This was an interesting exercise. It was my first time generating a poster to be delivered at a conference since 2006. Scientific communication has evolved a lot in the intervening decade, which spans a full half of my research career to date. So I had a chance to take the principles that I say that I admire and try to put them into practice.

It helped that I wasn’t working alone. Jann and Brian both provided strong, simple images to help tell the story, and Mike and I were batting ideas back and forth, deciding on what we could safely leave out of our posters. Abstracts were the first to go, literature cited and acknowledgments were next. We both had the ambition of cutting the text down to just figure captions. Mike nailed that goal, but my poster ended up being slightly more narrative. I’m cool with that – it’s hardly text-heavy, especially compared with most of my efforts from back when. Check out the text-zilla I presented at SVP back in 2006, which is available on FigShare here. I am happier to see, looking back, that I’d done an almost purely image-and-caption poster, with no abstract and no lit cited, as early as 1999, with Kent Sanders as coauthor and primary art-generator – that one is also on FigShare.

I took 8.5×11 color printouts of both my poster and Mike’s, and we ended up passing out most of them to people as we had conversations about our work. That turned out to be extremely useful – I had a 30-minute conversation about my poster at a coffee break the day before the posters even went up, precisely because I had a copy of it to hand to someone else. Like Mike, I found that presenting a poster resulted in more and better conversations than giving a talk. And it was the most personally relaxing SVPCA I’ve ever been to, because I wasn’t staying up late every night finishing or practicing my talk.

I have a lot of stuff to say about the conference, the field trip, the citability of abstracts and posters (TL;DR: I’m for it), and so on, but unfortunately no time right now. I’m just popping in to get this posted while it’s still fresh. Like Mike’s poster, this one is now published alongside my team’s abstract on PeerJ PrePrints.

I will hopefully have much more to say about the content in the future. This is a project that Jann, Brian, and I first dreamed up over a decade ago, when we were grad students at Berkeley. Mike provided the impetus for us to get it moving again, and kindly stepped aside when I basically hijacked his related but somewhat different take on ontogeny and serial homology. When my fall teaching is over, I’m hoping that the four of us can take all of this, along with additional examples found by Mike that didn’t make it into this presentation, and shape it into a manuscript. I’ll keep you posted on that. In the meantime, the comment field is open. For some related, previously-published posts, see this one for the baby sauropod verts, this one for CM 555, and this one for Plateosaurus.

Flying over Baffin Island on the way home.

And finally, since I didn’t put them into the poster itself, below are the full bibliographic references. Although we didn’t mention it in the poster, the shell apex theory for inferring the larval habits of snails was first articulated by G. Thorson in 1950, which is referenced in full here.

Literature Cited



Or, how a single lateral fossa becomes two foramina: through a finely graded series of intermediate forms. Darwin would approve. The ‘oblique lamina’ that separates the paired lateral foramina in C6 starts is absent in C2, but C3 through C5 show how it grows outward from the median septum. How do I know it grows outward, instead of being left behind during the pneumatization of the more posterior cervicals? Because with very few exceptions, all neosauropod cervicals start out with a single lateral fossa on each side, as illustrated in this post. But many of them end up with two or more foramina. Diplodocus is a nice example of this (from Hatcher 1901: plate 3):

I should clarify that the vertebrae above show that character transformation in this individual, at this point in its ontogeny. The vertebrae of CM 555 are about two-thirds the size of those of CM 3018, the holotype of A. louisae. In CM 3018, even C4 and C5 have completely divided lateral fossae, corresponding to the condition in C6 of CM 555.

As Mike and I discussed in our 2013 neural spine bifurcation paper, isolated sauropod cervicals require cautious interpretation because the morphology of the vertebrae changes so much along the series. The simple morphology of anterior cervicals reflects both earlier ontogenetic stages and more primitive character states. As Mike says, in sauropod necks, serial position recapitulates both ontogeny and phylogeny. So if you have a complete series, you can do something pretty cool: see the intermediate stages by which simple structures become complex.

If you’re thinking this might have something to do with my impending SVPCA poster, you’re right. Here’s the abstract.

For more on serially increasing complexity in sauropodomorph cervicals, see this post.

