Things to Make and Do, part 7: fun with rhea necks
February 12, 2011
When you last saw this rhea neck, I was squeezing a thin, unpleasant fluid out of its esophagus. Previous rhea dissection posts are here and here; you may also be interested in my ratite clearing house post.
We did that dissection back in 2006. Since then I finished my dissertation, got a tenure-track job, and moved twice. The rhea neck followed me, living in a succession of freezers until last spring.
Last spring I thawed it out, straightened it (it had been coiled up in a gallon ziploc), refroze it, and had it cut in half sagittally with a bandsaw. I did all of this for a project that is not yet ready to see the light of day, but there’s a ton of cool morphology here that I am at liberty to discuss, so let’s get on with it.
Throughout the post, click on the images for full resolution, unlabeled versions.
In the image above, you’ll notice that the saw cut was just slightly to the left of the midline, so that almost the entire spinal cord was left in the right half of the neck (the one toward the top of the image; the left half, below, is upside down, i.e. ventral is towards the top of the picture). The spinal cord is the prominent yell0w-white stripe running down the middle of the hemisectioned neck. It’s a useful landmark because it stands out so well. Dorsal to it are the neural arches, spines*, and zygapophyses of the vertebrae, and epaxial muscles; ventral to it are the vertebral centra and the hypaxial muscles.
* If you want to call them that–some of them are barely there!
Here’s the large supraspinous ligament (lig. elasticum interspinale), which is similar to the nuchal ligament of mammals but independently derived. Compare to the nuchal ligament of a horse (image borrowed from here):
Note how the actual profile of the neck is vastly different from what you’d suspect based on the skeleton alone. This is one of the reasons that necks lie. For more on the supraspinous ligament in rheas and its implications for sauropods, see Tsuihiji (2004) and Schwarz et al. (2007).
Birds also have very large interspinous ligaments (lig. elasticum interlaminare), each of which connects the neural spines of two adjacent vertebrae. In the above photo, the blunt probe is passing under (= lateral to) the unpaired, midline interspinous ligament. Rheas are unusual among birds in having such a large supraspinous ligament, and you can see that this interspinous ligament is almost as big. If you tear down the neck of a chicken or turkey, you will find huge interspinous ligaments, and the supraspinous ligament will be tiny if you can identify it at all.
Here’s something I don’t think we’ve ever shown before here on SV-POW!: a photograph of an actual pneumatic diverticulum. That’s the dark hole in the middle of the photo. You can see that we’re in the left half of the neck, lateral to the spinal cord, almost to the postzygapophysis, the articular surface of which is more lateral still (“below” or “deep to” the surface you see exposed in this cut). Usually at each intervertebral joint there is a connection between the lateral pneumatic diverticula that run up the side of the cervical column and pass through the cervical rib loops and the supramedullary diverticula that lie dorsal to the spinal cord inside the neural canal. That connecting diverticulum is the one exposed here.
NB: diverticulum is singular, diverticula is plural. There are no diverticulae or, heaven forbid, diverticuli, although these terms sometimes crop up in the technical literature, erroneously. (I hesitate to point this out, not because it’s not important, but because I’ll be lucky if I didn’t screw up a Latin term elsewhere in the post!)
Here are pneumatic diverticula in a transverse CT section of an ostrich neck (Wedel 2007b: fig. 6; compare to Wedel 2003: fig. 2, another slice from the same neck). In this view, bone is white, muscles and other soft tissues are gray, and air spaces are black. A, lateral diverticula running alongside the vertebral centra. B, air spaces inside the bone. C, supramedullary airways above the spinal cord. This section is close to the posterior end of a vertebra; the flat-bottomed wing-like processes sticking out to either side are the anterior portions of the postzygapophyses. If the slice was a few mm more posterior, we would see the prezygapophyses of the preceding vertebra in contact with them. Also, the vertical bars of bone connecting the centrum to the postzygs would pinch out, and we’d see the diverticula connecting the lateral (A) and supramedullary (C) airways–that’s the diverticulum revealed in the photo two images up.
Here’s another cool section showing a diverticulum and some muscles. Note the short interspinous muscles, which connect the neural spines of adjacent vertebrae. The probe indicates another open diverticulum, and the very tip of the probe is under one of the very thin layers of epithelium that line the diverticula. You can see that this diverticulum lies on the dorsal surface of the vertebra, posterior to the prezygapophysis and anterior to the neural spine. This supravertebral diverticulum is near and dear to my heart, because I have published an image of its traces before.
Lots going on in this photo (remember that you can click for an unlabeled version). This is a middle cervical vertebra of an emu, in anterodorsal view, with anterior towards the bottom of the picture. Bonus geek points if you recognized it as the basis for Text-fig. 9 in Wedel (2007a). I published this photo in that paper because it so nicely illustrates how variable the skeletal traces of pneumaticity can be, even from left to right in a single bone. On the right side of the photo (left side of the vertebra), the bone resorption adjacent to the supravertebral diverticulum produced a pneuamtic fossa, but one without distinct bony margins or a pneumatic foramen. On the other side, the fossa contains a pneumatic foramen which communicates with the internal air spaces, but the fossa is otherwise identical. Fossae like the one on the right are a real pain in the fossil record, because they might be pneumatic, but then again they might not be; such shallow, indistinct fossae can house other soft tissues, including cartilage and fat. This is what I was talking about when I wrote (Wedel 2009: p. 624):
If progressively more basal taxa are examined in the quest to find the origin of PSP [postcranial skeletal pneumaticity], the problem is not that evidence of PSP disappears entirely. It is that the shallow, unbounded fossae of basal dinosaurs are no longer diagnostic for pneumaticity.
