Michelle Stocker with an apatosaur vertebra (left) and a titanosaur femur (right), both made from foam core board.

In the last post I showed the Brachiosaurus humerus standee I made last weekend, and I said that the idea had been “a gleam in my eye for a long time”. That’s true, but it got kicked into high gear late in 2021 when I got an email from a colleague, Dr. Michelle Stocker at Virginia Tech. She wanted to know if I had any images of big sauropod bones that she could print at life size and mount to foam core board, to demonstrate the size of big sauropods to the students in her Age of Dinosaurs course. We had a nice conversation, swapped some image files, and then I got busy with teaching and kinda lost the plot. I got back to Michelle a couple of days ago to tell her about my Brach standee, and she sent the above photo, which I’m posting here with her permission.

That’s OMNH 1670, a dorsal vertebra of the giant Oklahoma apatosaurine and a frequent guest here at SV-POW!, and MPEF-PV 3400/27, the right femur of the giant titanosaur Patogotitan, from Otero et al. (2020: fig. 8). (Incidentally, that femur is 236cm [7 feet, 9 inches] long, or 35cm longer than our brachiosaur humerus.) For this project Michelle vectorized the images so they wouldn’t look low-res, and she used 0.5-inch foam core board. She’s been using both standees in her Age of Dinosaurs class at VT (GEOS 1054) every fall semester, and she says they’re a lot of fun at outreach events. You can keep up with Michelle and the rest of the VT Paleobiology & Geobiology lab group at their research page, and follow them @VTechmeetsPaleo on Twitter.

Michelle’s standees are fully rad, and naturally I’m both jealous and desirous of making my own. I’ve been wanting a plywood version of OMNH 1670 forever. If I attempt a Patagotitan femur, I’ll probably follow Michelle’s lead and use foam core board instead of plywood — the plywood Brach humerus already gets heavy on a long trek from the house or the vehicle.

Speaking of, one thing to think about if you decide to go for a truly prodigious bone is how you’ll transport it. I can haul the Brach humerus standee in my Kia Sorento, but I have to fold down the middle seats and either angle it across the back standing on edge, or scoot the passenger seat all the way forward so I can lay it down flat. I could *maybe* get the Patagotitan femur in, but it would have to go across the tops of the passenger seats and it would probably rest against the windshield.

Thierra Nalley and me with tail vertebrae of Haplocanthosaurus (smol) and the giant Oklahoma apatosaur (ginormous), at the Tiny Titan exhibit opening.

As long as I’m talking about cool stuff other people have built, a formative forerunner of my project was the poster Alton Dooley made for the Western Science Center’s Tiny Titan exhibit, which features a Brontosaurus vertebra from Ostrom & McIntosh (1966) blown up to size of OMNH 1331, the largest centrum of the giant Oklahoma apatosaurine (or any known apatosaurine). I wouldn’t mind having one of those incarnated in plywood, either.

I’ll bet more things like this exist in the world. If you know of one — or better yet, if you’ve built one — I’d love to hear about it.

References

  • Alejandro Otero , José L. Carballido & Agustín Pérez Moreno. 2020. The appendicular osteology of Patagotitan mayorum (Dinosauria, Sauropoda). Journal of Vertebrate Paleontology, DOI: 10.1080/02724634.2020.1793158
  • Ostrom, John H., and John S. McIntosh. 1966. Marsh’s Dinosaurs. Yale University Press, New Haven and London. 388 pages including 65 absurdly beautiful plates.

Some quick backstory: lots of sauropods have long, overlapping cervical ribs, like the ones shown here in Sauroposeidon (diagram from this old post):

These long cervical ribs are ossified tendons of ventral neck muscles, presumably longus colli ventralis. We know they’re ossified tendons because of their bone histology (Klein et al. 2012), and we suspect that they’re longus colli ventralis because those tendons look the same in birds, just less ossified, as in this rhea (same specimens as these even older posts: 1, 2):

Diplodocoids have apomorphically short cervical ribs, which never extend very far past the end of their respective centra and sometimes don’t overlap at all. Still, we assume the long ventral neck muscles were there, just without long ossified tendons. Which brings me to Apatosaurus, which has cervical ribs that are anteroposteriorly short but famously massive, extending very below and/or to the sides of the cervical centra — for a truly breathtaking example see this post. Here are C3 through C7 in CM 3018, the holotype of Apatosaurus lousiae (Gilmore 1936: plate 24):

At least for me, it’s hard to resist the temptation to mentally scoot those vertebrae together into articulation, and imagine that the very swoopy-looking and maybe even down-turned cervical ribs allowed the ventral tendon bundles to wrap around the bottom of each cervical rib protuberance, something like this:

But it’s just not so, because like all 2D images, Gilmore’s plate distorts 3D reality. If you get to see the mounted skeleton in person, it’s clear that the cervical ribs are all more or less in line, and none of them are pointed at the big protuberances, which stick way out ventrolaterally.