Here’s a dorsal vertebra of Camarasaurus in anterior view (from Ostrom & McIntosh 1966, modified by Wilson & Sereno 1998). It is one of the most disturbing things I have ever seen in a sauropod. It makes my skin crawl.

Here’s why: the centrum and the thing we habitually call the ‘neural arch’ aren’t fully fused, and as this modified version makes clear, the ‘neural arch’ is neither neural nor an arch. Instead of being bounded ventrally by the centrum and dorsally and laterally by the neural arch, the neural canal lies entirely below the synchondrosis between the not-really-an-arch and the centrum.

Why?! WHY WOULD YOU DO THAT, CAMARASAURUS? This is not ‘Nam. This is basic vertebral architecture. There are rules.

Look at c6 of Apatosaurus CM 555 here, behaving as all good vertebrae ought to. Neural arch be archin’, as the kids say.

And if you are seeking solace in the thought that maybe the artist just drew that Cam dorsal incorrectly, forget it. I’ve been to Yale and examined the original specimen. I’ve seen things, man!

Camarasaurus isn’t the only pervert around here. Check this out:

Unfused neural arch of a caudal vertebra of a juvenile Alamosaurus from Big Bend. And I mean, this is a neural arch. This may be the most neural of all neural arches, in that it contains the entire neural canal. It’s more of a neural…ring, I guess. That’s right, this Alamosaurus caudal is batting for the opposite team from the Cam dorsal above. And it’s a team that neither you nor I play on, because we have well-behaved normal-ass vertebrae with neural arches that actually arch, and then stop, like God and Richard Owen intended.

Scientifically, my question about these vertebrae is: well, that is, I mean to say, what!? I think they have damaged me in some fundamental way.

If you have anything more intelligent to add (or even less intelligent – consider the gauntlet thrown down!), the comment thread is open.


  • Ostrom, John H., and John S. McIntosh. 1966. Marsh’s Dinosaurs. Yale University Press, New Haven and London. 388 pages including 65 absurdly beautiful plates.
  • Wilson, J. A. and Paul C. Sereno. 1998. Early evolution and higher-level phylogeny of sauropod dinosaurs. Society of Vertebrate Paleontology, Memoir 5: 1-68.

Hey sports fans! I met David Lindblad at Beer ‘N Bones at the Arizona Museum of Natural History last month, and he invited me to talk dinosaurs on his podcast. So I did (LINK). For two hours. Some of what I talk about will be familiar to long-time readers – dinosaur butt-brains and the Clash of the Dinosaurs saga, for example. But I also just sorta turned off my inhibitions and let all kinds of speculative twaddle come gushing out, including the specter of sauropod polyphyly, which I don’t believe but can’t stop thinking about. David was a gracious and long-suffering host and let me yap on at length. It is more or less the kind of conversation you could have with me in a pub, if you let me do most of the talking and didn’t want to hear about anything other than dinosaurs.

Is it any good? Beats me – I’m way too close to this one to make that call. Let me know in the comments.

Oh, I didn’t have any visuals that really fit the theme so I’m recycling this cool image of speculative sauropod display structures by Brian Engh. Go check out his blog and Patreon and YouTube channel.

Anterior view. Dorsal is to the upper right. The neural spine and left transverse process are missing.

Here’s a closeup of the condyle. The outer layer of cortical bone is gone, allowing a glimpse of the pneumatic chambers inside the vert. The erosion of the condyle was probably inflicted post-excavation by relatively unskilled WPA workers, whose prep tools were limited to chisels, penknives, and sandpaper. Because the bones from the Kenton localities are roughly the same color as the matrix, the preparators sometimes did not realize that they were sanding into the bones until the internal structure was revealed. Bad for the completeness of this specimen, but good for pneumaticity junkies like me, because this baby is too big to be scanned by any but the largest industrial CT machines.

For other posts on the giant Oklahoma apatosaur, see:

The best-preserved presacral vertebra of Vouivria damparisensis (Mannion et al. 2017: fig. 10).

New goodies out today in PeerJ: Tschopp and Mateus (2017) on the new diplodocid Galeamopus pabsti, and Mannion et al. (2017) redescribe and name the French ‘Bothriospondylus’ as Vouivria damparisensis.

