My talk (Taylor and Wedel 2019) from this year’s SVPCA is up!

The talks were not recorded live (at least, if they were, it’s a closely guarded secret). But while it was fresh in my mind, I did a screencast of my own, and posted it on YouTube (CC By). I had to learn how to do this for my 1PVC presentation on vertebral orientation, and it’s surprisingly straightforward on a Mac, so I’ve struck while the iron is hot.

For the conference, I spoke very quickly and omitted some details to squeeze the talk into a 20-minute slot. In this version, I go a bit slower and make some effort to ensure it’s intelligible to an intelligent layman. That’s why it runs closer to half an hour. I hope you’ll find it worth your time.


And so the series continues: part 9, part 10 and part 11 were not numbered as such, but that’s what they were, so I am picking up the numbering here with #12.

If you’ve been following along, you’ll remember that Matt and I are convinced that BYU 9024, the big cervical vertebra that has been referred to Supersaurus, actually belongs to a giant Barosaurus. If we’re right about, then it means one of two things: either Supersaurus synonymous with Barosaurus, or there are two diplodocids mixed up together.

Jensen (1987:figure 8c). A rare — maybe unique? — photograph of the right side of the big “Supersaurus” cervical vertebra BYU 9024. We assume this was taken before the jacket was flipped and the presently visible side prepped out. We’d love to find a better reproduction of this image.

Which is it? Well, seventeen years ago Curtice and Stadtman (2002:39) concluded that “all exceptionally large sauropod elements from the Dry Mesa Quarry can be referred to one of two individuals, one a Supersaurus and one a Brachiosaurus […] further strengthening the suggestion that all of the large diplodocid elements belong to a single individual.” It is certainly suggestive that, of all the material that has been referred to Supersaurus, there are no duplicate elements, but there are nice left-right pairs of scapulocoracoids and ischia.

But do all those elements actually belong to the same animal? One way to address that question is to look at their relative sizes and ask whether they fit together.

Sadly, when Matt and I were at BYU we didn’t get to spend time with most of these bones, but there are published and other measurements for a few of them. Jensen (1985:701) gives the total lengths of the two scapulocoracoids BYU 9025 and BYU 12962 as 2440 and 2700 mm respectively. Curtice et al. (1996:94) give the total height of the last dorsal BYU 9044 as 1330 mm. We have measured the big cervical BYU 9024 (probably C9) ourselves and found it to measure 1370 mm in total length. Finally, while there is no published measurement for the right ischium BYU 12949 (BYU 5503 of Jensen’s usage), we can calculate it from the scalebar accompanying Jensen’s illustration (with all the usual caveats) as being 1235 mm long.

Jensen (1985:figure 7a). BYU 12946 (BYU 5503 of his usage), the right ischium assigned to Supersaurus. By measuring the bone and the scalebar, we can calculate the length as 1235 mm.

Do these measurements go together? Since we’re considering the possibility of Supersaurus being a big Barosaurus, the best way to test this is to compare the sizes of the elements with the corresponding measurements for AMNH 6341, the best known Barosaurus specimen.

For this specimen, McIntosh (2005) gives 685 mm total length for C9, 901 mm total height for D9 (the last dorsal) and 873 mm for the ischia (he only provides one measurement which I assume covers both left and right elements). The scapulocoracoids are more complex: McIntosh gives 1300 mm along the curve for the scapulae, and 297 mm for the length of the coracoids. Assuming we can add them in a straight line, that gives 1597 mm for the full scapulocoracoid.

I’ve given separate measurements, and calculated separate ratios, for the left and right Supersaurus scapulocoracoids. So here’s how it all works out:

Specimen Element Size (mm) Baro (mm) Ratio Relative
9024 Mid-cervical vertebra 1370 685 2.00 124%
9044 Last dorsal vertebra 1330 901 1.48 92%
9025 Left scapulocoracoid 2440 1597 1.53 95%
12962 Right scapulocoracoid 2700 1597 1.69 105%
12946 Right ischium 1235 873 1.41 88%

The first five columns should be self-explanatory. The sixth, “proportion”, is a little subtler. The geometric mean of the size ratios (i.e. the fifth root of their product) is 1.6091, so in some sense the Dry Mesa diplodocid — if it’s a single animal — is 1.6 times as big in linear dimension as the AMNH 6341 Barosaurus. The last column shows each element’s size ratio divided by that average ratio, expressed as a percentage: so it shows how big each element is relative to a hypothetical isometrically upsized AMNH Barosaurus.