For more on that problem, see Wedel (2007a) and the post, “X-Men Origins: Pneumaticity”.
The other labelled bits in the above photo are all muscle attachment points, and you may find Wedel and Sanders (2002), especially Fig. 2, a useful reference for the rest of the post. The dorsal tubercles, or epipophyses, are rugosities dorsal to the postzygapophyses that anchor most of the long, multi-segment epaxial muscles, which in birds are the M. longus colli dorsalis, which originates on the anterior faces of the neural spines, and M. ascendens cervicalis, which originates on the cervical rib loops. The crista transvers0-obliqua is a low, bony crest connecting each dorsal tubercle to the neural spine; it corresponds to the spino-postzygapophyseal lamina (SPOL) of sauropods (see Tutorial 4: Laminae!), and anchors the Mm. intercristales, a group of short muscles that span the cristae of adjacent vertebrae, like the Mm. interspinales only more lateral.
The carotid tubercles serve as points of origin for the M. longus colli ventralis, one of the largest and longest of the multi-segment hypaxial muscles; they have no obvious homolog or analog in sauropods. The lack of this feature might indicate that the hypaxial muscles were less of a big deal in sauropods, for whom lifting the neck was presumably a bigger problem than lowering it. Alternatively, the M. longus colli ventralis of sauropods might have attached to the medial sides of the parapophyses and the capitula of the cervical ribs, which tended to be larger and more ventrally-directed than in basal sauropodomorphs and theropods.
The unlabeled red arrows mark the lateral tubercles and crests of the cervical rib loop, to which we will return momentarily.
Here you can see a big bundle of long epaxial muscles, including both the M. longus colli dorsalis and M. ascendens cervicalis, inserting on the left dorsal tubercle of the vertebra on the right. Note that the cut here is quite a bit lateral of the midline, and actually goes through the lateral wall of the neural canal in the vertebra on the right (that vert is the fifth back from the front of the section of neck featured in this post, which is incomplete). That is why you see the big, multi-segment muscles here, and not the shorter, single-segment muscles, which lie closer to the midline.
Here are some more muscle attachment points in a bird vertebra (a turkey this time, courtesy of Mike). The lateral crests and tubercles (tubecula ansae and cristae laterales, if you’re keeping track of the Latin) are the same bony features indicated by the red arrows in the photo of the emu vertebra up above. They anchor both the long M. ascendens cervicalis, which inserts on the dorsal tubercles of more anterior vertebrae, and the short Mm. intertransversarii, which span the cervical rib loops of adjacent vertebrae. Sauropods usually have at least small rugosities on their diapophyses and the tubercula of their cervical ribs (which articulate with the diapophyses) that probably anchored homologous muscles.
Here’s a dorsal tubercle above the postzyg on the neural arch of a juvenile Apatosaurus (cervical 6 of CM 555, shown in right lateral view). Notice that the spinopostzygapophyseal lamina (SPOL) and postzygodiapophyseal lamina (PODL) actually converge on the dorsal tubercle rather than on the postzyg. This is pretty common, and makes good mechanical sense.
Dorsal tubercles again, this time on the world’s most wonderful fossil, cervical 8 of the HM SII specimen of Giraffatitan brancai, in the collections of the Humbolt museum in Berlin. While you’re here, check out the pneumato-riffic sculpting on the lateral faces of the neural arch and spine, and the very rugose texture on the tip of the neural spine, SPOLs, and dorsal tubercles. In fact, compare the numerous pocket-like external fossae on this vertebra with the internal air cells exposed in the cross-sectioned rhea neck. I have argued here before that sauropod cervical vertebrae are pretty similar to those of birds; the main differences are that the cervical rib loops are proportionally much smaller in sauropods, and sauropod vertebrae mostly wore their pneumaticity on the outside.
Farther anteriorly in the neck–the three vertebrae pictured here are the third, fourth, and fifth (from right to left) in this partial neck–and somewhat closer to the midline. Now you can see some short epaxial muscles, probably Mm. intercristales and Mm. interspinales (the two groups grade into each other and are often not distinct), spanning adjacent vertebrae. As in several previous photos, the supravertebral diverticulum is visible, as well as the communicating diverticulum that connects the lateral diverticula to the supramedullary airways. I forgot to label them, but ventral to the centra you can see long, light-colored streaks running through the hypaxial muscles. These are the tendons of the M. longus colli ventralis, and in some of the previous photos you can see them running all the way to their origination points on the carotid tubercles. These extend posteriorly from the short cervical ribs of birds, and are homologous with the long cervical ribs of sauropods.
That’s all I have for this time. If you’d like to see all of this stuff for yourself, turkey necks are cheap and big enough to be easy to work with. Geese are good, too. You can see all the same bits in a chicken or a duck, it’s just harder because everything is smaller (if you’re a real glutton for punishment, try a Cornish game hen).
When I first started working on sauropods, their cervical vertebrae made no sense to me. They were just piles of seemingly random osteology. The first time I dissected a bird neck was an epiphany; ever since then, it is hard for me to look at sauropod vertebrae and not see them clad in the diverticula and muscles that shaped their morphology. Go have fun.
References
- Schwarz, D., Frey, E., and Meyer, C.A. 2007. Pneumaticity and soft−tissue reconstructions in the neck of diplodocid anddicraeosaurid sauropods. Acta Palaeontologica Polonica 52(1):167–188.
- Tsuihiji, T. 2004. The ligament system in the neck of Rhea americana and its implications for the bifurcated neural spines of sauropod dinosaurs. Journal of Vertebrate Paleontology 24: 165–172.
