I’ve been in contact recently with Matt Lamanna, Associate Curator in the Section of Vertebrate Paleontology at the Carnegie Museum of Natural History — which is obviously the best job in the world. Among a batch of photos that he sent me recently, I seized on this gem:

Tyrannosaurus rex, Diplodocus carnegii, Apatosaurus louisae and multiple mostly juvenile individuals of Homo sapiens. Photograph taken between 1941 and 1965. Courtesy of Carnegie Museum of Natural History.

There’s so much to appreciate in this picture: the hunchbacked, tail-dragging Tyrannosaurus; the camarasaur-style skull on the Apatosaurus; the hard-to-pin-down archaic air of Diplodocus.

But the thing I love about it is the 1950s kids. (Or, to be fair, maybe the 1940s kids or early 1960s kids, but you get the point.) They way they’ve all been asked to look up at the tyrannosaur skull, and are obediently doing it. How earnest they all appear. How they’re all dressed as tiny adults. How self-consciously some of them have posed themselves — the thoughtful kid one in from the left, his foot up on the plinth and his chin resting on his hand; the cool kid to his right, arms crossed, interested but careful not to seem too impressed.

Where are these kids now? Assuming it was taken in 1953, the midpoint of the possible range, and assuming they’re about 12 years old in this photo, they were born around 1941, which would make them 81 now. Statistically, somewhere around half of them are still alive. I wonder how many of them remember this day, and the strange blend of awe, fascination, and self-consciousness.

This is a time-capsule, friends. Enjoy it.

We’ve shown you the Apatosaurus louisae holotype mounted skeleton CM 3018 several times: shot from the hip, posing with another massive vertebrate, photographed from above, and more. Today we bring you a world first: Apatosaurus from below. Scroll and enjoy!

Obviously there’s a lot of perspective distortion here. You have to imagine yourself lying underneath the skeleton and looking up — as I was, when I took the short video that was converted into this image.

Many thanks to special-effects wizard Jarrod Davis for stitching the video into the glorious image you see here.

The most obvious effect of the perspective distortion is that the neck and tail both look tiny: we are effectively looking along them, the neck in posteroventral view and the tail in anteroventral. The ribs are also flared in this perspective, making Apato look even broader than it is in real life. Which is pretty broad. One odd effect of this is that this makes the scapulae look as though they are sitting on top of the ribcage rather than appressed to its sides.

 

Here at SV-POW! Towers, we like to show you iconic mounted skeletons from unusual perspectives. Here’s one:

Apatosaurus louisae holotype CM 3018, mounted skeleton in the public gallery of the Carnegie Museum of Natural History: head, neck, torso and hip in right posterolateral view. Photograph by Matt Wedel, 12th March 2019 (my birthday!)

Oh, man, I love that museum. And I love that specimen. And I love the one that’s standing next to it (Diplodocus CM 82, natch.) I’ve got to find a way to get myself back out there.

That’s all: just enjoy.

 

The last time we saw the sauropod femur that Paige Wiren discovered sticking out of a riverbank, it had been moved into the prep lab at the Moab Museum, with the idea that it would eventually go on exhibit as a touch specimen for the public to enjoy and be inspired by. That has come to pass.

I was in Moab last month with Drs. Jessie Atterholt and Thierra Nalley and we stopped in the Moab Museum to digitize some vertebrae from SUSA 515, an unusual specimen of Camarasaurus that I’ve blogged about before, and will definitely blog about again. While we were there, we got to see and touch the Wiren femur. The museum folks told us that femur has been the first dinosaur bone that a lot of schoolkids and tourists have seen up close, or gotten to touch. As a former dinosaur-obsessed kid who never stopped being excited about touching real dinosaur bones–and as one of the lucky folks that got to rescue this particular fossil from erosion or poaching–that pleases me deeply. 

So, obviously, you should go see this thing. And the rest of the museum–as you can see from the photos above, the whole place has been renovated, and there are lots of interesting fossils from central and eastern Utah on display, not to mention loads of historical artifacts, all nicely presented in a clean, open, well-lit space that invites exploration. Go have fun!

This is RAM 1619, a proximal caudal vertebra of an apatosaurine, in posterior view. It’s one of just a handful of sauropod specimens at the Raymond M. Alf Museum of Paleontology. It’s a donated specimen, which came with very little documentation. It was originally catalogued only to a very gross taxonomic level, but I had a crack at it on a collections visit in 2018, when I took these photos. I told Andy Farke and the other Alf folks right away, I just never got around to blogging about it until now.

Why do I think it’s an apatosaurine? A few reasons: 

  • it’s slightly procoelous, which is pretty common for diplodocids, whereas caudals of Haplocanthosaurus, Camarasaurus, and Brachiosaurus are all either amphicoelous or amphiplatyan;
  • it has big pneumatic fossae above the transverse processes, unlike Haplo, Cam, and Brachio, but it lacks big pneumatic fossae below the transverse processes, unlike Diplodocus and Barosaurus
  • and finally the clincher: the centrum is taller than wide, and broader dorsally than ventrally.

