Last Wednesday, May 9, Brian Engh and I bombed out to Utah for a few days of paleo adventures. Here are some highlights from our trip.

We started at a Triassic tracksite on Thursday. But I’m not going to post any pictures of the tracks – those will be coming to a Brian Engh joint near you in the future. Instead, I’m going to talk about this little male collared lizard whose territory included the tracksite. He was fearless – didn’t want to run off and leave us yahoos wandering around his patch of desert unsupervised. Brian tickled his chin at one point.

Getting this close to him is how I got shots like this one:

Click through to the big version, it’s worth it.

One more shot of a couple of cool desert dwellers. I was so fixated on the lizard that I didn’t realize until later that Brian was in the frame, taking a much-needed hydration break.

On Friday we had a temporary breaking of the fellowship. I went to Fruita, Colorado, to visit the Dinosaur Journey museum. You’ve seen photos from DJ here before, from the 2014 Mid-Mesozoic Field Conference and the 2016 Sauropocalypse. Here’s an apatosaur pubis with some obvious bite marks on the distal end. This is on display next to a similarly-bitten ischium, which is shown in the MMFC14 post linked above.

Here’s a big apatosaur cervical, in antero-ventral view, with a dorsal rib draped over its left side. The cervical ribs are not fused in this specimen, so it was probably still growing. Here’s a labeled version:

The short centrum and nearly-vertical transverse processes indicate that this is a pretty posterior cervical, possibly a C13 or thereabouts. This specimen was over the fence in the exhibit area and I couldn’t throw a scale bar at it, but I’d describe it as “honkin'”. Like most of the apatosaur material at DJ, this vert is from the Mygatt-Moore Quarry.

Of course the real reason I was at Dinosaur Journey was to see the Snowmass Haplocanthosaurus that John Foster and I described back in 2014. You may remember that its caudal vertebrae have wacky neural canals. You may also have noticed a recent uptick in the number of posts around here about wacky neural canals. The game is afoot.

But as cool as they were, the Triassic tracks, the collared lizard, and even the Snowmass Haplo were only targets of opportunity. Brian and I had gone to Utah for this:

That photo was taken by Paige Wiren of Salt Lake City, on the day that she discovered that bone eroding out of a riverbank, just as you see it.

Here’s Paige with the element, which proved to be the left femur of an apatosaurine sauropod. It’s face down in these photos, so we’re looking at the medial side. The articular head is missing from the proximal end – it should be facing toward Paige’s right knee in the above photo – but other than that and a few negligible nicks and dings, the femur was complete and in really good shape.

Paige did the right thing when she found the femur: she contacted a paleontologist. Specifically, she asked a friend, who in turn put her in touch with Carrie Levitt-Bussian, the paleontology Collections Manager at the Natural History Museum of Utah. Based on Paige’s photos and maps, Carrie was able to identify the element as a dinosaur femur, probably sauropod, within the territory of the BLM Hanksville Field Office. John Foster, the Director of the Museum of Moab, has a permit to legally collect vertebrate fossils from that area, and he works on sauropods, so Carrie put Paige in touch with John and with ReBecca Hunt-Foster, the district paleontologist for the BLM’s Canyon Country District in Utah.

Now, I know there’s a lot of heated rhetoric surrounding the Bureau of Land Management, but whatever your political bent, remember this: those are our public lands. Therefore the fossils out there are the collective property of all of us, and we should all be upset if they get poached or vandalized. Yes, that is a big problem – the Brontomerus type quarry was partially poached before the bones we have now were recovered, and vandalism at public fossil sites in Utah made the national news while we were out there.

So that’s what we went to do: salvage this bone for science and education before it could be lost to erosion or asshats. Brian and I were out there to assist John, ReBecca, and Paige, who got to see her find come out of the ground and even got her hands dirty making the plaster jacket. Brian and John headed out to the site Friday morning and met up with Paige there, and ReBecca and I caravanned out later in the day, after I got back from Fruita.

But I’m getting ahead of myself a bit. We didn’t have to jacket the whole thing. It had naturally broken into three pieces, with thin clay infills at the breaks. So we just slid the proximal and middle thirds away as we uncovered them, and hit any loose-looking pieces with consolidant. The distal third was in more questionable shape, so we did make a partial jacket to hold it together.