C7 of Galeamopus pabsti (Tschopp and Mateus 2017: fig. 24).

Both papers are packed with interesting stuff that I simply don’t have time to discuss right now. Possibly Mike and I will come back with subsequent posts that discuss these critters in more detail. We both have a connection here besides our normal obsession with well-illustrated sauropods – Mike reviewed the Galeamopus paper, and I reviewed Vouivria. Happily, both sets of authors chose to publish the peer-review histories, so if you’re curious, you can go see what we said.

For now, I’ll just note that C7 of Galeamopus pabsti, shown above, is intriguingly similar in form to Vertebra ‘R’ of YPM 429, the ‘starship’ Barosaurus cervical (illustrated here). Mike and I spent a lot of time puzzling over the morphology of that vert before we convinced ourselves that much of its weirdness was due to taphonomic distortion and a restoration and paint job that obscured the fact that the metapophyses were missing. Given our ongoing project to unravel the wacky morphology of Barosaurus, I’m looking forward to digging into the morphology of G. pabsti in more detail.

I’ll surely irritate Mike by saying this, but my favorite figure in either paper is this one, Figure 4 from Tschopp and Mateus (2017). I can’t remember ever seeing an exploded skull diagram like this for a sauropod before, but it’s extremely helpful and I love it.

And that’s all for now. Go read these papers – they’re both substantial contributions with intriguing implications for the evolution of their respective clades. Congratulations to both sets of authors for producing such good work.


  • Mannion PD, Allain R, Moine O. (2017) The earliest known titanosauriform sauropod dinosaur and the evolution of Brachiosauridae. PeerJ 5:e3217
  • Tschopp E, Mateus O. (2017) Osteology of Galeamopus pabsti sp. nov. (Sauropoda: Diplodocidae), with implications for neurocentral closure timing, and the cervico-dorsal transition in diplodocids. PeerJ 5:e3179

Turns out that if Mike and I don’t post about sauropods for a while, people start doing it for us! This very interesting project by Tom Johnson of Loveland, Colorado, first came to my attention when Tom emailed Mark Hallett about it and Mark kindly passed it on to me. I got in touch with Tom and asked if he’d be interested in writing it up for SV-POW!, and here it is. Many thanks to Tom for his willingness to share his work with us. Enjoy! – Matt Wedel

– – – – – – – – – – – – – – – – – – – –

The sauropod formerly known as Apatosaurus in the American Museum of Natural History was the first permanently mounted sauropod dinosaur in the world, and for many years, the most famous (Brinkman 2010). The greater part of the skeleton consists of the specimen AMNH 460 from the Nine Mile Crossing Quarry north of Como Bluff, Wyoming, supplemented with bones from other AMNH specimens from Como Bluff, Bone Cabin Quarry, and with plaster casts of the forelimbs of the holotype specimen of Brontosaurus excelsus (YPM 1980) at the Yale Peabody Museum.

A herd of Brontosaurus skeleton models parading before four box covers issued between the 1950s and 1990s.

Like many aging boomer dinophiles, my dinosaur epiphany was the result of books, movies, and toys available in the 1950s, but especially a series of plastic model dinosaur skeletons that appeared around 1958. The Brontosaurus was my personal favorite, and, like the Tyrannosaurus and Stegosaurus models in the series, was very obviously based on the AMNH mount. The models were reissued at least three times over the years and can still be found either “mint in box” or more often in various stages of completion.

Apatosaurus lousiae 1/12 scale skeleton, modelled by Phil Platt, assembled and photographed by Brant Bassam. Image courtesy of

The crème de la crème today, of course, is the 1:12 scale Apatosaurus skeleton model by Phil Platt, available from Gaston Design in Fruita, Colorado. A particularly nice example is the one completed and mounted by Brant Bassam of BrantWorks. The Platt skeleton is a replica in the true sense of the word. The plastic models are pretty crude in comparison, as cool as they appeared to us as kids.