- Wedel, M.J. 2003a. Vertebral pneumaticity, air sacs, and the physiology of sauropod dinosaurs. Paleobiology 29:243-255.
- Wedel, M.J. 2007a. What pneumaticity tells us about ‘prosauropods’, and vice versa. Special Papers in Palaeontology 77:207-222.
- Wedel, M.J. 2007b. Aligerando a los gigantes (Lightening the giants). ¡Fundamental! 12:1-84. [in Spanish, with English translation]
- Wedel, M.J. 2009. Evidence for bird-like air sacs in saurischian dinosaurs. Journal of Experimental Zoology 311A(8):611-628.
- Wedel, M.J., and Sanders, R.K. 2002. Osteological correlates of cervical musculature in Aves and Sauropoda (Dinosauria: Saurischia), with comments on the cervical ribs of Apatosaurus. PaleoBios 22(3):1-6.
Sauropod-related travel: Utah, 2008
February 5, 2010
Here’s one of those text-light photo posts that we always aspire to but almost never achieve. In the spring of 2008 I flew to Utah to do some filming for the History Channel series “Evolve”, in particular the episode on size, which aired later that year. I always intended to post some pix from that trip once the show was done and out, and I’m just now getting around to it…a bit belatedly.
Here’s the view out the back door of the BYU Earth Sciences Museum in Provo, Utah. Not bad–the mountains actually made me drag my eyes away from sauropod vertebrae for a few seconds here and there.
Here’s the view in other direction, with Brooks Britt using a forklift to retrieve the big Supersaurus cervical.
And here is said cervical, with a mid-cervical of a giraffe for scale. You may remember the big cervical from this post (and if you click that link, notice how much nicer the new collections area is than the off-site barn where I first encountered the Cervical of Doom). Sauropods FTW!
While the film crew were shooting Brooks and picking up some establishing shots, I was ransacking the collections for pretty vertebrae. We took our treasures up to the University of Utah med center in Salt Lake for CT scanning. Here Kent Sanders is helping me tape down a Diplodocus cervical.
And here’s Kent in the CT reading room playing with the data. Like old times–I spent most of my Saturdays in 1998 and 1999 scanning verts with Kent when he was at the University of Oklahoma Health Sciences Center.
The next morning we went to the North American Museum of Ancient Life in Lehi. Here’s a view down the main drag, with the mounted Supersaurus on the left, mounted Brachiosaurus in the center, and original Supersaurus sacrum (on loan from BYU) in the case on the right.
The highlight of my day trip year.
I was back at BYU just a few months ago shooting another documentary, but that story will have to wait for the dramatically appropriate moment. Stay tuned!
More on the internal structure of Alamosaurus vertebrae
January 18, 2010
The last time we talked about Alamosaurus, I promised to explain what the arrow in the above image is all about. The image above is a section through the cotyle (the bony socket of a ball-and-socket joint) at the end of one of the presacral vertebra. The external bone surface would have been over on the left; it was either very thin (which happens) or a bit eroded, or both. The arrow is pointing at something weird–a plate of bone inside the vertebra that forms a sort of shadow cotyle deep to the articular surface.
This is weird for a couple of reasons. First, once camellate (small-chambered) vertebrae get above a certain level of complexity, it’s hard to make any sense of the orientation of individual bony struts. Possibly I haven’t seen enough vertebrae, or played with enough 3D models, to figure it out. You would certainly expect that the struts would be oriented to resist biomechanical loads, just like the struts in the long bones of your limbs; the fact that sauropod verts were filled with air whereas your long bones are filled with marrow shouldn’t make any difference. Back in the day, Kent Sanders–who is second author on that super-important paper on unidirectional air flow in croc lungs that you’ve probably heard about (Farmer and Sanders 2010)–speculated to me that the complex of laminae we see in the vertebrae of most sauropods are still there in the inflated-looking vertebrae of titanosaurs and birds, they’re just incarnated in internal struts rather than external laminae. Cool hypothesis for somebody to test.
The other reason that this is weird is that the plate of bone is parallel to the articular surface. One place where I have seen some regularity in terms of strut orientation is in zygapophyses, where in both camerae and camellate vertebrae the internal struts are oriented at right angles to the articular surfaces of the zygs, like beams propping up a wall. In this Alamosaurus section, there are indeed smaller struts that run at right angles to both the cotyle and the internal plate, but I have no idea why they’re so wimpy and the plate is so thick; a priori I would have expected the reverse.
It turns out that this isn’t even the first time that an internal “shadow” of the cotyle has been figured–check out this figure that I redrew from Powell’s (1992:fig. 16) Saltasaurus osteology. But don’t credit me with the discovery. I’d looked at this section a hundred times and even drawn it and never noticed the shadow cotyle, until it was pointed out by Woodward and Lehman (2009)–another reason to read that paper if you haven’t yet. Kudos to Holly Woodward for spotting this and making the connection.
Now that I’ve drawn attention to the weirdness and given credit where it’s due, this is one of those times I’m going to throw up my hands in confusion and open the floor for comments.
References
- Farmer, C.G., and Sanders, K. 2010. Unidirectional airflow in the lungs of alligators. Science 327:338-340.
- Powell, J.E. 1992. Osteologia de Saltasaurus loricatus (Sauropoda – Titanosauridae) del Cretacico Superior del noroeste Argentino; pp. 165-230 in J.L. Sanz and A.D. Buscalioni (editors), Los Dinosaurios y Su Entorno Biotico: Actas del Segundo Curso de Paleontologia in Cuenca. Institutio Juan de Valdes.