Here I’ve drawn in the likely trajectories of the longus colli ventralis tendons. My little red pathways don’t precisely match the cervical ribs as mounted, but there’s a lot of distortion and restoration going on. For example, comparing with Gilmore’s plate we can see that the cervical ribs of C5, which point downward compared to all the others, only do that because someone forced them to — the whole anterior portion of the rib, where the shaft would actually join to the capitulum and tuberculum, is reconstructed. Even if I’m a little off, it’s clear that the cervical ribs shafts point backward, they’re all more or less in two parallel lines, and none of them point down and out toward the ventrolateral processes. The photo contains a mountain of useful morphological information that you’d never get from the lateral views.

My takeaways from all this:

  1. If a person has only seen 2D images of a specimen, and especially if those 2D images have only been orthogonal views with no obliques, their little island of knowledge is surrounded by at least a sizeable lake of ignorance, if not a small ocean.
  2. That doesn’t mean that seeing specimens in person is the only antidote — 3D models and 3D prints are extremely useful, and for specimens that are difficult to manipulate because of their size or fragility, they may be more useful than seeing or handling the specimen, at least for some questions.
  3. For Apatosaurus specifically, those ventrolateral processes cry out for explanation. They’re fairly solid knobs of bone that stick way out past the ossified tendons of the ventral-most neck muscles. That’s a super-weird — and super-expensive — place to invest a bunch of bone if you’re not using it for something fairly important, especially in a lineage that had just spent the last 80-100 million years making their necks as light as possible.
  4. Pursuant to that last point, we’re now in — ugh-ouch-shame — our 8th year of BrontoSMASH!!, with still just the one conference presentation to show for it (Taylor et al. 2015). Prolly time we got moving on that again.

References

Just to wash our mouths out after all the theropod-related unpleasantness yesterday:

What we’re seeing here, in glorious 3D, is the 7th cervical vertebrae of BYU 1252-18531. This is an apatosaurine at the Brigham Young University Museum of Paleontology which the museum has catalogued as “Apatosaurus excelsus” (i.e. Brontosaurus excelsus), and which Tschopp et al. (2015) tentatively referred to Brontosaurus parvus, but which I suspect is most likely good old Apatosaurus louisae.

It’s in the rarely seen ventral view, which really emphasizes the ludicrously over-engineered cervical ribs. Get your 3D glasses on and marvel at how they come lunging out of the screen at you, like giant insects in a 1950s B-movie.

So beautiful.

Last time, I showed you a photo of the head and neck of the London Diplodocus and asked what was wrong. Quite a few of you got it right (including Matt when we were chatting, but I asked him not to give it away by posting a comment). The 100 SV-POW! dollars, with their cash value of $0.00, go to Orribec, who was the first to reply that the atlas (cervical 1) is upside-down.

Here is again, from the other side:

The Natural History Museum’s Carnegie Diplodocus cast, skull and anterior cervical vertebrae in left lateral view. Photograph by Mike Taylor.

I noticed this — when it seems the people putting up the skeleton did not, unless this is a deliberate joke — because I happened to be particularly tuned into atlas ribs at the time. You can see what appears a tiny rib hanging below the atlas, but no neural arch above it projecting up and back to meet the prezygapophyses of the axis (cervical 2). In fact the “cervical rib” on this left side is the neural arch of the right side, rotated 180 degrees about the axis of the neck.

Here’s how this should look, from the Carnegie Museum’s own Diplodocus:

The Carnegie Museum’s Diplodocus mount, skull and anterior cervical vertebrae in left lateral view. Photograph by Matt Lamanna.

In this picture, the atlas seems to be pretty much fused onto the axis, as seen in Gilmore (1936: figure 6) which Matt helpfully reproduced in Tutorial 36.