As you can see, the cervical is big: nearly a quarter bigger than it should be in an upscaled Barosaurus. The two scaps straddle the expected size, one 5% bigger and the other 5% smaller. And the dorsal and ischium are both about 10% smaller than we’d expect.

Can these elements belong to the same animal? Maaaybe. We would expect the neck to grow with positive allometry (Parrish 2006), so it would be proportionally longer in a large individual — but 25% is a stretch (literally!). And it also seems as though the back end of the animal (as represented by the last dorsal and ischium) is growing with negative allometry.

A nice simple explanation would be that that all the elements are Supersaurus and that’s just what Supersaurus is like: super-long neck, forequarters proportionally larger than hindquarters, perhaps in a slightly more convergent-on-brachiosaurs way. That would work just fine were it were not that we’re convinced that big cervical is Barosaurus.

Here’s how that would look, if the BYU Supersaurus is a large Barosaurus with different proportions due to allometry. First, Scott Hartman’s Barosaurus reconstruction as he created it:

And here’s my crudely tweaked version with the neck enlarged 24% and the hindquarters (from mid-torso back) reduced 10%:

Does this look credible? Hmm. I’m not sure. Probably not.

So: what if we’re wrong?

We have to consider the possibility that Matt and I misinterpreted the serial position of BYU 9024. If instead of being C9 it were C14 (the longest cervical in Barosaurus) then the AMNH analogue would be 865 mm rather than 685 mm. That would make it “only” 1.58 times as long as the corresponding AMNH vertebra, which is only 3% longer than we’d expect based on a recalculated geometric mean scale of 1.5358 — easily within the bounds of allometry. We really really really don’t think BYU 9024 is a C14 — but it’s not impossible that its true position lies somewhere posterior of C9, which would mean that the allometric interpretation would become more tenable, and we could conclude that all these bones do belong to a single animal after all.

Of course, that would still leave the question of why the Supersaurus scapulocoracoids are 10% bigger than we’d expect relative to the last dorsal vertebra and the ischium. One possible explanation would be to do with preparation. As Dale McInnes explained, there’s some interpretation involved in preparing scaps: the thin, fragile distal ends shade into the cartilaginous suprascapula, and it’s at least possible that whoever prepped the AMNH 6341 scaps drew the line in a different place from Dale and his colleagues, so that the Barosaurus scaps as prepared are artificially short.

Putting it all together: it might easily be the case that all the elements really do belong to a single big diplodocid individual, provided that the big cervicals is more posterior than we thought and the AMNH scaps were over-enthusiastically prepped.


Supersaurus timeline

July 17, 2019

The history of Supersaurus — and its buddies Ultrasauros and Dystylosaurus — is pretty complicated, and there seems to be no one source for it. But having read a lot about these animals in the process of writing eleven mostly pretty substantial posts about them, I feel like I’m starting to put it all together. This post is an attempt at recognising the landmarks in this history, in chronological order. Please leave a comment if you find a mistake or if I missed anything.

1943 — Sawmill operator Eddie Jones and his wife Vivian are prospecting for uranium during WWII. They find a brachiosaur skeleton in an advanced state of erosion at Potter Creek in the Uncompahgre Upwarp (Jensen 1987:592). (Jensen 1985a:697 says the humerus was also collected in this year, but that is contradicted by other accounts.)

1955 — Eddie and Vivian Jones collect the brachiosaur humerus and donate it to the Smithsonian Institition (George 1873b:53), where it is accessioned as USNM 21903 and put on display some time before March 1959 (Anonymous 1959).

USNM 21903, a left humerus of ?Brachiosaurus altithorax, discovered by Eddie and Vivian Jones. From the NMNH’s specimen gallery page, which gives the collection date as 1955. When I first saw this specimen, my gut reaction was that it was not slender enough to be Brachiosaurus, but note that the midshaft is very extensively restored. It may be that the intact bone was longer than the version we now see.