In the literature this centrum shape is described as ‘heart-shaped’ (e.g., Tschopp et al. 2015), and sometimes there is midline dorsal depression that really sells it. That feature isn’t present in this vert, but overall it’s still much closer to a heart-shape than the caudals of any non-apatosaurine in the Morrison. Hence the literal 11th-hour Valentine’s Day post (and yes, this will go up with a Feb. 15 date because SV-POW! runs on England time, but it’s still the 14th here in SoCal, at least for another minute or two).

RAM 1619 in postero-dorsal view.

Back to the pneumaticity. Occasionally an apatosaurine shows up with big lateral fossae ventral to the transverse processes–the mounted one at the Field Museum is a good example (see this post). And the big Oklahoma apatosaurine breaks the rules by having very pneumatic caudals–more on that in the future. But at least in the very proximal caudals of non-gigantic apatosaurines, it’s more common for there to be pneumatic fossae above the transverse processes, near the base of the neural arch. You can see that in caudal 3 of UWGM 15556/CM 563, a specimen of Brontosaurus parvus:

I don’t think I’d figured out this difference between above-the-transverse-process (supracostal, perhaps) and below-the-transverse-process (infracostal, let’s say) pneumatic fossae when Mike and I published our caudal pneumaticity paper back in 2013. I didn’t start thinking seriously about the dorsal vs ventral distribution of pneumatic features until sometime later (see this post). And I need to go check my notes and photos before I’ll feel comfortable calling supracostal fossae the apatosaurine norm. But I am certain that Diplodocus and Barosaurus have big pneumatic foramina on the lateral faces of their proximal caudals (see this post, for example), Haplocanthosaurus and brachiosaurids have infracostal fossae when they have any fossae at all in proximal caudals (distally the fossae edge up to the base of the neural arch in Giraffatitan), and to date there are no well-documented cases of caudal pneumaticity in Camarasaurus (if that seems like a hedge, sit tight and W4TP). 

RAM 1619 has asymmetric pneumatic fossae, which is pretty cool, and also pretty common, and we think we have a hypothesis to explain that now–see Mike’s and my new paper in Qeios.

And if I’m going to make my midnight deadline, even on Pacific Time, I’d best sign off. More cool stuff inbound real soon.

References

Gilmore (1936:243) says of the mounted skeleton of Apatosaurus louisae CM 3018 in the Carnegie Museum that “with the skull in position the specimen has a total length between perpendiculars of about 71 feet and six inches. If the missing eighteen terminal caudal vertebrae were added to the tip of the tail, in order to make it conform to known evidence, the skeleton will reach an estimated length of 76 feet, 6 inches.” That’s 23.3 meters.

But what if it was 800 meters long instead? That would be 34.3 times as big in linear dimension (and so would mass 34.3^3 = 40387 time as much, perhaps a million tonnes — but that’s not my point).

What would a cervical vertebra of an 800m sauropod look like?

Gilmore (1936:196) gives the centrum length of CM 3018’s C10 as 530 mm. In our 34.3 times as long Apatosaurus, it would be 18.17 meters long. So here is what that would look like compared with two London Routemaster buses (each 8.38 meters long).

Cervical vertebra 10 of a hypothetical 800 meter long Apatosaurus louisae, with London Routemaster buses for scale. Vertebra image from Gilmore 1936:plate XXIV; bus image by Graham Todman, from Illustrations for t-shirts.

What is the research significance of this? None at all, of course. Still I think further study is warranted. Some look at sauropods that once were, and ask “why?”; but I go further; I look at sauropods that never were, and ask “why not?”

 

It’s been a minute, hasn’t it?

Up top, C10 and C11 of Diplodocus carnegii CM 84, from Hatcher (1901). Below, C9 and C10 of Apatosaurus louisae CM 3018, from Gilmore (1936). The Diplodocus verts are in right lateral view but reversed for ease of comparison, and the Apatosaurus verts are in left lateral view. Both sets scaled to the same cumulative centrum length. Just in case you forgot that apatosaurines are redonkulous.

References

  • Hatcher, John Bell. 1901. Diplodocus (Marsh): its osteology, taxonomy, and probable habits, with a restoration of the skeleton. Memoirs of the Carnegie Museum 1:1-63.
  • Gilmore, Charles Whitney. 1936. Osteology of Apatosaurus, with special reference to specimens in the Carnegie Museum. Memoirs of the Carnegie Museum 11:175–300.