(Digression 1: you might think that this atlas is the real thing, since the Carnegie’s mount is the one with the real CM 84/94/307 material in it. But no: the atlas does not belong to any of those, which all lack this element. It seems to be a sculpture, but we can’t figure out what it’s based on.)

(Digression 2: you might notice that the London and Carnegie skulls are rather different. That’s because the London cast still has the original skull supplied in 1907, which is a sculpture based on CM 622 (rear) and USNM 2673 (the rest), while the Carnegie’s mount at some point had its skull replaced by a cast of CM 11161 — though no-one knows when.)

(Digression 3: the diplodocine originally catalogued as CM 662, on which the rear of the skull was based, was named as the holotype of a new species Diplodocus hayi by Holland (1924), traded to the Cleveland Museum of Natural History in 1956 where it was numbered CMNH 10670, then traded on the Houston Museum of Natural History in 1963 where istbecame HMNS 175, mounted in  Houston in 1975, remounted between 2013 and 2015, and finally moved to its own new genus Galeamopus by Tschopp et al. 2015. Yes, this stuff gets complicated.)

In fact, it’s amazing how much stuff we actually don’t know about these classic specimens, including the source of the atlas for both the Carnegie mount and the various casts — which are not the same. If only there was a single definitive publication that gathered everything that is known about these mounts. Oh well, maybe some day.

Now everyone knows that all the Carnegie Diplodocus mounts around the world were cast from the same molds, and so they all have the same altas <SCREEEECH> wait what?

The Muséum National d’Histoire Naturelle’s Carnegie Diplodocus cast, posterior part of skull and anterior cervical vertebrae in left lateral view. Photograph by Vincent Reneleau.

Here we are in Paris, and the atlas has these two honking great ribs. I have not seen these in any other Carnegie Diplodocus. I know they’re absent from the Berlin cast (thanks to Daniela Schwarz), from the Vernal re-cast (personal observation) and of course from the London cast. I would welcome observations (or even better, photos) from anyone who’s in a position to look at the Vienna, Bologna, Moscow, La Plata, Madrid or Mexico City casts.

So where did these atlas ribs come from? As with so much of this, no-one really knows. It’s especially mysterious as the Paris mount is supposed to be completely unchanged since its initial mounting. But some clue to the origin of the ribs in this mount is found in Holland (1906:249–250):

Accompanying the elements of the atlas sent to the writer for study by the kindness of Professor Osborn  [i.e. AMNH 969] are two bones, undoubtedly cervical ribs. They are both bones belonging on the right side of the centra. They are reported to have been found at the same place at which the atlas was found. The writer is inclined to think that the larger of these two bones (Fig. 20), was probably the rib of the atlas and indeed it requires but little effort to see that it might very well have served such a function, and that the smaller bone (Fig. 21) was the rib of the axis. Were the stump of the rib which remains attached to the axis in the Carnegie Museum, and which Mr. Hatcher has figured, removed, this smaller rib might take its place and would undoubtedly articulate very neatly to the facet

In case you’re too lazy to go and look at Holland’s illustrations for yourself, here they are.

The atlas rib:

The axis rib:

Holland went on:

In case the view entertained by the writer is correct, the form of the atlas and the axis with their attached ribs would be as given in the accompanying sketch (Fig. 22) rather than as given in the figure which has been published by Mr. Hatcher. Such a location of these parts has in its favor the analogy of the crocodilian skeleton.

Here is that composite atlas/axis complex:

(This arrangement with closely appressed atlas and axis ribs should ring a bell for anyone who’s looked much at croc necks, as for example in Taylor and Wedel 2013:figure 19.)

The atlas ribs on the Paris mount look a decent match for the one illustrated by Holland (1906:figure 20), so it seems a reasonable guess that they were sculpted based on that element. But that only leaves us with two more mysteries:

  1. Why do we see these atlas ribs only on the Paris cast, not in the Carnegie original or any of the other casts (that I know of)?
  2. Why does this cast have atlas ribs based on one of Holland’s elements, but not axis ribs based on the other?

Anyone?

References

 

Last Saturday I was at a wedding at Holy Trinity Brompton, a London church that is conveniently located a ten-minute stroll from the Natural History Museum. As I am currently working on a history paper concerning the Carnegie Diplodocus, I persuaded my wife, my eldest son and his fiancée to join me for a quick scoot around the “Dippy Returns” exhibition.

Here is a photo that I took:

Something is wrong here — and I don’t just mean the NHM exhibition’s stygian lighting.

