Last Wednesday, May 9, Brian Engh and I bombed out to Utah for a few days of paleo adventures. Here are some highlights from our trip.

We started at a Triassic tracksite on Thursday. But I’m not going to post any pictures of the tracks – those will be coming to a Brian Engh joint near you in the future. Instead, I’m going to talk about this little male collared lizard whose territory included the tracksite. He was fearless – didn’t want to run off and leave us yahoos wandering around his patch of desert unsupervised. Brian tickled his chin at one point.

Getting this close to him is how I got shots like this one:

Click through to the big version, it’s worth it.

One more shot of a couple of cool desert dwellers. I was so fixated on the lizard that I didn’t realize until later that Brian was in the frame, taking a much-needed hydration break.

On Friday we had a temporary breaking of the fellowship. I went to Fruita, Colorado, to visit the Dinosaur Journey museum. You’ve seen photos from DJ here before, from the 2014 Mid-Mesozoic Field Conference and the 2016 Sauropocalypse. Here’s an apatosaur pubis with some obvious bite marks on the distal end. This is on display next to a similarly-bitten ischium, which is shown in the MMFC14 post linked above.

Here’s a big apatosaur cervical, in antero-ventral view, with a dorsal rib draped over its left side. The cervical ribs are not fused in this specimen, so it was probably still growing. Here’s a labeled version:

The short centrum and nearly-vertical transverse processes indicate that this is a pretty posterior cervical, possibly a C13 or thereabouts. This specimen was over the fence in the exhibit area and I couldn’t throw a scale bar at it, but I’d describe it as “honkin'”. Like most of the apatosaur material at DJ, this vert is from the Mygatt-Moore Quarry.

Of course the real reason I was at Dinosaur Journey was to see the Snowmass Haplocanthosaurus that John Foster and I described back in 2014. You may remember that its caudal vertebrae have wacky neural canals. You may also have noticed a recent uptick in the number of posts around here about wacky neural canals. The game is afoot.

But as cool as they were, the Triassic tracks, the collared lizard, and even the Snowmass Haplo were only targets of opportunity. Brian and I had gone to Utah for this:

That photo was taken by Paige Wiren of Salt Lake City, on the day that she discovered that bone eroding out of a riverbank, just as you see it.

Here’s Paige with the element, which proved to be the left femur of an apatosaurine sauropod. It’s face down in these photos, so we’re looking at the medial side. The articular head is missing from the proximal end – it should be facing toward Paige’s right knee in the above photo – but other than that and a few negligible nicks and dings, the femur was complete and in really good shape.

Paige did the right thing when she found the femur: she contacted a paleontologist. Specifically, she asked a friend, who in turn put her in touch with Carrie Levitt-Bussian, the paleontology Collections Manager at the Natural History Museum of Utah. Based on Paige’s photos and maps, Carrie was able to identify the element as a dinosaur femur, probably sauropod, within the territory of the BLM Hanksville Field Office. John Foster, the Director of the Museum of Moab, has a permit to legally collect vertebrate fossils from that area, and he works on sauropods, so Carrie put Paige in touch with John and with ReBecca Hunt-Foster, the district paleontologist for the BLM’s Canyon Country District in Utah.

Now, I know there’s a lot of heated rhetoric surrounding the Bureau of Land Management, but whatever your political bent, remember this: those are our public lands. Therefore the fossils out there are the collective property of all of us, and we should all be upset if they get poached or vandalized. Yes, that is a big problem – the Brontomerus type quarry was partially poached before the bones we have now were recovered, and vandalism at public fossil sites in Utah made the national news while we were out there.

So that’s what we went to do: salvage this bone for science and education before it could be lost to erosion or asshats. Brian and I were out there to assist John, ReBecca, and Paige, who got to see her find come out of the ground and even got her hands dirty making the plaster jacket. Brian and John headed out to the site Friday morning and met up with Paige there, and ReBecca and I caravanned out later in the day, after I got back from Fruita.

But I’m getting ahead of myself a bit. We didn’t have to jacket the whole thing. It had naturally broken into three pieces, with thin clay infills at the breaks. So we just slid the proximal and middle thirds away as we uncovered them, and hit any loose-looking pieces with consolidant. The distal third was in more questionable shape, so we did make a partial jacket to hold it together.