- Woodward, H.N., and Lehman, T.M. 2009. Bone histology and microanatomy of Alamosaurus sanjuanensis (Sauropoda: Titanosauria) from the Maastrichtian of Big Bend National Park, Texas. Journal of Vertebrate Paleontology 29(3):807-821.
ASPs for Alamosaurus
January 4, 2010

A section of the cotyle of a presacral vertebra of Alamosaurus (Woodward and Lehman 2009:fig. 6A). The arrow will be explained in a future post!
Last year was good for sauropod pneumaticity. In the past few months we’ve had the publication of the first FEA of pneumatic sauropod vertebrae by Schwarz-Wings et al (2009), as well as a substantial section on pneumaticity in the big Alamosaurus histology paper by Woodward and Lehman (2009). I won’t repeat here everything that Woodward and Lehman have to say about pneumaticity, I just want to draw attention to a little piece of it. Their work is observant, up-to-date, and worth reading, so if you can get access to the paper, read it.
The major brake on the growth of our knowledge and understanding of pneumaticity is sample size. I harped on this in 2005 (Wedel 2005), and Mike just brought it up again in a comment on a previous post. In fact, what he had to say is so relevant that I’m going to just cut and paste it here:
How does degree of pneumatisation vary between individuals? Here are three more: how does it vary along the neck, how does it vary long the length of an individual vertebra, and how does it vary through ontogeny? Then of course there is variation between taxa across the tree. So what we have here is a five-and-half-dimensional space that we want to fill with observations so that we can start to deduce conclusions. Trouble is, there are, so far, 22 published observations (neatly summarised by Wedel 2005:table 7.2), which is not really enough to let us map out 5.5-space! That’s one reason why, at the moment, each observation is valuable — it adds 4% to the total knowledge in the world.
To be fair, there are a few more published observations. Schwarz and Fritsch (2006) published ASPs for cervicals of Giraffatitan and Dicraeosaurus, and I have a gnawing feeling that there are a couple here and there that I’ve seen but not remembered. I’ve got some more of my own data in the as-yet-unpublished fourth chapter of my diss, which I failed to get out as part of the Paleo Paper Challenge. And, getting back to the subject of the post, Woodward and Lehman (2009:819) have some tasty new data to report:
Digital images of sections of vertebrae and ribs were imported into ArcGIS 8.1 (Dangermond, 2001; for methods see Woodward, 2005). A unitless value for the total area of the image was calculated, using the outline of the bone as a perimeter. Subtracted from this was the area value taken up by bone, as determined by color differences (lighter areas are camellate cavities, darker areas are bone). Using this method, longitudinal sections of centra are estimated to be roughly 65% air filled. The amount of open space similarly calculated for the pneumatic proximal and medial rib sections is about 52%, whereas the cancellous spongiosa in distal rib transverse sections yields an average estimate of about 44% of their cross sectional area. Hence, the camellate cavities result in an appreciably lower bone volume compared to spongiosa.
The ASP of 0.65 for centra is right in line with the numbers I’ve gotten for neosauropods, and with the results of Schwarz and Fritsch (2006) for Giraffatitan (Dicraosaurus had a much lower ASP, around 0.2 IIRC). The stuff about the ribs is particularly interesting. Using densities of 0.95 for bone marrow, 1.8 for avian (and sauropod) compact bone, and 1.9 for mammalian compact bone we get the following:
- Pneumatic Alamosaurus vertebrae – ASP of 0.65, density of 0.63 g/cm^3.
- Pneumatic Alamosaurus ribs – ASP of 0.52, density of 0.86 g/cm^3.
- Apneumatic Alamosaurus ribs – MSP (marrow space proportion) of 0.44, density of 1.43 g/cm^3.
- Pneumatic bird long bones – ASP of 0.59, density of 0.74 g/cm^3.
- Apneumatic bird long bones – MSP of 0.42, density of 1.44 g/cm^3.
- Apneumatic mammal long bones – MSP of 0.28, density of 1.63 g/cm^3.
ASPs and MSPs of bird and mammal bones are calculated from K values reported by Cubo and Casinos (2000) for birds and Currey and Alexander (1985) for mammals. I don’t know what the in vivo density of sauropod compact bone was; changing it from the avian value of 1.8 to the mammalian value of 1.9 would have a negligible effect on the outcome.
At least with the data in hand, we can make the following generalizations:
- The apneumatic bones of birds are thinner-walled than those of mammals, on average. (This has been known for a long time.)
- The apneumatic ribs of Alamosaurus were more similar in density to apneumatic bird bones than to apneumatic mammal bones.
- In both birds and Alamosaurus, pneumatization reduces the amount of bone tissue present by 15-30% in the same elements (long bones for birds, ribs for Alamosaurus). Pneumatic bones are light not just because the marrow is replaced by air, but because there is less bone tissue than in apneumatic bones, as bird people have been observing for ages.
There’s loads more work to be done on this sort of thing, so I’m going to stop blogging now and get back to it. Stay tuned!
References
- Cubo, J., and Casinos, A. 2000. Incidence and mechanical significance of pneumatization in the long bones of birds. Zoological Journal of the Linnean Society 130: 499–510.
- Currey, J. D., and Alexander, R. McN. 1985. The thickness of the walls of tubular bones. Journal of Zoology 206:453–468.
- Schwarz D, and Fritsch G. 2006. Pneumatic structures in the cervical vertebrae of the Late Jurassic Tendaguru sauropods Brachiosaurus brancai and Dicraeosaurus. Eclogae Geologicae Helvetiae 99:65–78.