Who can tell me what it is? $100 in SV-POW! Dollars(*) awaits the first person to get it right in the comments.

 


(*) Cash value: $0.00.

I am co-authoring a manuscript that, among other things, tries to trace the history of the molds made by the Carnegie Museum in the early 1900s, from which they cast numerous replica skeletons of the Diplodocus carnegii mount (CM 84, CM 94, CM 307 and other contributing specimens). This turns out to be quite a mystery, and I have become fascinated by it.

Below is the relevant section of the manuscript as it now stands. Can anyone out there shed any further light on the mystery?


So far as we have been able to determine, the casting of the concrete Diplodocus of Vernal was probably the last time the Carnegie Museum’s original molds were used. However, that was not Untermann’s intention. In his 1959 account, he wrote (p368–369):

Several museums in the United States and from lands as distant as Japan and Italy have expressed a desire to acquire the molds and cast a Diplodocus of their own from either plaster or some of the newer synthetics. To date no museum has apparently been able to make satisfactory arrangement for the acquisition of the molds and the casting of a skeleton. We still have the molds in Vernal, and any museum, anywhere, is welcome to them just for hauling them off. […] The Diplodocus on the lawn of the Utah Field House is the eleventh replica to be cast from the molds […] Does anyone wish to cast the twelfth?

From here, though, the story becomes contradictory. Sassaman (1988) reported that “the molds finally fell apart because of old age soon after it [the concrete Diplodocus] was made”. Similarly, Ilja Niewland (pers. comm., 2022) said that “The original moulds were thrown away somewhere during the 1960s (nobody at the [Carnegie Museum] could be more specific than that)”, suggesting that the molds may have been returned to their origin.

Both these accounts seem to be in error, as shown by a 1960 report in the Vernal Express newspaper (Anonymous 1960a; Figure H; see also Carr and Hansen 2005). This says that in the middle of July 1960, the molds were collected by the Rocky Mount Children’s Museum (now the Rocky Mount Imperial Center, Children’s Museum & Science Centre) in North Carolina, with the intention that they would be used to create a twelfth cast which would be mounted outside the museum building next to the Tar River in Rocky Mount’s Sunset Park. But was such a cast ever created? A sequence of reports in the Rocky Mount Evening Telegram from April to July 1960 (Williams 1960, Bell 1960a, Bell 1960b, Anonymous 1960b) enthusiastically announce and discuss the impeding arrival, and the later articles say that museum board president Harold Minges has left for Utah to collect to molds — but then the newspaper goes silent on the subject, and the project is never mentioned again. There is no positive evidence that the molds even arrived in Rocky Mount, far less that they were used to create a new mount. Thus newspaper reports from both Utah and North Carolina say that the molds set out on their journey from one to the other, but neither confirms that they ever arrived. On the other hand, there is also no report of the molds being lost or destroyed, so perhaps the most likely interpretation is that they arrived in Rocky Mount, but were found to be in worse condition than expected and quietly left in storage. This interpretation is supported by Rea (2001:210) who reported that “from Vernal the molds kept travelling — first, to the Rocky Mount Children’s Museum in Rocky Mount, North Carolina, although a cast was never made there”. Similarly, Moore (2014:234-235) stated that “From Vernal, Utah, [CM] molds of Diplodocus carnegii are shipped to Rocky Mount Children’s Museum in Rocky Mount, North Carolina. Because of the age-related damage to the molds, a cast was never prepared”.

Hurricane Floyd devastated Rocky Mount in 1999, with flooding from the River Tar destroying the original Children’s Museum along with all its exhibits and records (Leigh White, pers. comm., 2022), so no records survive that could confirm the molds’ arrival or any subsequent use. The museum was located next door to a municipal water treatment facility that also flooded and released unknown chemicals, so museum property that might have otherwise been salvageable in that area was deemed contaminated and required to be destroyed. If the molds were in storage at the Children’s Museum at this time, then this was likely the end of their story.

The Children’s Museum was re-established at the newly built Imperial Centre, where it still resides, but no trace exists there of molds or casts of Diplodocus. Corroborating the hypothesis that no cast ever existed, most staff who worked at the museum in the 1980s do not recall any such cast (Leigh White, pers. comm., 2022). Contradicting this, however, Jan Engle Hicks, Curator of Education at the Rocky Mount Children’s Museum from 1971–2002, has a memory of Diplodocus casts being on exhibit at the museum when she started work in 1971. She does not recall if they were still part of the museum collection in 1999 when the collection was destroyed.

