talk slide 44

Illustration talk slide 45

Illustration talk slide 46

On that last slide, I also talked about two further elaborations: figures that take up the entire page, with the caption on a separate (usually facing) page, and side title figures, which are wider than tall and get turned on their sides to better use the space on the page.

Also, if I was doing this over I’d amend the statement on the last slide with, “but it doesn’t hurt you at all to be cognizant of these things, partly because they’re easy, and partly because your paper may end up at an outlet you didn’t anticipate when you wrote it.”

And I just noticed that the first slide in this group has the word ‘without’ duplicated. Jeez, what a maroon. I’ll try to remember to fix that before I post the whole slide set at the end of this exercise.

A final point: because I am picking illustrations from my whole career to illustrate these various points, almost all fail in some obvious way. The photos from the second slide should be in color, for example. When I actually gave this talk, I passed out reprints of several of my papers and said, “I am certain that every single figure I have ever made could be improved. So as you look through these papers, be thinking about how each one could be made better.”

Previous posts in this series.

References

[This is part 4 in an ongoing series on our recent PLOS ONE paper on sauropod neck cartilage. See also part 1, part 2, and part 3.]

Big Bend Vanessa 182 small

Weird stuff on the ground, Big Bend, 2007.

Here’s a frequently-reproduced quote from Darwin:

About thirty years ago there was much talk that geologists ought only to observe and not theorise; and I well remember some one saying that at this rate a man might as well go into a gravel-pit and count the pebbles and describe the colours. How odd it is that anyone should not see that all observation must be for or against some view if it is to be of any service!

It’s from a letter to Henry Fawcett, dated September 18, 1861, and you can read the whole thing here.

I’ve known this quote for ages, having been introduced to it at Berkeley–a copy used to be taped to the door of the Padian Lab, and may still be. It’s come back to haunt me recently, though. An even stronger version would run something like, “If you don’t know what you’re looking for, you won’t make the observation in the first place!”

OLYMPUS DIGITAL CAMERA

Kent Sanders looking at scans of BYU 12613, a posterior cervical of either Kaatedocus or an anomalously small Diplodocus, at the University of Utah in May, 2008.

For example: I started CT scanning sauropod vertebrae with Rich Cifelli and Kent Sanders back in January, 1998. Back then, I was interested in pneumaticity, so that’s what I looked for, and that’s what I found–work which culminated in Wedel et al. (2000) and Wedel (2003). It wasn’t until earlier this year that I wondered if it would be possible to determine the spacing of articulated vertebrae from CT scans. So everything I’m going to show you, I technically saw 15 years ago, but only in the sense of “it crossed my visual field.” None of it registered at the time, because I wasn’t looking for it.

A corollary I can’t help noting in passing: one of the under-appreciated benefits of expanding your knowledge base is that it allows you to actually make more observations. Many aspects of nature only appear noteworthy once you have a framework in which to see them.

OLYMPUS DIGITAL CAMERA

BYI 12613 going through a CT scanner at the University of Utah medical center. We were filming for the “Megasaurus” episode of Jurassic CSI. That shoot was crazy fun.

So anyway, the very first specimen we scanned way back when was the most anterior of the three plaster jackets that contain the four cervical vertebrae that make up OMNH 53062, which was destined to become the holotype of Sauroposeidon. I’ve written about the taphonomy of that specimen here, and you can read more about how it was excavated in Wedel and Cifelli (2005). We scanned that jacket first because, although the partial vertebrae it contains are by far the most incomplete of the four, the jacket is a lot smaller and lighter than the other two (which weigh hundreds of pounds apiece). Right away we saw internal chambers in the vertebrae, and that led to all of the pneumaticity work mentioned above.