We also got to camp out in gorgeous country, with spectacular (and welcome) clouds during the day and incredible starry skies at night.

We floated the femur out of the site using the Fosters’ canoe at the end of the day on Saturday, and loaded up to head back to Moab on Sunday. At one point the road was empty and the sky was not, so I stood on the center line and took some photos. This one is looking ahead, toward I-70 and Green River.

And this one is looking behind, back toward Hanksville.

Here are John and Brian with the femur chunks in one of the back rooms of the Museum of Moab. The femur looks oddly small here, but assembled it was 155 cm (5’1″) long and would have been 160 (5’3″) or more with the proximal head. Smaller than CM 3018 and most of the big mounted apatosaurs, but nothing to sneeze at.

What happens to it next? It will be cleaned, prepped, and reassembled by the volunteers and exhibit staff at the Museum of Moab, and eventually it will go on public display. Thousands of people will get to see and learn from this specimen because Paige Wiren made the right call. Go thou and do likewise.

That was the end of the road for the femur (for now), but not for Brian and me. We had business in Cedar City and St. George, so we hit the road Sunday afternoon. Waves of rainclouds were rolling east across Utah while we were rolling west, with breaks for sunlight in between. I miiiight have had to swerve a couple of times when all the scenery distracted me from driving, and I definitely made an obnoxious number of stops to take pictures.

I don’t remember which scenic overlook this was, but it was a pretty darned good view. This is another one that will reward embiggening – check out those mesas marching off into the distance.

In Cedar City we were guests of Andrew R.C. Milner, Site Paleontologist and Curator at the St. George Dinosaur Discovery Site at Johnson Farm (SGDS). We spent most of Monday at SGDS, getting our minds comprehensively blown by the amazing trace and body fossils on display. It was my first time visiting that museum, but it sure as heck won’t be the last.

I didn’t take nearly enough photos in St. George – too busy helping Brian do some filming for a future project – but I did get this gem. This is a Eubrontes track, from a Dilophosaurus-sized theropod. This is a positive track, a cast of the dinosaur’s foot made by sandy sediment that filled the natural mold formed when the dino stepped into mud. The high clay content of the mud recorded the morphology of the foot in fine detail, including the bumps of individual scales on the foot pads. The vertical streaks were cut into the side of the track by similar scales as the animal’s foot pushed into the mud.

The full story of the Johnson Farm tracks and trackmakers is beautifully told in the book Tracks in Deep Time: The St. George Dinosaur Discovery Site at Johnson Farm, by Jerry Harris and Andrew Milner. I hadn’t read it before, so I picked up a copy in the gift shop and I’ve been devouring it. As a professional scientist, educator, and book author myself, I’m jealous of what Jerry and Andrew produced – both the text and the abundant full-color illustrations are wonderfully clear, and the book is well-produced and very affordable.

From St. George we hit the road home, and rolled into Claremont just before midnight on Monday. It was a whirlwind tour – 1800 miles, three museums, and two fossil sites in six days – and my brain is still fizzing with all of the things we got to see and do.

One of the many pros of having a professional artist as a friend is that minimal hospitality, like letting him crash on my couch, is sometimes rewarded with original art. Brian was already gone when I got up Tuesday morning, but this was waiting for me on the dining room table. (Want your own? Help Brian make more monsters here.)

I owe plenty of thanks myself: to the Foster and Milner families for their near-maximal hospitality, to Julia McHugh of Dinosaur Journey for assistance in collections, to Diana Azevedo, Jalessa Spor, Jerry Harris, and the rest of the SGDS staff for being such gracious hosts, to Brian for being such a great friend and traveling companion, and most of all to Paige Wiren for finding the apato femur and helping us save it for science. You’re all top-notch human beings and I hope our paths cross again soon.


I was in Philadelphia and New York last week, visiting colleagues on the East Coast and getting in some collaborative research. Much more to say about that in the future – even just the touristy stuff will fill several posts.

