Hey, look, sauropod vertebrae!
January 15, 2021
It’s been a minute, hasn’t it?
Up top, C10 and C11 of Diplodocus carnegii CM 84, from Hatcher (1901). Below, C9 and C10 of Apatosaurus louisae CM 3018, from Gilmore (1936). The Diplodocus verts are in right lateral view but reversed for ease of comparison, and the Apatosaurus verts are in left lateral view. Both sets scaled to the same cumulative centrum length. Just in case you forgot that apatosaurines are redonkulous.
References
- Hatcher, John Bell. 1901. Diplodocus (Marsh): its osteology, taxonomy, and probable habits, with a restoration of the skeleton. Memoirs of the Carnegie Museum 1:1-63.
- Gilmore, Charles Whitney. 1936. Osteology of Apatosaurus, with special reference to specimens in the Carnegie Museum. Memoirs of the Carnegie Museum 11:175–300.
Tutorial 38: little projects as footsteps toward understanding
January 11, 2021
This is a very belated follow-up to “Tutorial 12: How to find problems to work on“, and it’s about how to turn Step 2, “Learn lots of stuff”, into concrete progress. I’m putting it here, now, because I frequently get asked by students about how to get started in research, and I’ve been sending them the same advice for a while. As with Tutorial 25, from now on I can direct the curious to this post, and spend more time talking with them about what they’re interested in, and less time yakking about nuts and bolts. But I hope the rest of you find this useful, too.
Assuming, per Tutorial 12, that you’ve picked something to investigate–or maybe you’re trying to pick among things to investigate–what next? You need a tractable way to get started, to organize the things you’re learning, and to create a little structure for yourself. My recommendation: do a little project, with the emphasis on little. Anyone can do this, in any area of human activity. Maybe your project will be creating a sculpture, shooting and editing a video, learning–or creating–a piece of music, or fixing a lawn mower engine. My central interest is how much we still have to discover about the natural world, so from here on I’m going to be writing as a researcher addressing other researchers, or aspiring researchers.

Arteries of the anterior leg, from Gray’s Anatomy (1918: fig. 553). Freely available courtesy of Bartleby.com.
I’ll start with a couple of examples, both from my own not-too-distant history. A few years ago I got to help some of my colleagues from the College of Podiatric Medicine with a research project on the perforating branch of the peroneal artery (Penera et al. 2014). I knew that vessel from textbooks and atlases and from having dissected a few out, but I had never read any of the primary (journal) literature on it. As the designated anatomist on the project, I needed to write up the anatomical background. So I hit the journals, tracked down what looked like the most useful papers, and wrote a little 2-page summary. We didn’t use all of it in the paper, and we didn’t use it all in one piece. Some sentences went into the Introduction, others into the Discussion, and still others got dropped entirely or cut way down. But it was still a tremendously useful exercise, and in cases like this, it’s really nice to have more written down than you actually need. Here’s that little writeup, in case you want to see what it looks like:
Wedel 2013 anatomy of the perforating branch of the peroneal artery
More recently, when I started working with Jessie Atterholt on weird neural canal stuff in dinosaurs, I realized that I needed to know more about glycogen bodies in birds, and about bird spinal cords generally. I expected that to be quick and easy: read a couple of papers, jot down the important bits, boom, done. Then I learned about lumbosacral canals, lobes of Lachi, the ‘ventral eminences’ of the spinal cord in ostriches, and more, a whole gnarly mess of complex anatomy that was completely new to me. I spent about a week just grokking all the weird crap that birds have going on in their neural canals, and realized that I needed to crystallize my understanding while I had the whole structure in my head. Otherwise I’d come back in a few months and have to learn it all over again. Because it was inherently visual material, this time I made a slide deck rather than a block of text, something I could use to get my coauthors up to speed on all this weirdness, as well as a reminder for my future self. Here’s that original slide deck:
Wedel 2018 Avian lumbosacral spinal cord specializations
If you’re already active in research, you may be thinking, “Yeah, duh, of course you write stuff down as you get a handle on it. That’s just learning.” And I agree. But although this may seem basic, it isn’t necessarily obvious to people who are just starting out. And even to the established, it may not be obvious that doing little projects like this is a good model for making progress generally. Each one is a piton driven into the mountainside that I’m trying to climb: useful for me, and assuming I get them out into the world, useful for anyone I’d like to come with me (which, for an educator and a scientist, means everyone).