We also got to camp out in gorgeous country, with spectacular (and welcome) clouds during the day and incredible starry skies at night.

We floated the femur out of the site using the Fosters’ canoe at the end of the day on Saturday, and loaded up to head back to Moab on Sunday. At one point the road was empty and the sky was not, so I stood on the center line and took some photos. This one is looking ahead, toward I-70 and Green River.

And this one is looking behind, back toward Hanksville.

Here are John and Brian with the femur chunks in one of the back rooms of the Museum of Moab. The femur looks oddly small here, but assembled it was 155 cm (5’1″) long and would have been 160 (5’3″) or more with the proximal head. Smaller than CM 3018 and most of the big mounted apatosaurs, but nothing to sneeze at.

What happens to it next? It will be cleaned, prepped, and reassembled by the volunteers and exhibit staff at the Museum of Moab, and eventually it will go on public display. Thousands of people will get to see and learn from this specimen because Paige Wiren made the right call. Go thou and do likewise.

That was the end of the road for the femur (for now), but not for Brian and me. We had business in Cedar City and St. George, so we hit the road Sunday afternoon. Waves of rainclouds were rolling east across Utah while we were rolling west, with breaks for sunlight in between. I miiiight have had to swerve a couple of times when all the scenery distracted me from driving, and I definitely made an obnoxious number of stops to take pictures.

I don’t remember which scenic overlook this was, but it was a pretty darned good view. This is another one that will reward embiggening – check out those mesas marching off into the distance.

In Cedar City we were guests of Andrew R.C. Milner, Site Paleontologist and Curator at the St. George Dinosaur Discovery Site at Johnson Farm (SGDS). We spent most of Monday at SGDS, getting our minds comprehensively blown by the amazing trace and body fossils on display. It was my first time visiting that museum, but it sure as heck won’t be the last.

I didn’t take nearly enough photos in St. George – too busy helping Brian do some filming for a future project – but I did get this gem. This is a Eubrontes track, from a Dilophosaurus-sized theropod. This is a positive track, a cast of the dinosaur’s foot made by sandy sediment that filled the natural mold formed when the dino stepped into mud. The high clay content of the mud recorded the morphology of the foot in fine detail, including the bumps of individual scales on the foot pads. The vertical streaks were cut into the side of the track by similar scales as the animal’s foot pushed into the mud.

The full story of the Johnson Farm tracks and trackmakers is beautifully told in the book Tracks in Deep Time: The St. George Dinosaur Discovery Site at Johnson Farm, by Jerry Harris and Andrew Milner. I hadn’t read it before, so I picked up a copy in the gift shop and I’ve been devouring it. As a professional scientist, educator, and book author myself, I’m jealous of what Jerry and Andrew produced – both the text and the abundant full-color illustrations are wonderfully clear, and the book is well-produced and very affordable.

From St. George we hit the road home, and rolled into Claremont just before midnight on Monday. It was a whirlwind tour – 1800 miles, three museums, and two fossil sites in six days – and my brain is still fizzing with all of the things we got to see and do.

One of the many pros of having a professional artist as a friend is that minimal hospitality, like letting him crash on my couch, is sometimes rewarded with original art. Brian was already gone when I got up Tuesday morning, but this was waiting for me on the dining room table. (Want your own? Help Brian make more monsters here.)

I owe plenty of thanks myself: to the Foster and Milner families for their near-maximal hospitality, to Julia McHugh of Dinosaur Journey for assistance in collections, to Diana Azevedo, Jalessa Spor, Jerry Harris, and the rest of the SGDS staff for being such gracious hosts, to Brian for being such a great friend and traveling companion, and most of all to Paige Wiren for finding the apato femur and helping us save it for science. You’re all top-notch human beings and I hope our paths cross again soon.