Sauroposeidon C5 cross section Wedel 2007b fig 14

Internal structure of a cervical vertebra of Sauroposeidon, OMNH 53062. A, parts of two vertebrae from the middle of the neck. The field crew that dug up the bones cut though one of them to divide the specimen into manageable pieces. B, cross section of C6 in posterior view at the level of the break, traced from a CT image and photographs of the broken end. The left side of the specimen was facing up in the field and the bone on that side is badly weathered. Over most of the broken surface the internal structure is covered by plaster or too damaged to trace, but it is cleanly exposed on the upper right side (outlined). C, the internal structure of that part of the vertebra, traced from a photograph. The arrows indicate the thickness of the bone at several points, as measured with a pair of digital calipers. The camellae are filled with sandstone. Wedel (2007: fig. 14).

Happily for me, that first jacket contains not only the posterior two-thirds of the first vertebra (possibly C5), but also the front end of the second vertebra. Whoever decided to plow through the second vertebra to divide the specimen into manageable chunks in the field made a savvy choice. Way back in 2004 I realized that the cut edge of the second vertebra was not obscured by plaster, and therefore the internal structure could be seen and measured directly, which is a lot cleaner than relying on the artifact-heavy CT scans. (The CT scans are noisy because the hospital machines we had access to start to pant a bit when asked to punch x-rays through specimens this large and dense.) A figure derived from that work made it into a couple of papers and this post, and appears again above.

But that’s pneumaticity, which this post is allegedly not about. The cut through the second vertebra was also smart because it left the intervertebral joint intact.

Figure 11. Fifth and partial sixth cervical vertebrae of Sauroposeidon. Photograph and x-ray scout image of C5 and the anterior portion of C6 of Sauroposeidon OMNH 53062 in right lateral view. The anterior third of C5 eroded away before the vertebra was collected. C6 was deliberately cut through in the field to break the multi-meter specimen into manageable pieces for jacketing (see [37] for details). Note that the silhouettes of the cotyle of C5 and the condyle of C6 are visible in the x-ray.

Fifth and partial sixth cervical vertebrae of Sauroposeidon.
Photograph and x-ray scout image of C5 and the anterior portion of C6 of Sauroposeidon OMNH 53062 in right lateral view. The anterior third of C5 eroded away before the vertebra was collected. C6 was deliberately cut through in the field to break the multi-meter specimen into manageable pieces for jacketing (see Wedel and Cifelli 2005 for details). Note that the silhouettes of the cotyle of C5 and the condyle of C6 are visible in the x-ray. Taylor and Wedel (2013: figure 11).

Here are a photo of the jacket and a lateral scout x-ray. The weird rectangles toward the left and right ends of the x-ray are boards built into the bottom of the jacket to strengthen it.

Figure 12. CT slices from fifth cervical vertebrae of Sauroposeidon. X-ray scout image and three posterior-view CT slices through the C5/C6 intervertebral joint in Sauroposeidon OMNH 53062. In the bottom half of figure, structures from C6 are traced in red and those from C5 are traced in blue. Note that the condyle of C6 is centered in the cotyle of C5 and that the right zygapophyses are in articulation.

CT slices from fifth cervical vertebrae of Sauroposeidon.
X-ray scout image and three posterior-view CT slices through the C5/C6 intervertebral joint in Sauroposeidon OMNH 53062. In the bottom half of figure, structures from C6 are traced in red and those from C5 are traced in blue. Note that the condyle of C6 is centered in the cotyle of C5 and that the right zygapophyses are in articulation. Taylor and Wedel (2013: figure 12).

And here’s a closeup of the C5/C6 joint, with the relevant radiographs and tracing. The exciting thing here is that the condyle is centered almost perfectly in the cotyle, and the zygapophyses are in articulation. Together with the lack of disarticulation in the cervical rib bundle (read more about that here and in Wedel et al. 2000), these things suggest to us that the vertebrae are spaced pretty much as they were in life. If so, then the spacing between the vertebrae now tells us the thickness of the soft tissue that separated the vertebrae in life.