1958 — Jensen sees the Smithsonian humerus and finds the Jones family, who take him to the humerus location in Potter Creek and to three other Uncompahgre fossil localities (Jensen 1985a:697).

1964 — Jensen makes his first collection from the Uncompahgre Upwarp (Jensen 1985b:710).

1971 — Jensen sees a theropod toe bone at the Joneses’ home and asks where they found it. They tell him “On the Uncompahgre” (George 1973b:53), i.e. probably specifically from Dry Mesa, awakening his interest in that quarry.

1972 — In April (George 1973b:53), Jensen makes his first collection of material from Dry Mesa, one of the Uncompahgre localities found by the Joneses (Jensen 1985a:697).

In August (George 1973b:51-52) a large sauropod pelvis is found. This seems to have been the first element found that hinted at a very large sauropod at Dry Mesa (George 1973b:52-53).

Jensen displays the first Dry Mesa pelvis, still in the ground, in a frame from the 1976 version of The Great Dinosaur Discovery [13m53s].

Later this year, the first large Dry Mesa scapulocoracoid is found (Jensen 1985b:717). This would later be referred to as the “first specimen” of Supersaurus (e.g. Jensen 1985a:figure 8), but it was the subsequently discovered “second specimen” that would become the holotype when the genus was formally named (Jensen 1985a:701).

[NOTE. I am increasingly concerned that this might be wrong, and that the first scapulocoracoid found might after all have become the holotype. How to establish this? I sense yet another blog-post incoming.]

This is also the date given in the Dystylosaurus systematic palaeontology of Jensen (1985a:707). This may be an error as it is seven years before the date given for Supersaurus and Ultrasaurus, both of which names were known long before that of Dystylosaurus. but Curtice and Stadtman (2001:33) corroborate this early date for the discovery of the Dystylosaurus vertebra, and the relatively low specimen number BYU 4503 perhaps also suggests early collection and accessioning.

1973 — First published accounts of the giant sauropod material from Dry Mesa. The earliest may be that of Jean George (1973a) in the Denver Post’s Empire Magazine, on May 13. This is subsequently condensed into an account (George 1973b) in Reader’s Digest for June (not August as stated by Jensen 1985b:717, who also mis-cites the title). This latter account may be responsible for coining the informal name “Supersaurus” (Jensen 1985b:717), which would later be confirmed as the scientific name. (“There ‘Supersaurus,’ as we will call him, now awaits an official name and taxonomic classification.” — George 1973b:53.)

On Tuesday 13 November, a one-hour film about the dinosaurs of Dry Mesa, The Great Dinosaur Discovery, premieres in Delta, Colorado (Herald 1973). It is to be aired on 225 public TV stations across the USA.

Brigham Young University publishes an eight-page pamphlet, also titled The Great Dinosaur Discovery (House et al. 1973) to introduce the documentary. In it, Jensen is said to refer to the giant sauropod as “Big George”, but this nickname never caught on. “Both of Big George’s eight-foot-long shoulder blades were uncovered at the quarry” by this stage. The large pelvis is now considered probably not to belong to Big George. Jensen thinks the new specimen “will not only require a new genus and species, but also a new family and perhaps even a new infra-order”.

1974 — Jensen hopes that the Dry Mesa Quarry will be developed as a tourist destination along the lines of Dinosaur National Monument, “with provisions for public access and viewing while the scientific work continues” (Barnes 1974:40) — a dream that would never come to pass.

1976 — A shortened version of The Great Dinosaur Discovery is made available for schools. (At present, this is the only version we have access to.) In this version of the film (and presumably in the 1973 original, if the 1976 version was made only by cutting), the name “Supersaurus” is used informally, and a reconstruction of the animal [20 minutes in] shows it modelled after Brachiosaurus rather than a diplodocid.

A newspaper report about a large sauropod humerus (Anonymous 1976:1) suggests that Jensen believes belongs to “Supersaurus”. But no Supersaurus humerus is subsequently mentioned, and the bone probably belongs to another taxon. Its slenderness suggests it may belong to a brachiosaur: it is probably the Potter Creek humerus or more likely a cast of it, misreported.