- Schwarz-Wings, D., Meyer, C.A., Frey, E., Manz-Steiner, H.-R., and Schumacher, R. 2009. Mechanical implications of pneumatic neck vertebrae in sauropod dinosaurs. Proceedings of the Royal Society B. doi: 10.1098/rspb.2009.1275
- Wedel, Mathew J. 2005. Postcranial skeletal pneumaticity in sauropods and its implications for mass estimates. pp. 201-228 in Wilson, J. A., and Curry-Rogers, K. (eds.), The Sauropods: Evolution and Paleobiology. University of California Press, Berkeley.
- Woodward, H.N., and Lehman, T.M. 2009. Bone histology and microanatomy of Alamosaurus sanjuanensis (Sauropoda: Titanosauria) from the Maastrichtian of Big Bend National Park, Texas. Journal of Vertebrate Paleontology 29(3):807-821.
Lies, damned lies, and Clash of the Dinosaurs
December 15, 2009
So I finally got to see the Discovery Channel’s new series, Clash of the Dinosaurs. The show follows the common Discovery Channel MO of cutting between CGI critters and talking heads. I’m one of the talking heads, and I get a lot of air time, and I suppose I should be happy about that. But I’m not, for reasons I’ll explain.
I need to preface what follows by saying that I thought the other talking heads did a great job. My experience suggests that the scientific problems with the series didn’t originate with the scientists, infrasound weapons excepted. Tom Holtz–another of the talking heads, and a good one–nailed it on the DML:
For those going to watch the show, a warning:
The documentarians often take anything that any of the talking heads speculated about, and transformed these into declarative statements of fact. In some cases this is particularly egregious, because I strongly disagree with some of these statements and believe the facts are against some of these (say, about tyrannosaurid cranial kinesis…) and they present these as facts rather than suppositions.
Dangerous
In the fall of 2008 the folks at Dangerous Ltd, a London-based film production company, asked me if I’d be interested in being part of a new documentary project, which had the working title “Dino Body” (this isn’t a trade secret or anything, that title was on the Dangerous webpage for months). The grand idea was to show how much we’ve learned about how dinosaurs actually lived.
Now, this is something I care about a lot. In the past couple of decades we’ve learned about the physiology, diets, nesting habits, growth rates, and social lives of dinosaurs, in unprecedented detail. Things no one predicted and that I would have bet heavily against, like burrowing dinosaurs, four-winged raptors, and comparative studies of dinosaur and pterosaur genomes, are backed by solid evidence. We are in a golden age of dinosaur paleobiology, and new discoveries, even new kinds of discoveries, are stacking up faster than I can really keep up. So it would be a great time to bring all this new evidence to the public.
In the late 2008 and early 2009 I spent a LOT of time with the people at Dangerous Pictures, going over all kinds of questions about dinosaur biology. I sent them papers, links to blog posts, diagrams, you name it. They seemed really keen to get the science right, and I was hopeful that we’d get a dinosaur documentary that wasn’t overly speculative sensationalized BS.
Sadly, that hope was to be mercilessly crushed.
Deja vu
The series has some obvious faults. It is incredibly repetitive, to the point that I found it hard to watch for any length of time without my attention wandering. Not just the CGI clips, but the narration as well. You’ll learn in 30 seconds why females tend to be choosier about mates than males (eggs are more expensive than sperm), and spend the next 15 minutes having that slowly beaten in your brain using as much empty verbiage as possible. Ditto every other fact on the show.
More galling are the places where animation is cleverly cut with talking head bits so that we end up describing things that were never in the script. I explained on camera about the unavoidably high mortality among juvenile sauropods, and how groups of Deinonychus could probably pick off the baby sauropods like popcorn. I had been speaking of hatchlings, but my words are cut together with a scene–which you’ll see about 15,000 times–of three Deinonychus taking down an elephant-sized subadult Sauroposeidon. In the real world, it would have pulped them. In the dramatically-lit world of Clash of the Dinosaurs, the three raptors inflict a handful of very shallow flesh wounds with their laughably tiny claws and the Sauroposeidon expires theatrically for no visible reason.
(If they really wanted to impress the audience with the implacability of Mesozoic death, they would have shown the three raptors mowing down a field of newly-hatched babies like so much wheat…)
I spent a long time explaining the evidence that sauropods buried their eggs, and at their request I mocked up diagrams showing the possible proportions of a hatchling Sauroposeidon. So naturally the program shows a mother abandoning her eggs in an exposed nest, and then a few minutes later, hatchlings that are perfect miniatures of the adults struggling up out of the ground. I guess they cut the scene in which the Sand Fairy buried the eggs, and lacked the budget to perform the simple morph of the digital model that would have made the babies look like babies, instead of ponderous adults emerging from the Sarlacc pit.
Some may complain that I am picking nits. But what the heck is the point of bringing on scientific advisors if you’re then going to ignore the stuff they tell you? Why not just make the crap up out of the whole cloth? In fact, there is far too much of that in the show. There is no evidence that Quetzalcoatlus could see dinosaur pee with its ultraviolet vision, or that a herd of hadrosaurs could knock over a predator with their concentrated infrasound blasts. Sorry, paleontologists, you’ll be fielding questions about these newly invented “facts” for the next decade at least.
It’s like I had this great working relationship with the researchers, and they were really curious and careful, and we went to great lengths to do the best work we could, and then somewhere in between my filming back in February and the airing of the completed show, all of our diligent work was flushed right down the crapper, and a fresh script was written by a hyperactive child whose only prior preparation was reading Giant-Size X-Men and getting hit on the head a few times.
Do I sound too harsh? I’m just getting started. Let me tell you about the sacral expansion in sauropods.