I should point out here that we can’t prove that the spacing between the vertebrae is still the same as it was in life. But if some mysterious force moved them closer together or farther apart, it did so (1) without  decentering the condyle of C6 within the cotyle of C5, (2) without moving the one surviving zygapophyseal joint out of contact, and (3) without disarticulating the cervical ribs. The cervical ribs were each over 3 meters long in life and they formed vertically-stacked bundles on either side below the vertebrae; that’s a lot of stuff to move just through any hypothetical contraction or expansion of the intervertebral soft tissues after death. In fact, I would not be surprised if the intervertebral soft tissues did contract or expand after death–but I don’t think they moved the vertebrae, which are comparatively immense. The cartilage probably pulled away from the bone as it rotted, allowing sediment in. Certainly every nook and cranny of the specimen is packed with fine-grained sandstone now.

Anyway, barring actual preserved cartilage, this is a best-case scenario for trying to infer intervertebral spacing in a fossil. If articulation of the centra, zygs, and cervical ribs doesn’t indicate legitimate geometry, nothing ever will. So if we’re going to use the fossils to help settle this at all, we’re never going to have a better place to start.

Figure 14. Geometry of opisthocoelous intervertebral joints. Hypothetical models of the geometry of an opisthocoelous intervertebral joint compared with the actual morphology of the C5/C6 joint in Sauroposeidon OMNH 53062. A. Model in which the condyle and cotyle are concentric and the radial thickness of the intervertebral cartilage is constant. B. Model in which the condyle and cotyle have the same geometry, but the condyle is displaced posteriorly so the anteroposterior thickness of the intervertebral cartilage is constant. C. the C5/C6 joint in Sauroposeidon in right lateral view, traced from the x-ray scout image (see Figure 12); dorsal is to the left. Except for one area in the ventral half of the cotyle, the anteroposterior separation between the C5 cotyle and C6 condyle is remarkably uniform. All of the arrows in part C are 52 mm long.

Geometry of opisthocoelous intervertebral joints.
Hypothetical models of the geometry of an opisthocoelous intervertebral joint compared with the actual morphology of the C5/C6 joint in Sauroposeidon OMNH 53062. A. Model in which the condyle and cotyle are concentric and the radial thickness of the intervertebral cartilage is constant. B. Model in which the condyle and cotyle have the same geometry, but the condyle is displaced posteriorly so the anteroposterior thickness of the intervertebral cartilage is constant. C. the C5/C6 joint in Sauroposeidon in right lateral view, traced from the x-ray scout image (see Figure 12); dorsal is to the left. Except for one area in the ventral half of the cotyle, the anteroposterior separation between the C5 cotyle and C6 condyle is remarkably uniform. All of the arrows in part C are 52 mm long. Taylor and Wedel (2013: figure 14).

So, by now, you know I’m a doofus. I have been thinking about this problem literally for years and the data I needed to address it was sitting on my hard drive the entire time. One of the things I pondered during those lost years is what the best shape for a concave-to-convex intervertebral joint might be. Would the best spacing be radially constant (A in the figure above), or antero-posteriorly constant (B), or some other, more complicated arrangement? The answer in this case surprised me–although the condyle is a lot smaller in diameter than the cotyle, the anteroposterior separation between them in almost constant, as you can see in part C of the above figure.

Figure 13. Joint between sixth and seventh cervicals vertebrae of Sauroposeidon. X-ray scout image of the C6/C7 intervertebral joint in Sauroposeidon OMNH 53062, in right lateral view. The silhouette of the condyle is traced in blue and the cotyle in red. The scale on the right is marked off in centimeters, although the numbers next to each mark are in millimeters.

Joint between sixth and seventh cervicals vertebrae of Sauroposeidon.
X-ray scout image of the C6/C7 intervertebral joint in Sauroposeidon OMNH 53062, in right lateral view. The silhouette of the condyle is traced in blue and the cotyle in red. The scale on the right is marked off in centimeters, although the numbers next to each mark are in millimeters. Taylor and Wedel (2013: figure 13).

Don’t get too worked up about that, though, because the next joint is very different! Here’s the C6/C7 joint, again in a lateral scout x-ray, with the ends of the bones highlighted. Here the condyle is almost as big in diameter as the cotyle, but it is weirdly flat. This isn’t a result of overzealous prep–most of the condyle is still covered in matrix, and I only found its actual extent by looking at the x-ray. This is flatter than most anterior dorsal vertebrae of Apatosaurus–I’ve never seen a sauropod cervical with such a flat condyle. Has anyone else?