1977 — Jensen is informally referring to the giant sauropod as “Supersaurus jenseni” (Look 1977:37). It is still felt that “it is a good guess that the big animal looked something like a cousin to the Brachiosaurus“.

“Late 1970s” — Dale McInnes prepares the “2nd specimen” Supersaurus scapulocoracoid, probably referring to the second to be discovered, which we believe is BYU 9025, eventually to become the holotype. (The “1st specimen” has already been prepared by this point.) In the 11-foot-long jacket, they find 9’2″ of bone, which they reduce to an 8’10” scapulocoracoid by closing cracks.

1978 — John Ostrom’s (1978) popular account of new ideas about dinosaurs in National Geographic mentions Supersaurus, and still considers it probably “built along the lines of Brachiosaurus“. He says that “a pair of shoulder blades eight feet long” have been dug up, so both of the elements that might be the holotype were known by this point.

1978 — Olshevsky (1991:139) gives this as the date of Jensen’s first informal use of the name “Ultrasaurus”, but this must be considered suspect as other sources say the key specimen of this genus was not discovered until 1979.

1979 — The brachiosaurid scapulocoracoid BYU 9462 (BYU 5001 of Jensen’s usage) is discovered and collected from the Dry Mesa Quarry (Jensen 1987:603 — although in this passage he incorrectly says the specimen number is BYU 5000). The discovery is witnessed by a Japanese film crew that is making a documentary about the Dry Mesa dinosaurs (Jensen 1985b:717). Jensen begins to refer to the specimen informally as “Ultrasaurus”.

Miller et al. (1991: figure 4b). “Loading plaster-jacketed bones at the Dry Mesa quarry, 1979. Left to right, Richard Jensen, Jim Jensen, Japanese TV crew.” It’s obvious from the shape of the plaster jacket that this is the “Ultrasaurus” scapulocoracoid BYU 9462.

The earliest reports of “Ultrasaurus” appear in the media (Webster 1979, Whitney 1979, Martin 1979).

At the climax of an eleven-day lecture tour in Japan, Jensen presents casts of three bones to the the people of Japan (Anonymous 1979): the “Ultrasaurus” scapulocoracoid BYU 9462, the Potter Creek humerus USNM 21903 and a large rib referred to Brachiosaurus sp.

This is the date given in the Ultrasaurus systematic palaeontology of Jensen (1985a:704).

This is also the date given in the Supersaurus systematic palaeontology of Jensen (1985a:701): “COLLECTOR.—James A. Jensen 1979”. This late date is surprising, as Supersaurus material was known as early as 1972 and both scapulocoracoids had been excavated by the time of Ostrom’s (1978) account.

1982 — Last collection of material considered for 1985 descriptive paper (Jensen 1985a:697).

Wilford (1982), in a popular article in the New York Times apparently written with Jensen’s collaboration, says that Supersaurus “may be an enlarged variation of brachiosaurus” and that Ultrasaurus “must have been even larger”, indicating that Supersaurus may still have been thought of as brachiosaurid well after the discovery of Ultrasaurus.

1983 — As of this date, approximately 100 tons of material collected by Jensen for BYU remains unprepared (Jensen 1985a:709).

Kim (1983) names a Korean sauropod Ultrasaurus tabriensis, intending it to be a new species of Jensen’s genus. However, since the name Ultrasaurus has not previously been formally published, Kim inadvertently preoccupies the name. (The Korean sauropod was thought enormous because of the size of its “ulna”; however, this bone is clearly a humerus, and of only moderate size for a sauropod. The taxon is generally considered undiagnosable, and the name therefore a nomen dubium.)

1985 — Jensen’s main descriptive paper (Jensen 1985a) is published, formally naming three new sauropod genera. Supersaurus (now considered to be of indeterminate family) is based on the scapulocoracoid BYU 9025 (BYU 5500 of his usage); Ultrasaurus (considered to be a brachiosaurid) is based on the posterior dorsal vertebra BYU 9044 (BYU 5000 of his usage) rather than the scapulocoracoid; and Dystylosaurus (which “no doubt represents a new sauropod family”) is based on the anterior dorsal vertebra BYU 4503 (BYU 5750 of his usage). This paper is accompanied by a broader overview of the Uncompahgre dinosaur fauna (Jensen 1985b) in which he says of the second Supersaurus scapulocoracoid that “it displays diplodocid affinities” (p717).