Advertisements

Back in the spring of 1998, Kent Sanders and I started CT scanning sauropod vertebrae. We started just to get a baseline for the Sauroposeidon project, but in time the data we collected formed the basis for my MS thesis, and for a good chunk of my dissertation as well. Mostly what we had available to scan was Morrison material. Between imperfect preservation, inexpert prep (by WPA guys back in the ’30s), and several moves over the decades, most of the verts from the Oklahoma Morrison have their neural spines and cervical ribs broken off. One of the first things I had to figure out was how to tell broken vertebrae of Camarasaurus from those of Apatosaurus (at the time; Brontosaurus is back in contention now). Here’s a thing I made up to help me sort out cervical centra of Camarasaurus and whatever the Oklahoma apatosaurine turns out to be. It’s a recent production, but it embodies stuff from my notebooks from 20 years ago. Should be useful for other times and places in the Morrison as well, given the broad spatiotemporal overlap of Camarasaurus and the various apatosaurines.

For a related thing in the same vein, see Tutorial 30: how to identify Morrison sauropod cervicals.

More elephant seals soon, I promise.

UPDATE 20 Feb 2018

Ken Carpenter sent this by email, with a request that I post it as a comment. Since it includes an image, I’m appending to the post, because it makes an important point that I neglected to mention.

Camar post cerv

Ken: Sorry, Matt. Not so easy. The last cervical of Camarasaurus from the Cleveland Lloyd Quarry is more apatosaurine-like than Camarasaurus-like based on your posting. Note the position of both zygapohyses with both ends of the centrum.

My response: Yes, good catch. I meant to say in the post that my distinguishing characters break down at the cervico-dorsal transition. Even so, in this Cleveland Lloyd vert the postzyg is still forward of a line drawn directly up from the cotyle. I’ve never seen that in an apatosaurine–going into the dorsal series, the postzygs tend to be centered over a line projected up from the rim of the cotyle. (If anyone knows of counterexamples, speak up!)

For distinguishing cervico-dorsals, apatosaurines tend to have much taller neural spines than Camarasaurus, and this carries on through the rest of the dorsal series. In apatosaurine dorsals, the height of the spine above the transverse processes always equals or exceeds the height of the arch below the transverse processes. In Camarasaurus, the height of the dorsal neural spines is always less than or equal to the height of the arch. The shapes of the spines are fairly different, too. Maybe that will be the subject of a future post.

This was an interesting exercise. It was my first time generating a poster to be delivered at a conference since 2006. Scientific communication has evolved a lot in the intervening decade, which spans a full half of my research career to date. So I had a chance to take the principles that I say that I admire and try to put them into practice.

It helped that I wasn’t working alone. Jann and Brian both provided strong, simple images to help tell the story, and Mike and I were batting ideas back and forth, deciding on what we could safely leave out of our posters. Abstracts were the first to go, literature cited and acknowledgments were next. We both had the ambition of cutting the text down to just figure captions. Mike nailed that goal, but my poster ended up being slightly more narrative. I’m cool with that – it’s hardly text-heavy, especially compared with most of my efforts from back when. Check out the text-zilla I presented at SVP back in 2006, which is available on FigShare here. I am happier to see, looking back, that I’d done an almost purely image-and-caption poster, with no abstract and no lit cited, as early as 1999, with Kent Sanders as coauthor and primary art-generator – that one is also on FigShare.

I took 8.5×11 color printouts of both my poster and Mike’s, and we ended up passing out most of them to people as we had conversations about our work. That turned out to be extremely useful – I had a 30-minute conversation about my poster at a coffee break the day before the posters even went up, precisely because I had a copy of it to hand to someone else. Like Mike, I found that presenting a poster resulted in more and better conversations than giving a talk. And it was the most personally relaxing SVPCA I’ve ever been to, because I wasn’t staying up late every night finishing or practicing my talk.

I have a lot of stuff to say about the conference, the field trip, the citability of abstracts and posters (TL;DR: I’m for it), and so on, but unfortunately no time right now. I’m just popping in to get this posted while it’s still fresh. Like Mike’s poster, this one is now published alongside my team’s abstract on PeerJ PrePrints.