The condyle of C6 is a bit flatter than expected, too–certainly a lot flatter than the cervical condyles in Giraffatitan and the BYU Brachiosaurus vertebrae. As we said in the paper,

It is tempting to speculate that the flattened condyles and nearly constant thickness of the intervertebral cartilage are adaptations to bearing weight, which must have been an important consideration in a cervical series more than 11 meters long, no matter how lightly built.

Anyway, obviously here the anteroposterior distance between condyle and cotyle could not have been uniform because they are such different shapes. Wacky. The zygs are missing, so they’re no help, and clearly the condyle is not centered in the cotyle. Whether this posture was attainable in life is debatable; I’ve seen some pretty weird stuff. In any case, we didn’t use this joint for estimating cartilage thickness because we had no reason to trust the results.

Figure 15. First and second dorsal vertebrae of Apatosaurus CM 3390. Articulated first and second dorsal vertebrae of Apatosaurus CM 3390. A. Digital model showing the two vertebrae in articulation, in left lateral (top) and ventral (bottom) views. B-G. Representative slices illustrating the cross-sectional anatomy of the specimen, all in posterior view. B. Slice 25. C. Slice 31. D. Slice 33. E. Slice 37. F. Slice 46. G. Slice 61. Orthogonal gaps are highlighted where the margins of the condyle and cotyle are parallel to each other and at right angles to the plane of the CT slice. 'Zygs' is short for 'zygapophyses', and NCS denotes the neurocentral synchondroses.

First and second dorsal vertebrae of Apatosaurus CM 3390.
Articulated first and second dorsal vertebrae of Apatosaurus CM 3390. A. Digital model showing the two vertebrae in articulation, in left lateral (top) and ventral (bottom) views. B-G. Representative slices illustrating the cross-sectional anatomy of the specimen, all in posterior view. B. Slice 25. C. Slice 31. D. Slice 33. E. Slice 37. F. Slice 46. G. Slice 61. Orthogonal gaps are highlighted where the margins of the condyle and cotyle are parallel to each other and at right angles to the plane of the CT slice. ‘Zygs’ is short for ‘zygapophyses’, and NCS denotes the neurocentral synchondroses. Taylor and Wedel (2013: figure 15).

Kent Sanders and I had also scanned several of the smaller sauropod vertebrae from the Carnegie collection (basically, the ones that would fit in the trunk of my car for the drive back to Oklahoma). Crucially, we’d scanned a couple of sets of articulated vertebrae, CM 3390 and CM 11339, both from juvenile individuals of Apatosaurus. In both cases, the condyles and cotyles are concentric (that’s what the ‘orthogonal gaps’ are all about in the above figure) and the zygs are in articulation, just as in Sauroposeidon. These are dorsals, so we don’t have any cervical ribs here to provide a third line of evidence that the articulation is legit, but all of the evidence that we do have is at least consistent with that interpretation.

So, here’s an interesting thing: in CM 3390, above, the first dorsal is cranked up pretty sharply compared to the next one, but the condyle is still centered in the cotyle and the zygs are in articulation. Now, the vertebrae have obviously been sheared by taphonomic deformation, but that seems to have affected both vertebrae to the same extent, and it’s hard to imagine some kind of taphonomic pressure moving one vertebra around relative to the next. So I think it’s at least plausible that this range of motion was achievable in life. Using various views and landmarks, we estimate the degree of extension here somewhere between 31 and 36 degrees. That’s a lot more than the ~6 degrees estimated by Stevens and Parrish (1999, 2005). And, as we mentioned in the paper, it nicely reinforces the point made by Upchurch (2000), that flexibility in the anterior dorsals should be taken into account in estimating neck posture and ROM.