I was interested in skeletal illustrations I have seen of Tyrannosaurus rex, which compare the completeness of various specimens by showing the actual bones included by coloring them red. A 2005 study of Apatosaurus by Upchurch et. al. examined eleven of the most complete Apatosaurus individuals, and I was interested to see the actual bones known for each specimen. Using published descriptions, red markers, and copies of a skeletal silhouette of Apatosaurus (permission obtained from the artist), I prepared a comparison of the most completely known Apatosaurus specimens. It was clear, of course, that Apatosaurus louisae (CM 3018) is the most complete specimen of the Apatosaurus/Brontosaurus group. But it also was apparent that old AMNH 460 included a substantial portion of the skeleton, even if it is a composite.

I grabbed some additional markers and, using the illustration of the mount in William Diller Matthew’s popular book Dinosaurs (Matthew 1915, fig. 20, which I trust is in the public domain by now), I color-coded the bones according to the composition as listed in Matthew’s (1905) article:

  • AMNH 460, Nine-Mile Crossing Quarry: 5th, 6th, 8th to 13th cervical vertebrae; 1st to 9th dorsal; 3rd to 19th caudal; all ribs; both coracoids; “parts of” sacrum and ilia; both ischia and pubes; left femur and astragalus; and “part of” the left fibula. RED
  • AMNH 222, Como Bluff: right scapula, 10th dorsal vertebra, right femur and tibia. GREEN
    (Visitors to AMNH: you can see the rest of AMNH 222 under the feet of the hunched-over Allosaurus)
  • AMNH 339, Bone Cabin Quarry: 20th to 40th caudal vertebrae. LIGHT BLUE
  • AMNH 592, Bone Cabin Quarry: metatarsals of the right hind foot. VIOLET
  • YPM 1980, Como Bluff: left scapula, forelimb long bones (casts). YELLOW
  • The remaining parts of the skeleton are either modeled in plaster or are unspecified (“a few toe bones”). BLACK

It occurred to me that I might have sufficient spare parts of old ITC and Glencoe Brontosaurus models to create a three-dimensional version. I did, and painting prior to assembly definitely made the job easier.

There are obviously limitations to using Matthew’s (1915) reconstruction (e.g., only 13 cervicals) and the model (12 cervicals). It is also not clear from Matthew’s description how much of the sacrum and ilia were restored. Nevertheless, the painted model does provide a colorful, if crude, visualization of the composition of the composite.

Here are some more photos of the finished product:

A view from the front of the model, compared with a historical AMNH photo of the forelimbs and pelvic girdle.

Long considered a specimen of Brontosaurus excelsus or Apatosaurus excelsus, AMNH 460 was referred to Apatosaurus ajax by Upchurch et. al. in 2005. In the most comprehensive analysis of diplodocid phylogeny to date, Tschopp et. al. (2015) found AMNH 460 to be an “indeterminate apatosaurine” pending a “detailed analysis of the specimen.” What to call it? Oh, yeah, that’s been covered in another post!

This is a nostalgia shot for the old brontophiles. Notice that the Triceratops is entering the lake for a swim!

Tom Johnson with the mounted skeleton of Amphicyon, a Miocene “bear-dog”,
in the Raymond Alf Museum of Paleontology in Claremont, California.


  • Brinkman , Paul D. (2010). The Second Jurassic Dinosaur Rush, University of Chicago Press, 2010.
  • Matthew, William Diller, (1905). “The Mounted Skeleton of Brontosaurus,” The American Museum Journal, Vol. V, No. 2, April.
  • Matthew, W.D. (1915). Dinosaurs, With Special Reference to the American Museum Collections, American Museum of Natural History, New York.
  • Tschopp, Emanuel, Octávio Mateus, and Roger Benson. (2015). “A Specimen-Level Phylogenetic Analysis and Taxonomic Revision of Diplodocidae (Dinosauria, Sauropoda).” Ed. Andrew Farke. PeerJ 3 (2015): e857.
  • Upchurch, P., Tomida, Y., Barrett, P.M. (2005). “A new specimen of Apatosaurus ajax (Sauropoda: Diplodocidae) from the Morrison Formation (Upper Jurassic) of Wyoming, USA”. National Science Museum Monographs (Tokyo) 26 (118): 1–156.