Whether or not a cast was made at Rocky Mount, it is possible that this was not the end for the molds. Rea (2001:210) continues: “Eventually the molds found their way to the Houston Museum of Science, where they were used to fill in gaps in the Diplodocus hayi skeleton that had been swapped from Pittsburgh to Cleveland before ending up in Houston”, citing a personal communication from John S. McIntosh. (The skeleton in question is that of CM 662, which became CMNH 10670 in Cleveland, then HMNS 175 in Houston. Having been nominated as the holotype of the new species Diplodocus hayi by Holland (1924:399), the species was later moved to its own new genus Galeamopus by Tschopp et al. (2015:267).)

Due to the loss of the Rocky Mount Children’s Museum records, we cannot tell whether they ever shipped the molds to Houston; and we have not been able to obtain information from the Houston Museum. Brian Curtice (pers. comm., 2022) reports that he was in Houston in 1995 and did not see the molds in the collection, nor hear of their ever having been there. In the absence of evidence that the molds ever made it to Houston, it seems at least equally likely that the missing bones in HMNS 175 were cast and supplied by Dinolab, using the second-generation molds described blow, and that Rea (2001) misreported this.

As recently as 1988, Rolfe (1988) wrote on behalf of the Royal Museum of Scotland, “At present I am exploring the possibility of re-using the Carnegie Museum, Pittsburgh moulds, although there is considerable doubt about whether they are up to the job, after so much previous use”. Sadly, his letter does not mention their then-current whereabouts.

In an unpublished manuscript, Madsen (1990:4) wrote that “The fate of the initial set of molds is somewhat in question, but Wann Langston (personal communication, 1989) suggests that they seem to have been lost, strayed, or stolen during transport from ? to ?. Principles contacted in regards to the disposition of the molds could not provide specific information.”. Infuriatingly, the question marks are in the original. Since both Langston and Madsen are now deceased, there is no way to discover on which of the molds’ journeys Langston thought they were lost or destroyed. It is unlikely, at least, that Langston had in mind the their initial journey from Vernal to Rocky Mount. Kirby (1998:4) wrote that “Somewhere along the line, as the story goes, the molds received from the Carnegie had been shipped to a school down south and never arrived. So they were lost”. Since Rocky mount is about 2000 miles east (not south) of Vernal, “a school down south” could not have referred, in a Utah publication, to a museum out east. The Houston museum also does not seems an especially likely candidate for this designation, being 1300 miles southeast of Vernal.

Putting it all together, there is no way that all the reports cited here can be accurate. Perhaps the most likely scenario is this: the molds were successfully shipped to Rocky Mount in July 1960 (Anonymous 1960a, Anonymous 1960b) but found to be unusable (Rea 2001:210, Moore 2014:234-235) and left in storage. At some later point there were shipped to a school in a southern state (Kirby 1998:4) but did not arrive (Langston cited in Madsen 1990:4). This may have happened in late 1988 or early 1989, between Rolfe’s (1988) letter that expressed an interest in using the molds and Langston’s personal communication to Madsen in 1989. Where the molds are now, and why they did not arrive, we can only speculate. As Madsen (1990:4) concluded, “It is truly a mystery that an estimated 3–6 tons of plaster molds could simply vanish!”

References

Anonymous. 1960a. Dinosaur molds take long ride to No. Carolina children’s home. Vernal Express, 14 July 1960, page 15. https://newspapers.lib.utah.edu/ark:/87278/s6zk6w6s/21338221

Anonymous. 1960b. Something ‘big’ for a fact. Rocky Mount Evening Telegram, 8 July 1960, page 4A. https://newspaperarchive.com/rocky-mount-evening-telegram-jul-08-1960-p-4/

Bell, Mae. 1960a. Dinosaur’s coming here brings questions galore. Rocky Mount Evening Telegram, 14 May 1960, page 2. https://newspaperarchive.com/rocky-mount-evening-telegram-may-14-1960-p-2/

Bell, Mae. 1960b. ‘Dinosaur’ soon to arrive here. Rocky Mount Evening Telegram, 3 July 1960, page 3A. https://newspaperarchive.com/rocky-mount-evening-telegram-jul-08-1960-p-8/

Carr, Elaine, and Aric Hansen. 2005. William Randolf Turnage, Dee Hall, and Ernest Untermann [archive photograph with metadata]. University of Utah, J. Willard Marriott Digital Library, image 1086142. https://collections.lib.utah.edu/details?id=1086142

Holland, William J. 1924. The skull of Diplodocus. Memoirs of the Carnegie Museum 9(3):379–403.