A view down the top of the vertebral column in the mounted skeleton of Apatosaurus louisae, CM 3018, showing the trough between the bifurcated neural spines.
If you’re not active in research, the idea of writing little term papers may sound like purgatory. But writing about something that you love, that fascinates you, is a very different proposition from writing about dead royalty or symbolism because you have to for a class.* I do these little projects for myself, to satisfy my curiosity, and it doesn’t feel like work. More like advanced play. When I’m really in the thick of learning a new thing–and not, say, hesitating on the edge before I plunge in–I am so happy that I tend to literally bounce around like a little kid, and the only thing that keeps me sitting still is the lure of learning the next thing. That I earn career beans for doing this still seems somewhat miraculous, like getting paid to eat ice cream.
* YMMV, history buffs and humanities folks. If dead royalty and symbolism rock your world but arteries and vertebrae leave you cold, follow your star, and may a thousand gardens grow.
Doing little projects is such a convenient and powerful way to make concrete progress that it has become my dominant mode. As with the piece that I wrote about the perforating branch of the peroneal artery, the products rarely get used wholesale in whatever conference presentation or research paper I end up putting together, but they’re never completely useless. First, there is the benefit to my understanding that I get from assembling them. Second, they’re useful for introducing other people to the sometimes-obscure stuff I work on, and nothing makes you really grapple with a problem like having to explain it to others. And third, these little writeups and slideshows become the Lego bricks from which I assemble future talks and papers. The bird neural canal slide deck became a decent chunk of our presentation on the Snowmass Haplocanthosaurus at the 1st Palaeontological Virtual Congress (Wedel et al. 2018)–and it’s about to become something even better.
The operative word at the start of the last paragraph is ‘concrete’. I don’t think this was always the case, but now that I’m in my mid-40s ‘what I know’ is basically equivalent to ‘what I remember’, which is basically equivalent to ‘what I’ve written down’. (And sometimes not even then–Mike and I both run across old posts here on SV-POW! that we’ve forgotten all about, which is a bit scary, given how often we put novel observations and ideas into blog posts.) Anyway, this is why I like the expression ‘crystallize my understanding’: the towers of comprehension that I build in my head are sand castles, and if I don’t find a way to freeze them in place, they will be washed away by time and my increasingly unreliable cerebral machinery.
Also, if I divide my life into the things I could do and the things I have done, only the things in the latter category are useful. So if you are wondering if it’s worthwhile to write a page to your future self about valves in the cerebral arteries of rats, or all of the dinosaurs from islands smaller than Great Britain, or whatever strange thing has captured your attention, I say yes, go for it. Don’t worry about finding something novel to say; at the early stages you’re just trying to educate yourself (also, talks and papers need intro and background material, so you can still get credit for your efforts). I’ll bet that if you set yourself the goal of creating a few of these–say, one per year, or one per semester–you’ll find ways to leverage them once you’ve created them. If all else fails, start a blog. That might sound flip, but I don’t mean for it to. I got my gig writing for Sky & Telescope because I’d been posting little observing projects for the readers of my stargazing blog.
A final benefit of doing these little projects: they’re fast and cheap, like NASA’s Discovery missions. So they’re a good way to dip your toes into a new area before you commit to something more involved. The more things you try, the more chances you have to discover whatever it is that’s going to make you feel buoyantly happy.
You may have noticed that all of my examples in this post involved library research. That’s because I’m particularly interested in using little projects to get started in new lines of inquiry, and whenever you are starting out in a new area, you have to learn where the cutting edge is before you can move it forward (Tutorial 12 again). Also, as a practical consideration, most of us are stuck with library research right now because of the pandemic. Obviously this library research is no substitute for time in the lab or the field, but even cutters and diggers need to do their homework, and these little projects are the best way that I’ve found of doing that.