Back in the Back in the Day
In many sauropods and stegosaurs and a few other archosaurs, the neural canal (the bony tube that houses the spinal cord) is massively enlarged in the sacral vertebrae. This is the origin of the goofy idea that big dinosaurs had a “second brain” back there to control their hind end, because the real brain up front was (supposedly) just too darn tiny and remote. The researchers at Dangerous asked me about this sacral enlargement, and this is what I told them (quoted from an e-mail I sent November 25, 2008):
The sacro-lumbar expansion is possibly the most misunderstood thing in sauropod biology. First, there are two separate things that have been referred to as sacro-lumbar expansions. The first is the slight swelling of the spinal cord in that region in almost all vertebrates, including humans, to accomodate the neurons that help run the hind limbs (you also have a swelling in the spinal cord at the base of your neck to help run your arms). Contrary to popular belief, a lot of your stereotyped actions require little direct involvement from the brain and are instead controlled by the spinal cord. When you walk, for example, most of the motor control is handled by the spinal cord, and your brain only steps in when you have to actually worry about where to place your feet–when you step over a puddle, for example. So there would be nothing remarkable about sauropods using their spinal cords to drive many of their limb movements, this is something that pretty much all vertebrates do, it’s just not widely known to the public. [Aside: this is true. Also, I have heard it claimed that sauropods could not have reared because their brains were too small to coordinate such an action. This was claimed by a non-biologist who evidently doesn’t know how the nervous system works.]
The other sacro-lumbar expansion really is an expansion, but it’s not unique to sauropods and it has nothing to do with running the hind limbs. Most birds have a very large expansion of the spinal cord in the sacro-lumbar region called the glycogen body. As the name implies, it stores energy-rich glycogen, but the function of the glycogen body is very poorly understood. It has been hypothesized to be an accessory organ of balance, or a reservoir of compounds to support the growth and maintenance of the nervous system. Since we don’t even know what it does in birds, we’re straight out of luck when it comes to figuring out what it did in sauropods. Here’s a brief overview:
http://www.innerbird.com/other_special_features/hips/other_features_hips.html
Here’s an explanatory diagram I sent with the message:
This business about the glycogen body caused some consternation and dithering in the production process. They wanted to bring up the second brain because it’s so entrenched in the popular consciousness (i.e., bad dinosaur books), but they were unhappy that the real explanation turned out to be so unsatisfying (“We don’t know what it does, but not that!”). In the end, we did discuss it briefly on camera. I said something like, “There was this old idea that the sacral expansion functioned as a second brain to control the hindlimbs and tail. But in fact, it almost certainly contained a glycogen body, like the sacral expansions of birds. Trouble is, nobody knows exactly what the glycogen bodies of birds do.”
Somebody in the editing room neatly sidestepped the mystery of the glycogen body by cutting that bit down, so what I am shown saying in the program is this, “The sacral expansion functioned as a second brain to control the hindlimbs and tail.” I’m paraphrasing because I don’t have a DVR, but that’s basically it. (Update: my memory was pretty good. Here’s the interview transcript.)
Do you see, do you understand, what they did there? I was explaining why an old idea was WRONG and they cut away the frame and left me presenting the discredited idea like it’s hot new science. How freaking unethical is that?
So. I don’t know if the decision to turn my words around 180 degrees was a mistake made by an individual editor, or if it was approved from someplace higher up the line. I aim to find out. Until I do, I’m boycotting Dangerous Ltd, and I encourage you to do likewise.
The Final Insult
Oh, and they spelled my name wrong, throughout. And also mispelled Sauroposeidon in one of the quiz bits at commercial time. “What does Sauroposeiden mean?” It means you don’t know the Greek pantheon, sauropods, or basic spellchecking, dumbasses.
Science journalism FAIL.
UPDATE, January 27, 2010
This is so perfect that it hurts. For “Science Channel” feel free to substitute any of the ignotainment feeds operated by Discovery Communications.
Another mystery: embossed laminae and “unfossae”
December 7, 2009
Broadly speaking, pneumatic sauropod vertebrae come in two flavors. In more primitive, camerate vertebrae, modeled here by Haplocanthosaurus, the centrum is a round-ended I-beam and the neural arch is composed of intersecting flat plates of bone called laminae (lam above; fos = fossa, nc = neural canal, ncs = neurocentral suture; Ye Olde Tyme vert pic from Hatcher 1903).
In more derived, camellate vertebrae, the centrum and neural arch are both honeycombed with many small air spaces. This inflated-looking morphology is very similar to that seen in birds, like the turkey we recently discussed. The fossae and foramina on the outside tend to be smaller and more numerous than in camerate vertebrae, as shown here in a titanosauriform axis from India (Figure 3 from Wilson and Mohabey 2006). The green arrows show that the fossae visible on the external surface are excavations or depressions into the honeycombed internal structure of the bone.
External fossae on bones can house many different soft tissues, including muscles, pads of fat or cartilage, and pneumatic diverticula (O’Connor 2006). Pneumatic fossae are often strongly lipped and internally subdivided and may contain pneumatic foramina, which makes them easier to diagnose (but they may also be simple, smooth, and “blind”, which makes them harder to diagnose as pneumatic). But in all of these cases we are usually talking about the same thing: a visible excavation into a corpus of bony tissue, which may have marrow spaces inside if it is apneumatic, or air spaces inside if it is pneumatic (the corpus of bone, not the dent). That’s probably how most of us think about fossae, and it would hardly need to be explained…except that sometimes, something much weirder happens.