I will hopefully have much more to say about the content in the future. This is a project that Jann, Brian, and I first dreamed up over a decade ago, when we were grad students at Berkeley. Mike provided the impetus for us to get it moving again, and kindly stepped aside when I basically hijacked his related but somewhat different take on ontogeny and serial homology. When my fall teaching is over, I’m hoping that the four of us can take all of this, along with additional examples found by Mike that didn’t make it into this presentation, and shape it into a manuscript. I’ll keep you posted on that. In the meantime, the comment field is open. For some related, previously-published posts, see this one for the baby sauropod verts, this one for CM 555, and this one for Plateosaurus.

Flying over Baffin Island on the way home.

And finally, since I didn’t put them into the poster itself, below are the full bibliographic references. Although we didn’t mention it in the poster, the shell apex theory for inferring the larval habits of snails was first articulated by G. Thorson in 1950, which is referenced in full here.

Literature Cited

 

Or, how a single lateral fossa becomes two foramina: through a finely graded series of intermediate forms. Darwin would approve. The ‘oblique lamina’ that separates the paired lateral foramina in C6 starts is absent in C2, but C3 through C5 show how it grows outward from the median septum. How do I know it grows outward, instead of being left behind during the pneumatization of the more posterior cervicals? Because with very few exceptions, all neosauropod cervicals start out with a single lateral fossa on each side, as illustrated in this post. But many of them end up with two or more foramina. Diplodocus is a nice example of this (from Hatcher 1901: plate 3):

I should clarify that the vertebrae above show that character transformation in this individual, at this point in its ontogeny. The vertebrae of CM 555 are about two-thirds the size of those of CM 3018, the holotype of A. louisae. In CM 3018, even C4 and C5 have completely divided lateral fossae, corresponding to the condition in C6 of CM 555.

As Mike and I discussed in our 2013 neural spine bifurcation paper, isolated sauropod cervicals require cautious interpretation because the morphology of the vertebrae changes so much along the series. The simple morphology of anterior cervicals reflects both earlier ontogenetic stages and more primitive character states. As Mike says, in sauropod necks, serial position recapitulates both ontogeny and phylogeny. So if you have a complete series, you can do something pretty cool: see the intermediate stages by which simple structures become complex.

If you’re thinking this might have something to do with my impending SVPCA poster, you’re right. Here’s the abstract.

For more on serially increasing complexity in sauropodomorph cervicals, see this post.

Here’s a dorsal vertebra of Camarasaurus in anterior view (from Ostrom & McIntosh 1966, modified by Wilson & Sereno 1998). It is one of the most disturbing things I have ever seen in a sauropod. It makes my skin crawl.

Here’s why: the centrum and the thing we habitually call the ‘neural arch’ aren’t fully fused, and as this modified version makes clear, the ‘neural arch’ is neither neural nor an arch. Instead of being bounded ventrally by the centrum and dorsally and laterally by the neural arch, the neural canal lies entirely below the synchondrosis between the not-really-an-arch and the centrum.

Why?! WHY WOULD YOU DO THAT, CAMARASAURUS? This is not ‘Nam. This is basic vertebral architecture. There are rules.

Look at c6 of Apatosaurus CM 555 here, behaving as all good vertebrae ought to. Neural arch be archin’, as the kids say.

And if you are seeking solace in the thought that maybe the artist just drew that Cam dorsal incorrectly, forget it. I’ve been to Yale and examined the original specimen. I’ve seen things, man!

Camarasaurus isn’t the only pervert around here. Check this out:

Unfused neural arch of a caudal vertebra of a juvenile Alamosaurus from Big Bend. And I mean, this is a neural arch. This may be the most neural of all neural arches, in that it contains the entire neural canal. It’s more of a neural…ring, I guess. That’s right, this Alamosaurus caudal is batting for the opposite team from the Cam dorsal above. And it’s a team that neither you nor I play on, because we have well-behaved normal-ass vertebrae with neural arches that actually arch, and then stop, like God and Richard Owen intended.

Scientifically, my question about these vertebrae is: well, that is, I mean to say, what!? I think they have damaged me in some fundamental way.

If you have anything more intelligent to add (or even less intelligent – consider the gauntlet thrown down!), the comment thread is open.