P.S. If you are a student, read this and do likewise. And, heck, everyone else who writes should do that, too. It is by far the advice I give most often as a journal editor and student advisor.
P.P.S. As long as you’re reading Paul Graham, read this piece, too–this whole post was inspired by the bit near the end about doing projects.
References
- Gray, Henry. 1918. Anatomy of the Human Body. Lea & Febiger, Philadelphia. Bartleby.com, 2000. www.bartleby.com/107/.
- Penera, K., Manji, K., Wedel, M., Shofler, D., and Labovitz, J. 2014. Ankle syndesmotic fixation using two screws: Risk of injury to the Perforating Branch of the Peroneal Artery. The Journal of Foot and Ankle Surgery 53(5):534-8. DOI: 10.1053/j.jfas.2014.04.006
- Wedel, M.J., Atterholt, J., Macalino, J., Nalley, T., Wisser, G., and Yasmer, J. 2018. Reconstructing an unusual specimen of Haplocanthosaurus using a blend of physical and digital techniques. 1st Palaeontological Virtual Congress / PeerJ Preprints 6:e27431v1
John Conway’s BRONTOSMASH!
August 4, 2020
As John himsef admits in the tweet that announced this picture, it’s five years late … but I am prepared to forgive that because IT’S NEVER TOO LATE TO BRONTOSMASH!
As always, John’s art is not just scientifically accurate, but evocative. Here’s a close-up of the main action area:
As you see, he has incorporated the keratinous neck spikes that we hypothesized, based on the distinct knobs that are found at the ventrolateral ends of apatosaurine cervical rib loops.
John has also incorporated a lot of blood — which is exactly what you get when elephant seals collide:
By the way, if John’s BRONTOSMASH! art can be said to be five years late — so can the actual paper. It was of course at SVPCA 2015 that we first presented our apatosaur-neck-combat hypothesis (Taylor et al. 2015), and it’s not at all to our credit that nearly five years later, we have not even got a manuscript written. We really need to get our act together on this project, so consider this post my apology on behalf of myself, Matt, Darren and Brian.
Reference
- Taylor, Michael P., Mathew J. Wedel, Darren Naish and Brian Engh. 2015. Were the necks of Apatosaurus and Brontosaurus adapted for combat?. p. 71 in Mark Young (ed.), Abstracts, 63rd Symposium for Vertebrate Palaeontology and Comparative Anatomy, Southampton. 115 pp. doi:10.7287/peerj.preprints.1347v1
Apatosaurine cervicals of the ancient Maya civilisation
March 25, 2020
Our old sparring partner Cary Woodruff is a big fan of Monarobot, a Mexican artist who does all of her pieces in a Maya artistic style. So he commissioned this piece:
Anyone can tell that this is an apatosaurine cervical in anterior view — but which apatosaurine cervical? SV-POW Dollars(*) await the first person to correctly identify it.
Cary points out that one neat thing about the art is the colours: where possible, Monarobot uses colors the Mayas used. That blue in the vertebra is a special plant-based pigment they created.
As things stand, Cary owns the world’s only copy of this piece. But he points out that it’s born-digital, so anyone else who wants a copy is at liberty to order one; and he’s gracious enough not to object to the dilution of his print’s uniqueness. I don’t think there is a way to order directly online, but you can contact Monarobot in various places:
(*) Street value of SV-POW Dollars: zero.
The other side of the other side of that one cool specimen
November 11, 2019
Way back in 2009–over a decade ago, now!–I blogged about the above photo, which I stole from this post by ReBecca Hunt-Foster. It’s a cut and polished chunk of a pneumatic sauropod vertebra in the collections at Dinosaur Journey in Fruita, Colorado.
This is the other side of that same cut; you’ll see that it looks like a mirror image of the cut at the top, but not quite a perfect mirror image, because some material was lost to the kerf of the saw and to subsequent polishing, and the bony septa changed a bit just in those few millimeters.
And this is the reverse face of the section shown above. As you can see, it is a LOT more complex. What’s going on here? This unpolished face must be getting close to either the condyle or the cotyle, where the simple I-beam or anchor-shaped configuration of the centrum breaks up into lots of smaller chambers (as described in this even older post). It’s crazy how fast that can happen–this shard of excellence is only about 4 or 5 cm thick, and in that short space it has gone from anchor to honeycomb. I think that’s amazing, and beautiful.