Consider this cervical of Brachiosaurus (this is BYU 12866, from Dry Mesa, Colorado). Brachiosaurus and Giraffatitan have an in-between form of vertebral architecture that my colleagues and I have called semicamellate (Wedel et al. 2000); the centrum does have large simple chambers (camerae), but smaller, thin-walled camellae are also variably present, especially along the midline of the vertebra and in the ends of the centrum. As in Haplocanthosaurus, the neural arch is composed of intersecting plates of bone; unlike Haplocanthosaurus, these laminae are not flat or smooth but are instead highly sculpted with lots of small fossae. Janensch (1950) called these “Aussenkaverne”, or accessory outside cavities, because and they are smaller and more variable than the large fossae and foramina that invade the centrum.
And that’s the weird thing. As the red arrows in the above image show, the “Aussenkaverne” are not excavations or depressions into anything, except the space on the other side of the lamina (which in life would have been occupied by another diverticulum). The neural arches of Brachiosaurus and Giraffatitan are not excavated by fossae, they’re embossed, like corporate business cards and fancy napkins.
What’s up with that!? We tend to think of pneumaticity as reducing the mass of the affected elements, but the shortest distance between two vertebral landmarks is a smooth lamina. These embossed laminae actually require slightly more bony material than smooth ones would.
As you can see above, the outer edges of the laminae are thick but the bone everywhere else is very thin. Maybe, like the median septa in pneumatic sauropod vertebrae, the thin bone everywhere except the edges of the laminae was just not loaded very much or very often, and was therefore free to get pushed around by the diverticula on either side, in the sense of being continually and quasi-randomly remodeled into shapes that don’t strike us as being very mechanically efficient. But also like the median septa, the thin parts of the laminae are only rarely perforated (but it does happen), for possible (read: arm-wavy) reasons discussed in the recent FEA post. And maybe the amount of extra bone involved in making embossed laminae versus smooth ones was negligible even by the very light standards of sauropod vertebrae.
Another question: since these thin sheets of bone were sandwiched in between two sets of diverticula, why are the “unfossae” always embossed into them, in the medial or inferior direction? Why don’t any of them pop out laterally or dorsally, looking like domes or bubbles instead of holes, like Mount Fist-of-God from Larry Niven’s Ringworld? Did the developmental program get accustomed to making fossae that went down and into a corpus of bone, and just kept on with business as usual even when there was no corpus of bone to excavate into? I’m only half joking.
I don’t have good answers for any of these questions. I scanned this vert a decade ago and I only noticed how weird the “unfossae” were a few months ago. I’m putting all this here because “Hey, look at this weird thing that I can only wave my arms about” is not a great basis for a peer-reviewed paper, and because I’d like your thoughts on what might be going on.
In Other News
The Discovery Channel’s Clash of the Dinosaurs premiered last night. I would have given you a heads up, except that I didn’t get one myself. I only discovered it was on because of a Facebook posting (thanks, folks!).
COTD is intended to be the replacement, a decade on, for Walking With Dinosaurs. I’m happy to report that one of the featured critters is Sauroposeidon. I grabbed a couple of frames from the clips posted here.
I haven’t seen the series yet, because I don’t have cable. But I’m hoping to catch it at a friend’s place next Sunday night, Dec. 13, when the entire series will be shown again. With any luck, I’ll have more news next week.
Finally, I got to do an interview at Paw-Talk, a forum for all things animal. I’m very happy with how it turned out, so thanks to Ava for making it happen. While you’re over there, have a look around, there’s plenty of good stuff. Brian Switek, whom you hopefully know from this and this, is a contributor; check out his latest here.
References
- Hatcher, J.B. 1903. Osteology of Haplocanthosaurus, with a description of a new species, and remarks on the probable habits of the Sauropoda, and the age and origin of Atlantosaurus beds. Memoirs of the Carnegie Museum 2:1–72.
- Janensch, W. 1950. Die Wirbelsaule von Brachiosaurus brancai. Palaeontographica (Suppl. 7) 3:27-93.
- O’Connor, P.M. 2006. Postcranial pneumaticity: an evaluation of soft-tissue influences on the postcranial skeleton and the reconstruction of pulmonary anatomy in archosaurs. Journal of Morphology 267:1199-1226.
- Wedel, Mathew J., Richard L. Cifelli and R. Kent Sanders. 2000. Osteology, paleobiology, and relationships of the sauropod dinosaur Sauroposeidon. Acta Palaeontologica Polonica 45(4): 343-388.
- Wilson, J. A. and Mohabey, D. M. 2006. A titanosauriform axis from the Lameta Formation (Upper Cretaceous: Maastrichtian) of central India. Journal of Vertebrate Paleontology 26:471–479.
Finite Element Analysis of sauropod vertebrae
October 27, 2009
Earlier this month Daniela Schwarz-Wings and colleagues published the first finite element analysis (FEA) of sauropod vertebrae (Schwarz-Wings et al. 2009). Above is one of the figures showing some of their results. Following standard convention, stresses are shown on a gradient with cooler colors indicating lower stresses and hotter colors indicating higher stresses. I’m not going to dwell on the on the nuts-n-bolts of FEA in general or of this study in particular. Instead, I want to talk about how sauropod vertebrae are built.
In cross-section, sauropod vertebrae often have thick bone at the outer edges of the laminae and in the walls and especially the floor of the centrum, as shown in this Brachiosaurus cervical. The bone everywhere else is pretty thin. If you hit one of these vertebrae with some magical forumula that would dissolve away all the bone thinner than, say, 1 cm, all that would be left would be the various apophyses, the outer margins of the laminae connecting them, and probably the bottom half of the centrum. It would be like the outline of a vertebra constructed from tent poles, or tinkertoys.
This is weird because most pneumatic sauropod vertebrae have at least something approaching an I-beam shape in cross-section. You might think that the median septum would be mechanically important, but it’s usually very thin, sometimes perforated (see Hatcher’s [1901] Diplodocus cervicals, for example), and often asymmetrically deviated to one side or the other. Not what you would expect for a piece of bone that was doing any work.