One highlight of the trip was visiting the Academy of Natural Sciences in Philadelphia last Friday. Ted Daeschler (of Tiktaalik fame) and Jason Poole (who illustrated this sweet book) were my generous hosts and I got to see a ton of cool stuff both out on exhibit and behind the scenes. Seriously, I could post for a month just on the Academy visit.

A personal highlight for me was seeing the cervical vertebrae of the sauropod dinosaur Suuwassea on exhibit. They are in a glass case and you can get around them pretty well to see a lot of anatomy. At first I was pumped to get nice color photos of all the vertebrae from up close and from multiple angles. Then I thought, “Huh, maybe I should just shoot a video.” So I did. Here you go, four minutes of hot sauropod vertebra action:

Left side, posterolateral oblique view, wide shot.

Same thing, close up.

Right side, lateral, wide.

Same thing, close up.

For more on this and other pneumatic sauropod tails, please see Wedel and Taylor (2013, here). And for more on the currently unresolved taxonomic status of FMNH P25112, see this post.

Back in the spring of 1998, Kent Sanders and I started CT scanning sauropod vertebrae. We started just to get a baseline for the Sauroposeidon project, but in time the data we collected formed the basis for my MS thesis, and for a good chunk of my dissertation as well. Mostly what we had available to scan was Morrison material. Between imperfect preservation, inexpert prep (by WPA guys back in the ’30s), and several moves over the decades, most of the verts from the Oklahoma Morrison have their neural spines and cervical ribs broken off. One of the first things I had to figure out was how to tell broken vertebrae of Camarasaurus from those of Apatosaurus (at the time; Brontosaurus is back in contention now). Here’s a thing I made up to help me sort out cervical centra of Camarasaurus and whatever the Oklahoma apatosaurine turns out to be. It’s a recent production, but it embodies stuff from my notebooks from 20 years ago. Should be useful for other times and places in the Morrison as well, given the broad spatiotemporal overlap of Camarasaurus and the various apatosaurines.

For a related thing in the same vein, see Tutorial 30: how to identify Morrison sauropod cervicals.

More elephant seals soon, I promise.

UPDATE 20 Feb 2018

Ken Carpenter sent this by email, with a request that I post it as a comment. Since it includes an image, I’m appending to the post, because it makes an important point that I neglected to mention.

Camar post cerv

Ken: Sorry, Matt. Not so easy. The last cervical of Camarasaurus from the Cleveland Lloyd Quarry is more apatosaurine-like than Camarasaurus-like based on your posting. Note the position of both zygapohyses with both ends of the centrum.

My response: Yes, good catch. I meant to say in the post that my distinguishing characters break down at the cervico-dorsal transition. Even so, in this Cleveland Lloyd vert the postzyg is still forward of a line drawn directly up from the cotyle. I’ve never seen that in an apatosaurine–going into the dorsal series, the postzygs tend to be centered over a line projected up from the rim of the cotyle. (If anyone knows of counterexamples, speak up!)

For distinguishing cervico-dorsals, apatosaurines tend to have much taller neural spines than Camarasaurus, and this carries on through the rest of the dorsal series. In apatosaurine dorsals, the height of the spine above the transverse processes always equals or exceeds the height of the arch below the transverse processes. In Camarasaurus, the height of the dorsal neural spines is always less than or equal to the height of the arch. The shapes of the spines are fairly different, too. Maybe that will be the subject of a future post.

Here’s another vertebra from the big Oklahoma apatosaurine. Based on the size and shape of the transverse process, and the large pneumatic chambers on either side of the neural canal, I think this is probably a 4th caudal, but it could plausibly be a 3rd or a 5th. The centrum is 33 cm tall by 36 cm wide.

For other elements of the big Oklahoma apatosaurine, please see:

When I was nine, a copy of Don Glut’s The New Dinosaur Dictionary turned up in my local Waldenbooks. It wasn’t my first dinosaur book, by far – I’d been a dinosaurophile since the age of three. But The New Dinosaur Dictionary was different.

Up to that point, I had subsisted on a heavy diet of kids’ dino books and the occasional article in National Geographic and Ranger Rick. The kids’ books were aimed at kids and the magazine articles were pitched at an engagingly popular level. I didn’t understand every word, but they were clearly written for curious layfolk, not specialists.