Kirby, Robert. 1998. Danny and the dinosaurs. Chamber Spirit (newsletter of the Vernal area Chamber of Commerce) 3(4):1–6.

Madsen, James H. 1990. Diplodocus carnegiei: Production and design of replica skeletons. Unpublished draft manuscript. (No author is named in the manuscript, but Madsen’s son Chris believes it is his work.)

Moore, Randy. 2014. Dinosaurs by the Decades: A Chronology of the Dinosaur in Science and Popular Culture. Greenwood, Westport, Connecticut.

Rea, Tom. 2001. Bone Wars: The Excavation and Celebrity of Andrew Carnegie’s Dinosaur. University of Pittsburgh Press, Pittsburgh, PA.

Rolfe, William D. I. 1988. Untitled letter to LuRae Caldwell (Utah Field House). 24 October 1988.

Sassaman, Richard. 1988. Carnegie had a dinosaur too. American Heritage 39(2):72–73.

Tschopp, Emanuel, Octávio Mateus and Roger B. J. Benson. 2015. A specimen-level phylogenetic analysis and taxonomic revision of Diplodocidae (Dinosauria, Sauropoda). PeerJ 2:e857. doi:10.7717/peerj.857

Untermann, G. Ernest. 1959. A replica of Diplodocus. Curator 2(4):364–369. doi:10.1111/j.2151-6952.1959.tb00520.x

Williams, Oliver. Pre-historic dinosaur to tower over city; giant animal four times taller than man. Rocky Mount Evening Telegram, 24 April 1960, page 3B. https://newspaperarchive.com/rocky-mount-evening-telegram-apr-24-1960-p-11/

I’ve been in contact recently with Matt Lamanna, Associate Curator in the Section of Vertebrate Paleontology at the Carnegie Museum of Natural History — which is obviously the best job in the world. Among a batch of photos that he sent me recently, I seized on this gem:

Tyrannosaurus rex, Diplodocus carnegii, Apatosaurus louisae and multiple mostly juvenile individuals of Homo sapiens. Photograph taken between 1941 and 1965. Courtesy of Carnegie Museum of Natural History.

There’s so much to appreciate in this picture: the hunchbacked, tail-dragging Tyrannosaurus; the camarasaur-style skull on the Apatosaurus; the hard-to-pin-down archaic air of Diplodocus.

But the thing I love about it is the 1950s kids. (Or, to be fair, maybe the 1940s kids or early 1960s kids, but you get the point.) They way they’ve all been asked to look up at the tyrannosaur skull, and are obediently doing it. How earnest they all appear. How they’re all dressed as tiny adults. How self-consciously some of them have posed themselves — the thoughtful kid one in from the left, his foot up on the plinth and his chin resting on his hand; the cool kid to his right, arms crossed, interested but careful not to seem too impressed.

Where are these kids now? Assuming it was taken in 1953, the midpoint of the possible range, and assuming they’re about 12 years old in this photo, they were born around 1941, which would make them 81 now. Statistically, somewhere around half of them are still alive. I wonder how many of them remember this day, and the strange blend of awe, fascination, and self-consciousness.

This is a time-capsule, friends. Enjoy it.

We’ve shown you the Apatosaurus louisae holotype mounted skeleton CM 3018 several times: shot from the hip, posing with another massive vertebrate, photographed from above, and more. Today we bring you a world first: Apatosaurus from below. Scroll and enjoy!

Obviously there’s a lot of perspective distortion here. You have to imagine yourself lying underneath the skeleton and looking up — as I was, when I took the short video that was converted into this image.

Many thanks to special-effects wizard Jarrod Davis for stitching the video into the glorious image you see here.

The most obvious effect of the perspective distortion is that the neck and tail both look tiny: we are effectively looking along them, the neck in posteroventral view and the tail in anteroventral. The ribs are also flared in this perspective, making Apato look even broader than it is in real life. Which is pretty broad. One odd effect of this is that this makes the scapulae look as though they are sitting on top of the ribcage rather than appressed to its sides.