1987 — Jensen’s second descriptive paper removes the large Dry Mesa cervical vertebra BYU 9024 (BYU 5003 of his usage) from Ultrasaurus and refers it to Supersaurus (Jensen 1987:600-602). It seems from this paper that he may have intended the Ultrasaurus scapulocoracoid BYU 9462 (BYU 5001) to be the holotype of that genus (Jensen 1987:603). By this point, Supersaurus seems to have been recognised as diplodocid: “two unusually large scapulocoracoids … were referrable to the Diplodocidae. One of these (BYU 5500, Fig. 9B) is the holotype of Supersaurus vivianae” (p602).

1988 — A second large pelvis, BYU 13018, is found in Dry Mesa quarry (Wakley 1988, Wilford 1988, Miller et al. 1991:40). This is quickly recognised as belonging to Supersaurus, and will later be formally referred to that genus (Curtice and Stadtman 2001:38-39). It is now on display at the North American Museum of Ancient Life.

1990 — In the landmark encyclopaedia The Dinosauria, McIntosh (1990) describes Supersaurus as a diplodocid (p391), Ultrasaurus (Jensen) as “a very large brachiosaurid” based on the type vertebra and referred scapulocoracoid (p384), and the Dystylosaurus vertebra as “clearly brachiosaurid” (p384).

1991 — McGowan (1991:118) originates the idea that Ultrasaurus massed 180 tonnes, based on its restoration as a brachiosaurid 1.32 times as large in linear dimension as the Berlin Giraffatitan brancai paralectotype MB.R.2181 (formerly HMN SII) whose mass Colbert (1962) had grossly overestimated at 78 tons.

Olshevsky (1991:139), recognising the preoccupation of the name Ultrasaurus by Kim’s (1983) genus, raises the replacement name Ultrasauros for Jensen’s genus, with Jensen’s blessing. He had originally suggested the replacement name Jensenosaurus, but Jensen disliked this and suggested the variant spelling that was used instead (Curtice et al. 1996:87-88).

Miller et al. (1991:40) suggest that the holotype dorsal vertebra of Ultrasaurus (i.e. Ultrasauros) might by diplodocid, due to its similarity to the sacral vertebrae of the 1988 pelvis whose tall neural spines “most closely resemble the diplodocids”.

1994John Sibbick’s classic artwork of Supersaurus and Ultrasaurus, with Seismosaurus, is published in David Norman’s Prehistoric Life: The Rise of the Vertebrates.

1995 — Curtice (1995), in an SVP abstract, reassigns to Supersaurus the clearly diplodocid caudal vertebra BYU 9045 (BYU 5002 of Jensen’s usage), which Jensen had assigned to Ultrasaurus.

The caudal vertebra BYU 9045 (BYU 5002 of Jensen’s usage), in (from left to right) posterior, right lateral, and anterior views. Modified from Jensen (1985a:figures 2E, 3E and 2D respectively), an including his original scalebars. These are consistent between the photos in posterior and lateral views, and if accurate indicate that the vertebra is 1.18 m in total height.

1996 — Curtice et al. (1996) persuasively show that the holotype of Ultrasauros, BYU 9044 (BYU 5000 of Jensen’s usage) is diplodocid, and conclude that it belongs to Supersaurus, making Ultrasauros a junior synonym.

2001 — Curtice and Kenneth (2001) show that the holotype of Dystylosaurus, BYU 4503 (BYU 5750 of Jensen’s usage) is diplodocid, and conclude that it, too, belongs to Supersaurus, making Dystylosaurus another junior synonym.

2003 — Curtice (2003), in a conference abstract, suggests tentatively that Supersaurus (into which he has already sunk Ultrasauros and Dystylosaurus) may itself be synonymous with Barosaurus.