A typical spread from The New Dinosaur Dictionary (Glut, 1982). The armored sauropod blew my young mind.

The New Dinosaur Dictionary was something else entirely. It had photos of actual dinosaur bones and illustrations of skeletons with cryptic captions like, “Skeleton of Daspletosaurus torosus. (After Russell)”. Okay, clearly this Russell cove was out there drawing dinosaur skeletons and this book had reproduced some of them. But nobody I knew talked like that, and the books I had access to up to that point held no comparable language.

The New Dinosaur Dictionary (Glut, 1982: p. 271)

Then there was stuff like this: “The so-called Von Hughenden sauropod restored as a brachiosaurid by Mark Hallett”. A chain of fascinating and pleasurable ideas detonated in my brain. “The so-called” – say what now? Nobody even knew what to call this thing? Somehow I had inadvertently sailed right to the edge of human knowledge of dinosaurs, and was peering out into taxa incognita. “Restored as a brachiosaurid” – so this was just one of several possible ways that the animal might have looked. Even the scientists weren’t sure. This was a far cry from the bland assurances and blithely patronizing tones of all my previous dinosaur books.

“By Mark Hallett.” I didn’t know who this Hallett guy was, but his art was all over the book, along with William Stout and some guy named Robert T. Bakker and a host of others who were exploding my conception of what paleo art could even be. Anyway, this Mark Hallett was someone to watch, not only because he got mentioned by name a lot, but because his art had a crisp quality that teetered on some hypercanny ridge between photorealism and scribbling. His sketches looked like they might just walk off the page.

In case that line about scribbling sounds dismissive: I have always preferred sketches by my favorite artists to their finished products. The polished works are frequently inhumanly good. They seem to have descended in a state of completed perfection from some divine realm, unattainable by mere mortals. Whereas sketches give us a look under the hood, and show how a good artist can conjure light, shadow, form, weight, and texture from a few pencil strokes. Put it this way: I am anatomist by temperament first, and by training and occupation second. Of course I want to see how things are put together.

The New Dinosaur Dictionary (Glut, 1982: p. 75)

Anyway, The New Dinosaur Dictionary was something completely new in my experience. It wasn’t aimed at kids and written as if by kids, like lots of kids’ books. It wasn’t even written by adults talking down (deliberately or inadvertently) to kids, or trying to reach a wide audience that might include kids. It was written by an adult, aiming at other adults. And it was admitting in plain language that we didn’t know everything yet, that there were lots of animals trembling on the outer threshold of scientific knowledge. I didn’t understand half of it – I was down in an ontogenetic trench, looking up as these packets of information exploded like fireworks over my head.

In Seeing In the Dark, the best book about why you should go out stargazing for yourself, Timothy Ferris writes about growing up on Florida’s Space Coast in the early 1960s, and watching the first generation of artificial satellites pass overhead:

I felt like an ancient lungfish contemplating the land from the sea. We could get up there.

That’s precisely the effect that The New Dinosaur Dictionary had on me: I could get up there. Maybe not immediately. But there were steps, bodies of knowledge that could be mastered piecemeal, and most of all, mysteries to be resolved. The book itself was like a sketch, showing how from isolated and broken bones and incomplete skeletons, scientists and artists reconstructed the world of the past, one hypothesis at a time. Now I take it for granted, because I’ve been behind the curtain for a couple of decades. But to my 9-year-old self, it was revolutionary.

This has all come roaring back because of something that came in the mail this week. Or rather, something that had been waiting in the mailroom for a while, that I finally picked up this week: a package from Mark Hallett, enclosing a copy of his 2018 dinosaur calendar. And also this:


An original sketch, which he gave to me as a Christmas present. The published version appears on one of the final pages of our book, where we discuss the boundaries between the known – the emerging synthesis of sauropod biology that we hoped to bring to a broader audience by writing the book in the first place – and the unknown – the enduring mysteries that Mark and I think will drive research in sauropod paleobiology for the next few decades. Presented without a caption or commentary, the sketch embodies sauropods as we see them: emerging from uncertainty and ignorance one hard-won line at a time, with ever-increasing solidity.