It’s probably Apatosaurus–way too complex to be Camarasaurus or Haplocanthosaurus, not complex enough to be Barosaurus, no reason to suspect Brachiosaurus, and although there is other stuff in the DJ collections, the vast majority of the sauropod material is Apatosaurus. So that’s my null hypothesis for the ID.
Oh, back in 2009 I was pretty sure these chunks were from a dorsal, because of the round ventral profile of the centrum. I’m no longer so certain, now that I know that the anchor-shaped sections are so close to the end of the centrum, because almost all vertebrae get round near the ends. That said, the anchor-shaped sections are anchor-shaped because the pneumatic foramina are open, and having foramina that open, that close to the end of the vertebra still makes me think it is more likely a dorsal than anything else. I’m just less certain than I used to be–and that has been the common theme in my personal development over the last decade.
The Day of the Dinosaur, and the legend of the regrown sauropod tail
October 17, 2019
After this year’s SVPCA, Vicki and London and I spent a few days with the Taylor family in the lovely village of Ruardean. It wasn’t all faffing about with the Iguanodon pelvis, the above photo notwithstanding. Mike and I had much to discuss after the conference, in particular what the next steps might be for the Supersaurus project. Mike has been tracking down early mentions of Supersaurus, and in particular trying to determine the point at which Jensen decided that it might be a diplodocid rather than a brachiosaurid. I recalled that Gerald Wood discussed Supersaurus in his wonderful 1982 book, The Guinness Book of Animal Facts and Feats. While on the track of Supersaurus, I stumbled across this amazing claim in the section on Diplodocus (Wood 1982: p. 209):
According to De Camp and De Camp (1968) these giant sauropods may have been able to regenerate lost parts, and they mention another skeleton collected in Wyoming which appeared to have lost about 25 per cent of its tail to a carnosaur and then regrown it — along with 21 new vertebrae!
De Camp and De Camp (1968) is a popular or non-technical book, The Day of the Dinosaur. Used copies can be had for a song, so I ordered one online and it was waiting for me when I got back to California.
The Day of the Dinosaur is an interesting book. L. Sprague De Camp and Catherine Crook De Camp embodied the concept of the “life-long learner” before there was a buzzword to go with it. He had been an aerospace engineer in World War II, and she had been an honors graduate and teacher, before they turned to writing full time. Individually and together, they produced a wide range of science fiction, fantasy, and nonfiction books over careers that spanned almost six decades. The De Camps’ writing in The Day of the Dinosaur is erudite in range but conversational in style, and they clearly kept up with current discoveries. They also recognized that science is a human enterprise and that, like any exploratory process, it is marked by wildly successful leaps, frustrating wheel-spinning, and complete dead ends. I was pleasantly surprised to find that the authors were completely up to speed on plate tectonics, an essentially brand-new science in 1968, and they explain it as an alternative to older theories about immensely long land bridges or sunken continents.
At the same time, the book arrived just before the end-of-the-1960s publications of John Ostrom and Bob Bakker that kicked off the Dinosaur Renaissance, so there’s no mention of warm-blooded dinosaurs. The De Camps’ sauropods and duckbills are still swamp-bound morons, “endlessly dredging up mouthfuls of soft plant food and living out their long, slow, placid, brainless lives” (p. 142), stalked by ‘carnosaurs’ that were nothing more than collections of teeth relentlessly driven by blind instinct and hunger. The book is therefore an artifact of a precise time; there was perhaps a year at most in the late 1960s when authors as technically savvy as the De Camps would have felt obliged to explain plate tectonics and its nearly-complete takeover of structural geology (which had just happened), but not to comment on the new and outrageous hypothesis of warm-blooded, active, terrestrial dinosaurs (which hadn’t happened yet).