2005 — A team from a the Wyoming Dinosaur Center announce in an SVP abstract and poster (Lovelace et al. 2005) a new specimen WDC DMJ-021 (“Jimbo”), which they refer to Supersaurus vivianae.

McIntosh (2005:73), in revising Barosaurus, is persuaded that Supersaurus is indeed a valid genus rather than merely a large species of Barosaurus. (He mentions “the type specimen, the right scapulocoracoid” — another puzzle piece to help determine which element is the type.)

2008 — The WDC team formally describe their referred Supersaurus specimen WDC DMJ-201 (“Jimbo”), providing a phylogenetic analysis that recovers Supersaurus (based on a compound BYU+WDC taxon) as more closely related to Apatosaurus than to Barosaurus.

2011 — Whitlock’s phylogenetic analysis of diplodocoids recovers Supersaurus as the most basal diplodocine (Whitlock 2011:figure 7), i.e. closer to Barosaurus than to Apatosaurus, but not very close to either.

2015 — Tschopp et al.’s phylogenetic analysis of diplodocoids codes the BYU and WDC Supersaurus individuals as separate OTUs and finds that they emerge as sister taxa (Tschopp et al. 2015:figure 118), corroborating Lovelace et al.’s referral of the WDC specimen to Supersaurus. They recover Supersaurus in a small clade with Australodocus and Dinheirosaurus near the base of diplodocinae: again, closer to Barosaurus than to Apatosaurus, but not very close to either.

2016 — In an SVPCA talk and abstract, Taylor and Wedel (2016) argue that BYU 9024, the large cervical vertebra usually considered to be part of the Dry Mesa Supersaurus, actually belongs to a large Barosaurus. If this is correct, then the concept of Supersaurus requires further revision.

2019 — In a seemingly endless series of blog-posts, Taylor and Wedel consider the history of Supersaurus and co., and the taxonomic implications of the BYU cervical belonging to Barosaurus.


Note: this is a unified bibliography for all the posts in the present series. It therefore includes references not cited in this post.


Having surveyed what we know from the published literature about Jensen’s Big Three sauropods, and what Matt and I concluded about its big cervical BYU 9024, and having thought a bit more about the size of the BYU 9024 animal, we’re getting to the point where we can consider what all this means for Jensen’s taxa.

The Supersaurus pelvis BYU 13018 in right lateral view, at the North American Museum of Ancient Life (NAMAL). Signage reads: “Supersaurus pelvis. In 1988 the pelvis of Supersaurus was discovered at Dry Mesa Quarry. Brian Versey, Cliff Miles and Ken Stadtman of Brigham Young University’s Earth Science Museum found the pelvis while they were trying to close the quarry for the season. The discovery generated a huge media event, making headlines around the world. This pelvis is the largest dinosaur bone complex ever discovered. It is on display here for the very first time. Specimen on loan from Brigham Young University’s Earth Science Museum. Late Jurassic/Early Cretaceous (about 144 million years ago)

As Curtice and Stadtman (2001:36-39) pointed out, Supersaurus is actually known from quite a lot of material, all assigned to the holotype individual. I’ll quote them at length rather than paraphrasing, but if you want a tabular summary, you can skip the quote and pick up down below.

Supersaurus vivianae roll call

The name “Supersaurus” first appeared in a Reader’s Digest article (George, 1973) describing a pair of 8′ long scapulocoracoids uncovered from Dry Mesa Dinosaur Quarry near Delta, Colorado. When formally described (Jensen, 1985) a number of elements were referred to the holotype including the left scapulocoracoid discovered in 1972 (BYU 9025), a right scapulocoracoid (BYU 12962), a right ischium (BYU 12946), a distal proximal caudal vertebra (BYU 12843) and 12 articulated mid-caudal vertebrae (BYU 9084). An additional caudal vertebra (BYU 9077) is referred to (and figured as) Supersaurus in the text of Jensen (1985). The specimen numbers used in Jensen (1985), no longer valid, have created confusion in the literature (e.g., Paul, 1988) and thus current BYU specimen numbers are used here throughout.