Thank you, Mark, sincerely. That sketch, what it evokes, both for me now and for my inner 9-year-old – you couldn’t have chosen a better gift. And I couldn’t be happier. Except perhaps to someday learn that our book exploded in the mind of a curious kid the way that The New Dinosaur Dictionary did for me 34 years ago, a time that now seems as distant and romantic as the primeval forests of the Mesozoic.

This post started out as a comment on this thread, kicked off by Dale McInnes, in which Mike Habib got into a discussion with Mike Taylor about the max size of sauropods. Stand by for some arm-waving. All the photos of outdoor models were taken at Dino-Park Münchehagen back in late 2008.

I think it’s all too easy to confuse how big things do get from how big they could get, assuming different selection pressures and ecological opportunities. I’m sure someone could write a very compelling paper about how elephants are as big as they could possibly be, or Komodo dragons, if we didn’t have indricotheres and Megalania to show that the upper limit is elsewhere. This is basically what Economos (1981) did for indricotheres, either forgetting about sauropods or assuming they were all aquatic.

Truly, a mammal of excellence and distinction. With Mike and some dumb rhino for scale.

In fact, I’ll go further: a lot of pop discussions of sauropod size assume that sauropods got big because of external factors (oxygen levels, etc.) but were ultimately limited by internal factors, like bone and cartilage strength or cardiovascular issues. I think the opposite is more likely: sauropods got big because of a happy, never-repeated confluence of internal factors (the Sander/et al. [2008, 2011, 2013] hypothesis, which I think is extremely robust), and their size was limited by external, ecological factors.

Take a full-size Argentinosaurus or Bruhathkayosaurus – even modest estimates put them at around 10x the mass of the largest contemporary predators. Full-grown adults were probably truly predator-immune, barring disease or senescence. So any resources devoted to pushing the size disparity higher, instead of invested in making more eggs, would basically be wasted.

If there was reproductive competition among the super-giants, could the 100-tonners have been out-reproduced by the 70-tonners, which put those extra 30 tonnes into making babies? Or would the 100-tonners make so many more eggs than the 70-tonners (over some span of years) that they’d still come out on top? I admit, I don’t know enough reproductive biology to answer that. (If you do, speak up in the comments!) But if – if – 70-tonners could out-reproduce 100-tonners, that by itself might have been enough to put a cap on the size of the largest sauropods.

Another possibility is that max-size adult sauropods were neither common nor the target of selection. In most populations most of the time, the largest individuals might have been reproductively active but skeletally-immature and still-growing subadults (keep in mind that category would encompass most mounted sauropod skeletons, including the mounted brachiosaurs in Chicago and Berlin). If such individuals were the primary targets of selection, and they were selected for a balance of reproductive output and growth, then the few max-size adults might represent the relatively rare instances in which the developmental program “overshot” the selection target.

Dave Hone and Andy Farke and I mentioned this briefly in our 2016 paper, and it’s come up here on the blog several times before, but I still have a hard time wrapping my head around what that would mean. Maybe the max-size adults don’t represent the selective optimum, but rather beneficial traits carried to extreme ends by runaway development. It seems at least conceivable that the bodies of such animals might have been heavily loaded with morphological excrescences – like 15- to 17-meter necks – that were well past the selective optimum. As long as those features weren’t inherently fatal, they could possibly have been pretty darned inefficient, riding around on big predator-immune platforms that could walk for hundreds of kilometers and survive on garbage.

What does that swerve into weird-but-by-now-well-trod ground have to do with the limits on sauropod size? This: if max-size adults were not heavy selection targets, either because the focus of selection was on younger, reproductively-active subadults, or because they’d gotten so big that the only selection pressure that could really affect them was a continent-wide famine – or both – then they might not have gotten as big as they could have (i.e., never hit any internally-imposed, anatomical or biomechanical limits) because nothing external was pushing them to get any bigger than they already were.

Or maybe that’s just a big pile of arm-wavy BS. Let’s try tearing it down, and find out. The comment thread is open.