References

  • Ostrom, John H., and John S. McIntosh. 1966. Marsh’s Dinosaurs. Yale University Press, New Haven and London. 388 pages including 65 absurdly beautiful plates.
  • Wilson, J. A. and Paul C. Sereno. 1998. Early evolution and higher-level phylogeny of sauropod dinosaurs. Society of Vertebrate Paleontology, Memoir 5: 1-68.

Turns out that if Mike and I don’t post about sauropods for a while, people start doing it for us! This very interesting project by Tom Johnson of Loveland, Colorado, first came to my attention when Tom emailed Mark Hallett about it and Mark kindly passed it on to me. I got in touch with Tom and asked if he’d be interested in writing it up for SV-POW!, and here it is. Many thanks to Tom for his willingness to share his work with us. Enjoy! – Matt Wedel

– – – – – – – – – – – – – – – – – – – –

The sauropod formerly known as Apatosaurus in the American Museum of Natural History was the first permanently mounted sauropod dinosaur in the world, and for many years, the most famous (Brinkman 2010). The greater part of the skeleton consists of the specimen AMNH 460 from the Nine Mile Crossing Quarry north of Como Bluff, Wyoming, supplemented with bones from other AMNH specimens from Como Bluff, Bone Cabin Quarry, and with plaster casts of the forelimbs of the holotype specimen of Brontosaurus excelsus (YPM 1980) at the Yale Peabody Museum.

A herd of Brontosaurus skeleton models parading before four box covers issued between the 1950s and 1990s.

Like many aging boomer dinophiles, my dinosaur epiphany was the result of books, movies, and toys available in the 1950s, but especially a series of plastic model dinosaur skeletons that appeared around 1958. The Brontosaurus was my personal favorite, and, like the Tyrannosaurus and Stegosaurus models in the series, was very obviously based on the AMNH mount. The models were reissued at least three times over the years and can still be found either “mint in box” or more often in various stages of completion.

Apatosaurus lousiae 1/12 scale skeleton, modelled by Phil Platt, assembled and photographed by Brant Bassam. Image courtesy of BrantWorks.com.

The crème de la crème today, of course, is the 1:12 scale Apatosaurus skeleton model by Phil Platt, available from Gaston Design in Fruita, Colorado. A particularly nice example is the one completed and mounted by Brant Bassam of BrantWorks. The Platt skeleton is a replica in the true sense of the word. The plastic models are pretty crude in comparison, as cool as they appeared to us as kids.

I was interested in skeletal illustrations I have seen of Tyrannosaurus rex, which compare the completeness of various specimens by showing the actual bones included by coloring them red. A 2005 study of Apatosaurus by Upchurch et. al. examined eleven of the most complete Apatosaurus individuals, and I was interested to see the actual bones known for each specimen. Using published descriptions, red markers, and copies of a skeletal silhouette of Apatosaurus (permission obtained from the artist), I prepared a comparison of the most completely known Apatosaurus specimens. It was clear, of course, that Apatosaurus louisae (CM 3018) is the most complete specimen of the Apatosaurus/Brontosaurus group. But it also was apparent that old AMNH 460 included a substantial portion of the skeleton, even if it is a composite.

I grabbed some additional markers and, using the illustration of the mount in William Diller Matthew’s popular book Dinosaurs (Matthew 1915, fig. 20, which I trust is in the public domain by now), I color-coded the bones according to the composition as listed in Matthew’s (1905) article:

  • AMNH 460, Nine-Mile Crossing Quarry: 5th, 6th, 8th to 13th cervical vertebrae; 1st to 9th dorsal; 3rd to 19th caudal; all ribs; both coracoids; “parts of” sacrum and ilia; both ischia and pubes; left femur and astragalus; and “part of” the left fibula. RED
  • AMNH 222, Como Bluff: right scapula, 10th dorsal vertebra, right femur and tibia. GREEN
    (Visitors to AMNH: you can see the rest of AMNH 222 under the feet of the hunched-over Allosaurus)
  • AMNH 339, Bone Cabin Quarry: 20th to 40th caudal vertebrae. LIGHT BLUE
  • AMNH 592, Bone Cabin Quarry: metatarsals of the right hind foot. VIOLET
  • YPM 1980, Como Bluff: left scapula, forelimb long bones (casts). YELLOW
  • The remaining parts of the skeleton are either modeled in plaster or are unspecified (“a few toe bones”). BLACK

It occurred to me that I might have sufficient spare parts of old ITC and Glencoe Brontosaurus models to create a three-dimensional version. I did, and painting prior to assembly definitely made the job easier.