Jensen (1987) later referred a mid-cervical vertebra (BYU 9024) and Curtice and Curtice (1996) a proximal caudal vertebra (BYU 9045), both originally assigned to Ultrasauros, to Supersaurus. Numerous additional elements belong to Supersaurus, including a left ischium (BYU 12555), which is clearly the mate to the referred right ischium (BYU 12946), a right pubis (BYU 12424), a carpal (BYU 12390), a phalanx (BYU 9000), a left ulna (BYU 13744), at least five caudal vertebrae (BYU 4839, 9045, 12639, 12819, 12843) and a pelvis (BYU 13018) consisting of a left ilium and four sacral vertebrae.

Jensen never referred the two Supersaurus scapulocoracoids to the same individual due to a 260 mm discrepancy in length. Stripping away the paint and resin on BYU 9025 revealed the proximal end had been inadvertently lengthened during preservation. Close examination of the actual bone surface nets a total scapulocoracoid length less than 50 mm longer than BYU 12962, an amount easily accounted for by scapular variation and thus here both are referred to the same individual. Concerning the large brachiosaur scapulocoracoid (BYU 9462) Jensen (1985) listed as part of the material belonging to Ultrasauros, it is demonstrably smaller than the largest Tendaguru scapula and has been referred to Brachiosaurus sp. (Curtice and Curtice, 1996; Curtice et al., 1996). As such all exceptionally large sauropod elements from Dry Mesa Dinosaur Quarry can be referred to one of two individuals, one a Supersaurus and one a Brachiosaurus.

A dorsal vertebra (BYU 9044) referred to Supersaurus (Curtice and Curtice, 1996; Curtice et al., 1996) results in Ultrasaurus macintoshi becoming a junior synonym of Supersaurus vivianae, as BYU 9044 was the type specimen of Ultrasauros. A second dorsal vertebra, BYU 12814, is also here referred to Supersaurus based on its similarities to BYU 9044. All of the three large dorsal vertebrae mentioned herein were found within the confines of the paired Supersaurus scapulae further strengthening the suggestion all of the large diplodocid elements belong to a single individual.

(Yes, it really does say “a distal proximal caudal vertebra”.)

Curtice and Stadtman say that the pelvis consists of left ilium plus four sacral vertebrae; but as the photo above clearly shows, it is the right ilium that is preserved.

Here is a summary table, in standard anatomical order:

Specimen Element Referred by
9024 Mid-cervical vertebra Jensen 1987
4503 Anterior dorsal vertebra Curtice & Stadtman 2001
9044 Posterior dorsal vertebra Curtice et al. 1996
12814 Posterior dorsal vertebra Curtice & Stadtman 2001
13018 Pelvis (right ilium, four sacral vertebrae) Curtice & Stadtman 2001
9045 Proximal caudal vertebra Curtice & Curtice 1996
12843 “Distal proximal” caudal vertebra Jensen 1985
9084 Twelve articulated mid-caudal vertebrae Jensen 1985
9077 Caudal vertebra Jensen 1985
4839 Caudal vertebra Curtice & Stadtman 2001
9045 Caudal vertebra Curtice & Stadtman 2001
12639 Caudal vertebra Curtice & Stadtman 2001
12819 Caudal vertebra Curtice & Stadtman 2001
12843 Caudal vertebra Curtice & Stadtman 2001
9025 Left scapulocoracoid Holotype
12962 Right scapulocoracoid Jensen 1985
13744 Left ulna Curtice & Stadtman 2001
12390 Carpal Curtice & Stadtman 2001
12424 Right pubis Curtice & Stadtman 2001
12946 Right ischium Jensen 1985
12555 Left ischium Curtice & Stadtman 2001
9000 Phalanx Curtice & Stadtman 2001

This is an impressively complete specimen — especially for a giant sauropod, as these tend only to survive in the form of isolated elements.

But is it really one specimen? That’s the subject of the next post.

(This post is rather slender by recent standards. That’s because I accidentally hit Publish when it was only half written. Rather than leave it to slowly change as I write more, I think it’s better to let this first half stand as its own post, and write the rest as its own post next time.)