And indeed, Schwarz-Wings et al. (2009) found that:
Comparative stresses are distributed evenly around the vertebrae and mainly on the bone cortex. Peak stresses occur only at points where the tendons and muscles are inserting because the insertion areas used were small resulting in extreme localized stresses. The interior of both vertebrae is nearly stress free. Almost no stresses occur around the cavities and in their bony walls (figure 3).
This reminds me not of I-beams but of the long bones of the limbs of terrestrial vertebrates. There’s a reason why you’ve got a big honkin’ marrow cavity running through the middle of your femur: the stresses are being borne by the walls of the bone. It makes sense that vertebrae would function similarly, especially sauropod cervicals which sometimes approximate limb bones in their proportions.
So how about that median septum? Why aren’t sauropod vertebrae just hollow tubes? My guess–and it is a guess–is that they got as close to being hollow tubes as their evolutionary and developmental origins allowed. The pneumatic diverticula invaded the centra from either side and pushed in lateral-to-medial, and I think the median septum is just the wimpy little bit of bone left in between the two sets of diverticula when they almost meet up in the middle.
Even if that’s correct, there’s another mystery: why don’t the diverticula just go ahead and erode away the median septum? I can think of two possible reasons. One is that, for reasons I don’t know and I’m not sure if anyone else does either, pneumatic diverticula are good at getting into bones but pretty lousy at getting back out. There are comparatively few cases of diverticula inside bones making foramina to get out into the surrounding tissue. It does happen–in humans, the mastoid air cells sometimes bust out and make subcutaneous pneumatocoels, basically bubbles of air under the skin (Anorbe et al. 2000)–but it seems to be rare. Maybe median septa fall under the same inscrutable rule.
(Incidentally, this makes the perforate laminae in Giraffatitan all the weirder.)
Another, more mundane possibility is that the median septa (and other oddly thin bits of bone) are not never loaded, just infrequently loaded. Not enough to make them straight, thick, or normal-lookin’, but enough to make sure they don’t get resorbed entirely.
Sauropod vertebrae are just loaded with these growth-and-form-related mysteries. Kudos to Schwarz-Wings et al. for pushing us a little farther down the road toward solving them.
References
- Anorbe, E., Aisa, P. and Saenz de Ormijana, J. 2000. Spontaneous pneumatocele and pneumocephalus associated with mastoid hyperpneumatization. European Journal of Radiology 36:158–160. [abstract only for free]
- Hatcher, J.B. 1901. Diplodocus (Marsh): its osteology, taxonomy and probable habits, with a restoration of the skeleton. Memoirs of the Carnegie Museum 1: 1-63 and plates I-XIII.
- Schwarz-Wings, D., Meyer, C.A., Frey, E., Manz-Steiner, H.-R., and Schumacher, R. 2009. Mechanical implications of pneumatic neck vertebrae in sauropod dinosaurs. Proceedings of the Royal Society B. doi: 10.1098/rspb.2009.1275
ASP target of opportunity
July 20, 2009
Weren’t we just discussing the problem of keeping up with all the good stuff on da intert00bz? The other day Rebecca Hunt-Foster, a.k.a. Dinochick, posted a “mystery photo” that is right up our alley here at SV-POW!, but, lazy sods that we are, we missed it until just now. Here’s the pic:
I flipped it 90 degrees so that you can see more clearly what is going on. This is a cut and polished section of a pneumatic sauropod vertebra–the bottom half of the mid-centrum of a dorsal vertebra, to be precise. Cervicals usually have concave ventral surfaces, and sacrals are usually either wider and flatter or narrower and V-shaped in cross sections, so I am pretty confident that this slice is from a dorsal. Compare to the classic anchor cross-section in this Camarasaurus dorsal:
(You may remember this image from Xenoposeidon week–almost two years ago now!)
Naturally as soon as I saw ReBecca’s shard of excellence, I wondered about its ASP, so after a bit of GIMPing, voila:
As usual, bone is black, air is white, and everything else is gray. And the ASP is:
461080 white pixels/(461080 white + 133049 black pixels) = 0.78
So, we know what this is, and we know the ASP of this bit of it, and we can even figure out the in vivo density of this bit. The density of cortical bone ranges from about 1.8 g/cm^3 for some birds to about 2.0 for most mammals. For the sake of this example–and so I can hurry back to writing my lecture about the arse–let’s call it 1.9. The density is then the fraction of bone multiplied by the density of bone, full stop. If it was an apneumatic bone, we’d have to add the fraction of marrow multiplied by the density of marrow, but the density of air is negligible so we can skip that step here. The answer is 0.22 x 1.9 = 0.42 g/cm^3, which is pretty darned light. Keep in mind, though, that some slices of Sauroposeidon (and ‘Angloposeidon’, as it turns out) have ASPs of 0.89, and thus had an in vivo density half that of the above slice (0.11 x 1.9 = 0.21 g/cm^3).
What’s that in real money? Well, your femora are roughly 60% bone and 40% marrow, with a density of ((0.6 x 2.0)+(0.4 x 0.93)) = 1.6 g/cm^3, four times as dense as the bit of vertebra shown above, and eight times as dense as some slices of Sauroposeidon and ‘Angloposeidon’. If that doesn’t make you self-conscious about your heavy thighs, I don’t know what will.
Yes, that was a lame joke, and yes, I’m going out on it.
Hat tip to Dinochick.
P.S. It’s the 40th anniversary of the first moon landing today. Hoist a brew for Neil and Buzz, wouldja?