There are obviously limitations to using Matthew’s (1915) reconstruction (e.g., only 13 cervicals) and the model (12 cervicals). It is also not clear from Matthew’s description how much of the sacrum and ilia were restored. Nevertheless, the painted model does provide a colorful, if crude, visualization of the composition of the composite.

Here are some more photos of the finished product:

A view from the front of the model, compared with a historical AMNH photo of the forelimbs and pelvic girdle.

Long considered a specimen of Brontosaurus excelsus or Apatosaurus excelsus, AMNH 460 was referred to Apatosaurus ajax by Upchurch et. al. in 2005. In the most comprehensive analysis of diplodocid phylogeny to date, Tschopp et. al. (2015) found AMNH 460 to be an “indeterminate apatosaurine” pending a “detailed analysis of the specimen.” What to call it? Oh, yeah, that’s been covered in another post!

This is a nostalgia shot for the old brontophiles. Notice that the Triceratops is entering the lake for a swim!

Tom Johnson with the mounted skeleton of Amphicyon, a Miocene “bear-dog”,
in the Raymond Alf Museum of Paleontology in Claremont, California.

References

  • Brinkman , Paul D. (2010). The Second Jurassic Dinosaur Rush, University of Chicago Press, 2010.
  • Matthew, William Diller, (1905). “The Mounted Skeleton of Brontosaurus,” The American Museum Journal, Vol. V, No. 2, April.
  • Matthew, W.D. (1915). Dinosaurs, With Special Reference to the American Museum Collections, American Museum of Natural History, New York.
  • Tschopp, Emanuel, Octávio Mateus, and Roger Benson. (2015). “A Specimen-Level Phylogenetic Analysis and Taxonomic Revision of Diplodocidae (Dinosauria, Sauropoda).” Ed. Andrew Farke. PeerJ 3 (2015): e857.
  • Upchurch, P., Tomida, Y., Barrett, P.M. (2005). “A new specimen of Apatosaurus ajax (Sauropoda: Diplodocidae) from the Morrison Formation (Upper Jurassic) of Wyoming, USA”. National Science Museum Monographs (Tokyo) 26 (118): 1–156.
jvp-fig-12

Fig. 14. Vertebrae of Pleurocoelus and other juvenile sauropods. in right lateral view. A-C. Cervical vertebrae. A. Pleurocoelus nanus (USNM 5678, redrawn fromLull1911b: pl. 15). B. Apatosaurus sp. (OMNH 1251, redrawn from Carpenter &McIntosh 1994: fig. 17.1). C. Camarasaurus sp. (CM 578, redrawn from Carpenter & McIntosh 1994: fig. 17.1). D-G. Dorsal vertebrae. D. Pleurocoelus nanus (USNM 4968, re- drawn from Lull 1911b: pl. 15). E. Eucamerotus foxi (BMNH R2524, redrawn from Blows 1995: fig. 2). F. Dorsal vertebra referred to Pleurocoelus sp. (UMNH VP900, redrawn from DeCourten 1991: fig. 6). G. Apatosaurus sp. (OMNH 1217, redrawn from Carpenter & McIntosh 1994: fig. 17.2). H-I. Sacral vertebrae. H. Pleurocoelus nanus (USNM 4946, redrawn from Lull 1911b: pl. 15). I. Camarasaurus sp. (CM 578, redrawn from Carpenter & McIntosh 1994: fig. 17.2). In general, vertebrae of juvenile sauropods are characterized by large pneumatic fossae, so this feature is not autapomorphic for Pleurocoelus and is not diagnostic at the genus, or even family, level. Scale bars are 10 cm. (Wedel et al. 2000b: fig. 14)

The question of whether sauropod cervicals got longer through ontogeny came up in the comment thread on Mike’s “How horrifying was the neck of Barosaurus?” post, and rather than bury this as a comment, I’m promoting it to a post of its own.