Figure 16. Dorsal vertebrae of Apatosaurus CM 11339. Articulated middle or posterior dorsal vertebrae of Apatosaurus CM 11339. A. X-ray scout image showing the two vertebrae in articulation, in left lateral view. B–D. Slices 39, 43 and and 70 in posterior view, showing the most anterior appearance of the condyles and cotyles.

Dorsal vertebrae of Apatosaurus CM 11339.
Articulated middle or posterior dorsal vertebrae of Apatosaurus CM 11339. A. X-ray scout image showing the two vertebrae in articulation, in left lateral view. B–D. Slices 39, 43 and and 70 in posterior view, showing the most anterior appearance of the condyles and cotyles. Taylor and Wedel (2013: figure 16).

Here’s our last specimen, CM 11339. No big surprises here, although if you ever had a hard time visualizing how hyposphenes and hypantra fit together, you can see them in articulation in parts C and D (near the top of the specimen). Once again, by paging through slices we were able to estimate the separation between the vertebrae. Incidentally, the condyle IS centered in the cotyle here, it just doesn’t look that way because the CT slice is at an angle to the joint–see the lateral scout in part A of the figure to see what I mean.

So, what did we find? In Sauroposeidon the spacing between C5 and C6 is 52mm. That’s pretty darn thick in absolute terms–a shade over two inches–but really thin in relative terms–only a little over 4% of the length of each vertebra. In both of the juvenile Apatosaurus specimens, the spacing between the vertebrae was about 14mm (give or take a few because of the inherent thickness of the slices; see the paper for details on these uncertainties).

Now, here’s an interesting thing: we can try to estimate the intervertebral spacing in an adult Apatosaurus in two ways–by scaling up from the juvenile apatosaurus, or by scaling sideways from Sauroposeidon (since a big Apatosaurus was in the same ballpark, size-wise)–and we get similar answers either way.

Scaling sideways from Sauroposeidon (I’m too lazy to write anymore so I’m just copying and pasting from  the paper):

Centrum shape is conventionally quantified by Elongation Index (EI), which is defined as the total centrum length divided by the dorsoventral height of the posterior articular surface. Sauroposeidon has proportionally very long vertebrae: the EI of C6 is 6.1. If instead it were 3, as in the mid-cervicals of Apatosaurus, the centrum length would be 600 mm. That 600 mm minus 67 mm for the cotyle would give a functional length of 533 mm, not 1153, and 52 mm of cartilage would account for 9.8% of the length of that segment.

Scaling up from the juveniles: juvenile sauropods have proportionally short cervicals (Wedel et al. 2000). The scanned vertebrae are anterior dorsals with an EI of about 1.5. Mid-cervical vertebrae of this specimen would have EIs about 2, so the same thickness of cartilage would give 12mm of cartilage and 80mm of bone per segment, or 15% cartilage per segment. Over ontogeny the mid-cervicals telescoped to achieve EIs of 2.3–3.3. Assuming the cartilage did not also telescope in length (i.e., didn’t get any thicker than it got taller or wider), the ratio of cartilage to bone would be 12:120 (120 from 80*1.5), so the cartilage would account for 10% of the length of the segment–almost exactly what we got from the based-on-Sauroposeidon estimate. So either we got lucky here with our tiny sample size and truckloads of assumptions, or–just maybe–we discovered a Thing. At least we can say that the intervertebral spacing in the Apatosaurus and Sauroposeidon vertebrae is about the same, once the effects of scaling and EI are removed.

Finally, we’re aware that our sample size here is tiny and heavily skewed toward juveniles. That’s because we were just collecting targets of opportunity. Finding sauropod vertebrae that will fit through a medical-grade CT scanner is not easy, and it’s just pure dumb luck that Kent Sanders and I had gotten scans of even this many articulated vertebrae way back when, since at the time we were on the hunt for pneumaticity, not intervertebral joints or their soft tissues. As Mike has said before, we don’t think of this paper as the last word on anything. It is, explicitly, exploratory. Hopefully in a few years we’ll be buried in new data on in-vivo intervertebral spacing in both extant and extinct animals. If and when that avalanche comes, we’ll just be happy to have tossed a snowball.

References