The book may also appeal to folks with an interest in mid-century paleo-art, as the illustrations are a glorious hodge-podge of Charles R. Knight, Neave Parker, photos of models and mounted skeletons from museums, life restorations reproduced from the technical literature, and original art produced for the book, including quite a few line drawings by one L. Sprague De Camp. Roy Krenkel even contributed an original piece, shown above (if you don’t know Krenkel, he was a contemporary and sometime collaborator of Al Williamson and Frank Frazetta, and his art collection Swordsmen and Saurians is stunning and still gettable at not-completely-ruinous prices; I’ve had mine since about 1997).
ANYWAY, as entertaining as The Day of the Dinosaur is, it doesn’t do much to help us regenerate the tale of the regenerated tail. Here’s the entire story, from page 114:
Sauropods, some students think, had great powers of regenerating lost parts. One specimen from Wyoming is thought to have lost the last quarter of its tail and regrown it, along with twenty-one new tail vertebrae. That is better than a modern lizard can do; for the lizard, in regenerating its tail, grows only a stumpy approximation of the original, without new vertebrae.
That’s it. No sources mentioned or cited, so no advance over Wood in terms of tracking down the origin of the story.
To be clear, I don’t really think there is a sauropod that regrew its tail, especially since we have evidence for traumatic tail amputation without regeneration in the basal sauropodomorph Massospondylus (Butler et al. 2013), in the theropod Majungasaurus (Farke and O’Connor 2007), and in a hadrosaur (Tanke and Rothschild 2002). But I would love to learn how such a story got started, what the evidence was, how it was communicated, and most importantly, how it took on a life of its own.
If anyone knows any more about this, I’d be very grateful for any pointers. The comment thread is open.
References
- Butler, R. J., Yates, A. M., Rauhut, O. W., & Foth, C. 2013. A pathological tail in a basal sauropodomorph dinosaur from South Africa: evidence of traumatic amputation? Journal of Vertebrate Paleontology 33(1): 224-228.
- De Camp, L. S., and De Camp, C. C. 1968. The Day of the Dinosaur. Bonanza Books, New York, 319 pp.
- Farke, A. A., & O’Connor, P. M. 2007. Pathology in Majungasaurus crenatissimus (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar. Journal of Vertebrate Paleontology, 27(S2): 180-184.
- Krenkel, R. G. 1989. Swordsmen and Saurians: From the Mesozoic to Barsoom. Eclipse Books, 152 pp.
- Tanke, D. H., & Rothschild, B. M. 2002. DINOSORES: An annotated bibliography of dinosaur paleopathology and related topics—1838-2001. Bulletin of the New Mexico Museum of Natural History and Science, vol. 20.
- Wood, G. L. 1982. The Guinness Book of Animals Facts & Feats (3rd edition). Guinness Superlatives Ltd., Enfield, Middlesex, 252 pp.
Walking around the mounted skeleton of Apatosaurus louisae
March 22, 2019
In case you haven’t gotten to do this, or need a refresher, or just want a little more Apatosaurus in your life. And honestly, who doesn’t? As with the previous Diplodocus walk-around, there’s no narration, just whatever ambient sound reached the mic. Go have fun.
How our week at the Carnegie Museum went
March 17, 2019
In a word, amazingly. After 6 days (counting public galleries last Sunday), 4300 photos, 55 videos, dozens of pages of notes, and hundreds of measurements, we’re tired, happy, and buzzing with new observations and ideas.
We caught up with some old friends. Here Mike is showing an entirely normal and healthy level of excitement about meeting CM 584, a specimen of Camarasaurus from Sheep Creek, Wyoming. You may recognize this view of these dorsals from Figure 9 in our 2013 PeerJ paper.
We spent an inordinate amount of time in the public galleries, checking out the mounted skeletons of Apatosaurus and Diplodocus (and Gilmore’s baby Cam, and the two tyrannosaurs, and, and…).
I had planned a trip to the Carnegie primarily to have another look at the Haplocanthosaurus holotypes, CM 572 and CM 879. I was also happy for the chance to photograph and measure these vertebrae, CM 36034, which I think have never been formally described or referred to Haplocanthosaurus. As far as I know, other than a brief mention in McIntosh (1981) they have not been published on at all. I’m planning on changing that in the near future, as part of the larger Haplocanthosaurus project that now bestrides my career like a colossus.