The short answer is, yeah, in most sauropods, and maybe all, the cervical vertebrae did lengthen over ontogeny. This is obvious from looking at the vertebrae of very young (dog-sized) sauropods and comparing them to those of adults. If you want it quantified for two well-known taxa, fortunately that work was published 16 years ago – I ran the numbers for Apatosaurus and Camarasaurus to see if it was plausible for Sauroposeidon to be synonymous with Pleurocoelus, which was a real concern back in the late ’90s (the answer is a resounding ‘no’). From Wedel et al. (2000b: pp. 368-369):

Despite the inadequacies of the type material of Pleurocoelus, and the uncertainties involved with referred material, the genus can be distinguished from Brachiosaurus and Sauroposeidon, even considering ontogenetic variation. The cervical vertebrae of Pleurocoelus are uniformly short, with a maximum EI of only 2.4 in all of the Arundel material (Table 4). For a juvenile cervical of these proportions to develop into an elongate cervical comparable to those of Sauroposeidon, the length of the centrum would have to increase by more than 100% relative to its diameter. Comparisons to taxa whose ontogenetic development can be estimated suggest much more modest increases in length.

Carpenter & McIntosh (1994) described cervical vertebrae from juvenile individuals of Apatosaurus and Camarasaurus. Measurements and proportions of cervical vertebrae from adults and juveniles of each genus are given in Table 4. The vertebrae from juvenile specimens of Apatosaurus have an average EI 2.0. Vertebrae from adult specimens of Apatosaurus excelsus and A. louisae show an average EI of 2.7, with an upper limit of 3.3. If the juvenile vertebrae are typical for Apatosaurus, they suggest that Apatosaurus vertebrae lengthened by 35 to 65% relative to centrum diameter in the course of development.

The vertebrae from juvenile specimens of Camarasaurus have an average EI of 1.8 and a maximum of 2.3. The relatively long-necked Camarasaurus lewisi is represented by a single skeleton, whereas the shorter-necked C. grandis, C. lentus, and C. supremus are each represented by several specimens (McIntosh, Miller, et al. 1996), and it is likely that the juvenile individuals of Camarasaurus belong to one of the latter species. In AMNH 5761, referred to C. supremus, the average EI of the cervical vertebrae is 2.4, with a maximum of 3.5. These ratios represent an increase in length relative to diameter of 30 to 50% over the juvenile Camarasaurus.

If the ontogenetic changes in EI observed in Apatosaurus and Camarasaurus are typical for sauropods, then it is very unlikely that Pleurocoelus could have achieved the distinctive vertebral proportions of either Brachiosaurus or Sauroposeidon.

apatosaurus-cm-555-c6-centrum-and-arch-united

C6 of Apatosaurus CM 555 – despite having an unfused neural arch and cervical ribs, the centrum proportions are about the same as in an adult.

A few things about this:

  1. From what I’ve seen, the elongation of the individual vertebrae over ontogeny seems to be complete by the time sauropods are 1/2 to 2/3 of adult size. I get this from looking at mid-sized subadults like CM 555 and the hordes of similar individuals at BYU, the Museum of Western Colorado, and other places. So to get to the question posed in the comment thread on Mike’s giant Baro post – from what I’ve seen (anecdata), a giant, Supersaurus-class Barosaurus would not necessarily have a proportionally longer neck than AMNH 6341. It might have a proportionally longer neck, I just haven’t seen anything yet that strongly suggests that. More work needed.
  2. Juvenile sauropod cervicals are not only shorter than those of adults, they also have less complex pneumatic morphology. That was the point of the figure at the top of the post. But that very simple generalization is about all we know so far – this is an area that could use a LOT more work.
  3. I’ve complained before about papers mostly being remember for one thing, even if they say many things. This is the canonical example – no-one ever seems to remember the vertebrae-elongating-over-ontogeny stuff from Wedel et al. (2000b). Maybe that’s an argument for breaking up long, kitchen-sink papers into two or more separate publications?

Reference

Wedel, M.J., Cifelli, R.L., and Sanders, R.K. 2000b. Osteology, paleobiology, and relationships of the sauropod dinosaur Sauroposeidon. Acta Palaeontologica Polonica 45:343-388.