This is a very belated follow-up to “Tutorial 12: How to find problems to work on“, and it’s about how to turn Step 2, “Learn lots of stuff”, into concrete progress. I’m putting it here, now, because I frequently get asked by students about how to get started in research, and I’ve been sending them the same advice for a while. As with Tutorial 25, from now on I can direct the curious to this post, and spend more time talking with them about what they’re interested in, and less time yakking about nuts and bolts. But I hope the rest of you find this useful, too.

Assuming, per Tutorial 12, that you’ve picked something to investigate–or maybe you’re trying to pick among things to investigate–what next? You need a tractable way to get started, to organize the things you’re learning, and to create a little structure for yourself. My recommendation: do a little project, with the emphasis on little. Anyone can do this, in any area of human activity. Maybe your project will be creating a sculpture, shooting and editing a video, learning–or creating–a piece of music, or fixing a lawn mower engine. My central interest is how much we still have to discover about the natural world, so from here on I’m going to be writing as a researcher addressing other researchers, or aspiring researchers.

Arteries of the anterior leg, from Gray’s Anatomy (1918: fig. 553). Freely available courtesy of Bartleby.com.

I’ll start with a couple of examples, both from my own not-too-distant history. A few years ago I got to help some of my colleagues from the College of Podiatric Medicine with a research project on the perforating branch of the peroneal artery (Penera et al. 2014). I knew that vessel from textbooks and atlases and from having dissected a few out, but I had never read any of the primary (journal) literature on it. As the designated anatomist on the project, I needed to write up the anatomical background. So I hit the journals, tracked down what looked like the most useful papers, and wrote a little 2-page summary. We didn’t use all of it in the paper, and we didn’t use it all in one piece. Some sentences went into the Introduction, others into the Discussion, and still others got dropped entirely or cut way down. But it was still a tremendously useful exercise, and in cases like this, it’s really nice to have more written down than you actually need. Here’s that little writeup, in case you want to see what it looks like:

Wedel 2013 anatomy of the perforating branch of the peroneal artery

Pigeon spinal cord cross-section, from Necker (2006: fig. 4).

More recently, when I started working with Jessie Atterholt on weird neural canal stuff in dinosaurs, I realized that I needed to know more about glycogen bodies in birds, and about bird spinal cords generally. I expected that to be quick and easy: read a couple of papers, jot down the important bits, boom, done. Then I learned about lumbosacral canals, lobes of Lachi, the ‘ventral eminences’ of the spinal cord in ostriches, and more, a whole gnarly mess of complex anatomy that was completely new to me. I spent about a week just grokking all the weird crap that birds have going on in their neural canals, and realized that I needed to crystallize my understanding while I had the whole structure in my head. Otherwise I’d come back in a few months and have to learn it all over again. Because it was inherently visual material, this time I made a slide deck rather than a block of text, something I could use to get my coauthors up to speed on all this weirdness, as well as a reminder for my future self. Here’s that original slide deck:

Wedel 2018 Avian lumbosacral spinal cord specializations

If you’re already active in research, you may be thinking, “Yeah, duh, of course you write stuff down as you get a handle on it. That’s just learning.” And I agree. But although this may seem basic, it isn’t necessarily obvious to people who are just starting out. And even to the established, it may not be obvious that doing little projects like this is a good model for making progress generally. Each one is a piton driven into the mountainside that I’m trying to climb: useful for me, and assuming I get them out into the world, useful for anyone I’d like to come with me (which, for an educator and a scientist, means everyone).

A view down the top of the vertebral column in the mounted skeleton of Apatosaurus louisae, CM 3018, showing the trough between the bifurcated neural spines.

If you’re not active in research, the idea of writing little term papers may sound like purgatory. But writing about something that you love, that fascinates you, is a very different proposition from writing about dead royalty or symbolism because you have to for a class.* I do these little projects for myself, to satisfy my curiosity, and it doesn’t feel like work. More like advanced play. When I’m really in the thick of learning a new thing–and not, say, hesitating on the edge before I plunge in–I am so happy that I tend to literally bounce around like a little kid, and the only thing that keeps me sitting still is the lure of learning the next thing. That I earn career beans for doing this still seems somewhat miraculous, like getting paid to eat ice cream.

* YMMV, history buffs and humanities folks. If dead royalty and symbolism rock your world but arteries and vertebrae leave you cold, follow your star, and may a thousand gardens grow.

Doing little projects is such a convenient and powerful way to make concrete progress that it has become my dominant mode. As with the piece that I wrote about the perforating branch of the peroneal artery, the products rarely get used wholesale in whatever conference presentation or research paper I end up putting together, but they’re never completely useless. First, there is the benefit to my understanding that I get from assembling them. Second, they’re useful for introducing other people to the sometimes-obscure stuff I work on, and nothing makes you really grapple with a problem like having to explain it to others. And third, these little writeups and slideshows become the Lego bricks from which I assemble future talks and papers. The bird neural canal slide deck became a decent chunk of our presentation on the Snowmass Haplocanthosaurus at the 1st Palaeontological Virtual Congress (Wedel et al. 2018)–and it’s about to become something even better. (Four months later: it did!)