The real colossus of the trip was CM 555, which we’ve already blogged about a couple of times. Just laying out all of the vertebrae and logging serial changes was hugely useful.
Incidentally, in previous posts and some upcoming videos, we’ve referred to this specimen as Brontosaurus excelsus, because McIntosh (1981) said that it might belong to Apatosaurus excelsus. I was so busy measuring and photographing stuff that it wasn’t until Friday that I realized that McIntosh made that call because CM 555 is from the same locality as CM 563, now UWGM 15556, which was long thought to be Apatosaurus excelsus but which is now (i.e., Tschopp et al. 2015) referred to Brontosaurus parvus. So CM 555 is almost certainly B. parvus, not B. excelsus, and in comparing the specimen to Gilmore’s (1936) plates of CM 563, Mike and I thought they were a very good match.
Finding the tray of CM 555 cervical ribs was a huge moment. It added a ton of work to our to-do lists. First we had to match the ribs to their vertebrae. Most of them had field numbers, but some didn’t. Quite a few were broken and needed to be repaired – that’s what I’m doing in the above photo. Then they all had to be measured and photographed.
It’s amazing how useful it was to be able to reassociate the vertebrae with their ribs. We only did the full reassembly for c6, in part because it was the most complete and perfect of all of the vertebrae, and in part because we simply ran out of time. As Mike observed in his recent post, it was stunning how the apatosaurine identity of the specimen snapped into focus as soon as we could see a whole cervical vertebra put back together with all of its bits.
We also measured and photographed the limb bones, including the bite marks on the radius (above, in two pieces) and ulna (below, one piece). Those will of course go into the description.
And there WILL BE a description. We measured and photographed every element, shot video of many of them, and took pages and pages of notes. Describing even an incomplete sauropod skeleton is a big job, so don’t expect that paper this year, but it will be along in due course. CM 555 may not be the most complete Brontosaurus skeleton in the world, but our ambition is to make it the best-documented.
In the meantime, we hopefully left things better documented than they had been. All of the separate bits of the CM 555 vertebrae – the centra, arches, and cervicals ribs – now have the cervical numbers written on in archival ink (with permission from collections manager Amy Henrici, of course), so the next person to look at them can match them up with less faffing about.
We have people to thank. We had lunch almost every day at Sushi Fuku at 120 Oakland Avenue, just a couple of blocks down Forbes Avenue from the museum. We got to know the manager, Jeremy Gest, and his staff, who were unfailingly friendly and helpful, and who kept us running on top-notch food. So we kept going back. If you find yourself in Pittsburgh, check ’em out. Make time for a sandwich at Primanti Bros., too.
We owe a huge thanks to Calder Dudgeon, who took us up to the skylight catwalk to get the dorsal-view photos of the mounted skeletons (see this post), and especially to Dan Pickering, who moved pallets in collections using the forklift, and moved the lift around the mounted skeletons on Tuesday. Despite about a million ad hoc requests, he never lost patience with us, and in fact he found lots of little ways to help us get our observations and data faster and with less hassle.
Our biggest thanks go to collections manager Amy Henrici, who made the whole week just run smoothly for us. Whatever we needed, she’d find. If we needed something moved, or if we needed to get someplace, she’d figure out how to do it. She was always interested, always cheerful, always helpful. I usually can’t sustain that level of positivity for a whole day, much less a week. So thank you, Amy, sincerely. You have a world-class collection. We’re glad it’s in such good hands.
What’s next? We’ll be posting about stuff we saw and learned in the Carnegie Museum for a long time, probably. And we have manuscripts to get cranking on, some of which were already gestating and just needed the Carnegie visit to push to completion. As always, watch this space.
References
- McIntosh JS. 1981. Annotated catalogue of the dinosaurs (Reptilia, Archosauria) in the collections of Carnegie Museum of Natural History. Bulletin of Carnegie Museum of Natural History 18:1-67
- 2015) A specimen-level phylogenetic analysis and taxonomic revision of Diplodocidae (Dinosauria, Sauropoda) PeerJ3: (e857 https://dx.doi.org/10.7717/peerj.857