 

Yes, we’ve touched on a similar subject in a previous tutorial, but today I want to make a really important point about writing anything of substance, whether it’s a scientific paper, a novel or the manual for a piece of software. It’s this: you have to actually do the work. And the way you do that is by first doing a bit of the work, then doing a bit more, and iterating until it’s all done. This is the only way to complete a project.

Yes, this is very basic advice. Yes, it’s almost tautological. But I think it needs saying because it’s a lesson that we seem to be hardwired to avoid learning. This, I assume, is why so many wise sayings have been coined on the subject. Everyone has heard that “A journey of a thousand miles begins with a single step”, attributed to Lao Tzu in maybe the 5th Century BC. More pithily, I recently discovered that Williams Wordsworth is supposed to have said:

To begin, begin.

I love that. In just three words, it makes the point that there is no secret to be learned here, no special thing that you can do to make beginning easier. You just have to do it. Fire up your favourite word processor. Create a new document. Start typing.

And to Wordsworth’s injunction, I would add this:

To continue, continue

Because, again, there is no secret. You just have to do it.

Mounted skeleton of Diplodocus carnegii holotype CM 84 in the rare dorsal view.

At the moment I am working on four separate but related papers. Honestly, sometimes it’s hard even keeping them straight in my head. Sometimes I forget which one I am editing. It would be easy to get overwhelmed and … just not finish. I don’t mean it would be easy to give up: that would be a decision, and I don’t think I would do that. But if I listened to my inner sluggard, I would just keep on not making progress until the matter become moot.

So here is what I do instead:

  • I pick one of the papers, which is the one I’m going to work on that evening, and I try not to think too much about the others.
  • I figure out what needs to be in that paper, in what order.
  • I write the headings into a document, and I put an empty paragraph below each, which just says “XXX”. That’s the marker I use to mean “work needed here”.
  • I use my word-processor’s document-structuring facilities to set the style of each of the headings accordingly — 1st, 2nd or occasionally 3rd level.
  • I auto-generate a table of contents so I can see if it all makes sense. If it doesn’t, I move my headings around and regenerate the table of contents, and I keep doing that until it does make sense.
  • I now have a manuscript that is 100% complete except in the tiny detail that it has no content. This is a big step! Now all I have to do is write the content, and I’ll be finished.
  • I write the content, one section at a time. I search for “XXX” to find an unwritten section, and I write it.
  • When all the “XXX” markers have been replaced by text, the paper is done — or, at least, ready to be submitted.

Caveats:

First, that list makes it sound like I am really good at this. I’m not. I suck. I get distracted. For example, I am writing this blog-post as a distraction from writing a section of the paper I’m currently working on. I check what’s new on Tweetdeck. I read an article or two. I go and make myself a cup of tea. I play a bit of guitar. But then I go back and write a bit more. I could be a lot more efficient. But the thing is, if you keep writing a bit more over and over again, in the end you finish.

Second, the path is rarely linear. Often I’m not able to complete the section I want to work on because I am waiting on someone else to get back to me about some technical point, or I need to find relevant literature, or I realise I’m going to need to make a big digression. That’s fine. I just leave an “XXX” at each point that I know I’m going to have to revisit. Then when the email comes in, or I find the paper, or I figure out how to handle the digression, I return to the “XXX” and fix it up.

Third, sometimes writing a section blows up into something bigger. That’s OK. Just make a decision. That’s how I ended up working on these four papers at the moment. I started with one, but a section of it kept growing and I realised it really wanted to be its own paper — so I cut it out of the first one and made it its own project. But then a section of that one grew into a third paper, and then a section of that one grew into a fourth. Not a problem. Sometimes, that’s the best way to generate new ideas for what to work on: just see what come spiralling out of what you’re already working on.

None of these caveats change the basic observation here, which is simply this: in order to get a piece of work completed, you first have to start, and then have to carry on until it’s done.

 

Here at SV-POW! Towers, we like to show you iconic mounted skeletons from unusual perspectives. Here’s one:

Apatosaurus louisae holotype CM 3018, mounted skeleton in the public gallery of the Carnegie Museum of Natural History: head, neck, torso and hip in right posterolateral view. Photograph by Matt Wedel, 12th March 2019 (my birthday!)

Oh, man, I love that museum. And I love that specimen. And I love the one that’s standing next to it (Diplodocus CM 82, natch.) I’ve got to find a way to get myself back out there.

That’s all: just enjoy.