The operative word at the start of the last paragraph is ‘concrete’. I don’t think this was always the case, but now that I’m in my mid-40s ‘what I know’ is basically equivalent to ‘what I remember’, which is basically equivalent to ‘what I’ve written down’. (And sometimes not even then–Mike and I both run across old posts here on SV-POW! that we’ve forgotten all about, which is a bit scary, given how often we put novel observations and ideas into blog posts.) Anyway, this is why I like the expression ‘crystallize my understanding’: the towers of comprehension that I build in my head are sand castles, and if I don’t find a way to freeze them in place, they will be washed away by time and my increasingly unreliable cerebral machinery.

Really nice Stegosaurus plate on display at Dinosaur National Monument.

Also, if I divide my life into the things I could do and the things I have done, only the things in the latter category are useful. So if you are wondering if it’s worthwhile to write a page to your future self about valves in the cerebral arteries of rats, or all of the dinosaurs from islands smaller than Great Britain, or whatever strange thing has captured your attention, I say yes, go for it. Don’t worry about finding something novel to say; at the early stages you’re just trying to educate yourself (also, talks and papers need intro and background material, so you can still get credit for your efforts). I’ll bet that if you set yourself the goal of creating a few of these–say, one per year, or one per semester–you’ll find ways to leverage them once you’ve created them. If all else fails, start a blog. That might sound flip, but I don’t mean for it to. I got my gig writing for Sky & Telescope because I’d been posting little observing projects for the readers of my stargazing blog.

A final benefit of doing these little projects: they’re fast and cheap, like NASA’s Discovery missions. So they’re a good way to dip your toes into a new area before you commit to something more involved. The more things you try, the more chances you have to discover whatever it is that’s going to make you feel buoyantly happy.

You may have noticed that all of my examples in this post involved library research. That’s because I’m particularly interested in using little projects to get started in new lines of inquiry, and whenever you are starting out in a new area, you have to learn where the cutting edge is before you can move it forward (Tutorial 12 again). Also, as a practical consideration, most of us are stuck with library research right now because of the pandemic. Obviously this library research is no substitute for time in the lab or the field, but even cutters and diggers need to do their homework, and these little projects are the best way that I’ve found of doing that.

P.S. If you are a student, read this and do likewise. And, heck, everyone else who writes should do that, too. It is by far the advice I give most often as a journal editor and student advisor.

P.P.S. As long as you’re reading Paul Graham, read this piece, too–this whole post was inspired by the bit near the end about doing projects.

References

As John himsef admits in the tweet that announced this picture, it’s five years late … but I am prepared to forgive that because IT’S NEVER TOO LATE TO BRONTOSMASH!

As always, John’s art is not just scientifically accurate, but evocative. Here’s a close-up of the main action area:

As you see, he has incorporated the keratinous neck spikes that we hypothesized, based on the distinct knobs that are found at the ventrolateral ends of apatosaurine cervical rib loops.

John has also incorporated a lot of blood — which is exactly what you get when elephant seals collide:

By the way, if John’s BRONTOSMASH! art can be said to be five years late — so can the actual paper. It was of course at SVPCA 2015 that we first presented our apatosaur-neck-combat hypothesis (Taylor et al. 2015), and it’s not at all to our credit that nearly five years later, we have not even got a manuscript written. We really need to get our act together on this project, so consider this post my apology on behalf of myself, Matt, Darren and Brian.

Reference

  • Taylor, Michael P., Mathew J. Wedel, Darren Naish and Brian Engh. 2015. Were the necks of Apatosaurus and Brontosaurus adapted for combat?. p. 71 in Mark Young (ed.), Abstracts, 63rd Symposium for Vertebrate Palaeontology and Comparative Anatomy, Southampton. 115 pp. doi:10.7287/peerj.preprints.1347v1

Our old sparring partner Cary Woodruff is a big fan of Monarobot, a Mexican artist who does all of her pieces in a Maya artistic style. So he commissioned this piece:

Anyone can tell that this is an apatosaurine cervical in anterior view — but which apatosaurine cervical? SV-POW Dollars(*) await the first person to correctly identify it.

Cary points out that one neat thing about the art is the colours: where possible, Monarobot uses colors the Mayas used. That blue in the vertebra is a special plant-based pigment they created.

As things stand, Cary owns the world’s only copy of this piece. But he points out that it’s born-digital, so anyone else who wants a copy is at liberty to order one; and he’s gracious enough not to object to the dilution of his print’s uniqueness. I don’t think there is a way to order directly online, but you can contact Monarobot in various places:

 


(*) Street value of SV-POW Dollars: zero.