  • Curtice, Brian D. and Linda J. Curtice. 1996. Death of a dinosaur: a reevaluation of Ultrasauros macintoshi (Jensen 1985). Journal of Vertebrae Paleontology 16(3):26A.
  • Curtice, Brian D. and Kenneth L. Stadtman. 2001. The demise of Dystylosaurus edwini and a revision of Supersaurus vivianae. Western Association of Vertebrate Paleontologists and Mesa Southwest Museum and Southwest Paleontologists Symposium, Bulletin 8:33-40.
  • Curtice, Brian D., Kenneth L. Stadtman and Linda J. Curtice. 1996. A reassessment of Ultrasauros macintoshi (Jensen, 1985). M. Morales (ed.), “The continental Jurassic”. Museum of Northern Arizona Bulletin 60:87–95.
  • Jensen, James A. 1985. Three new sauropod dinosaurs from the Upper Jurassic of Colorado. Great Basin Naturalist 45(4):697–709.
  • Jensen, James A. 1987. New brachiosaur material from the Late Jurassic of Utah and Colorado. Great Basin Naturalist 47(4):592–608.

In part 2, we concluded that BYU 9024, the large cervical vertebra assigned by Jensen to the Supersaurus holotype individual, is in fact a perfectly well-behaved Barosaurus cervical — just a much, much bigger one than we’ve been used to seeing. Although we heavily disclaimered our size estimates, Andrea Cau quite rightly commented:

Thanks for the disclaimer: unfortunately, it is going to be ignored by the Internet.
So, my boring-conservative mind asks: what is the smallest size that is a valid alternative explanation? I mean, if we combine all possible factors (position misinterpretation, deformation effects, allometry and so on) what could be the smallest plausible size? Only the latter should be taken as “the size” of this animal, pending more material.

Andrea is right that we should take a moment to think a bit more about the possible size implications of BYU 9024.

BYU 9024, the huge cervical vertebra assigned to Supersaurus but which is actually Barosaurus, in left dorsolateral view, lying on its right side with anterior to the right. In front of it, for scale, a Diplodocus cervical from about the same serial position. (Note that the Diplodocus vertebra here appears proportionally bigger than it really is, due to being much closer to the camera.)

What we know for sure is that the vertebra is 1380 mm long (give or take a centimeter or two due to the difficulties of measuring big complex bones in an objective way, something we should write about separately some time.)

We are 99% certain that the bone is a Barosaurus cervical.

We are much less certain about the serial position of that bone. When we were at BYU, we concluded that it most resembled C9 of the AMNH specimen, but I honestly can’t remember the detail of our reasoning (can you, Matt?) and our scanned notebooks don’t offer much in the way of help. We know from McIntosh (2005) that the neural spine of C8 is unsplit and that C9 has the first hint of a cleft.  How does that compare with BYU 9024? Here’s a photo to help you decide:

BYU 9024, large cervical vertebra in left dorsolateral view, inverted (i.e. with dorsal towards us and anterior to the right). Note the shallow cleft between metapophyses at bottom left.

And here’s an anaglyph, to help you appreciate the 3D structure. (Don’t have any red-cyan glasses? GET SOME!)

BYU 9024, oriented similarly to the previous photograph.

The morphology around the crown of the neural spine is difficult to interpret, partly just because the fossil itself is a bit smashed up and partly because the bone, the (minimal) restoration and the matrix are such similar colours. But here’s my best attempt to draw out what’s happening, zoomed in from last non-anaglyph photo:

As you start at the prezygapophyses and work backwards, the SPRLs fade out some way before you reach the crown, and disappear at or before what appears to be an ossified midline ligament scar projecting anteriorly from very near the top of the vertebra. Posterior to that are two small, tab-like metapophyses that appear almost like separate osteological features.

Now this is a very strange arrangement. Nothing like it occurs in any of the cervicals of Diplodocus, where all the way from C3 back to the last cervical, the SPRLs run continuously all the way up from the prezygs to the metapophyses:

Hatcher (1901:plate V). Diplodocus carnegii holotype CM 84, cervical vertebra 2-15 in anterior view.

What we’d love to do of course is compare this morphology with a similar plate of the AMNH Barosaurus cervicals in anterior view, but no such plate exists and no such photos can be taken due to the ongoing entombment of the vertebrae. So we’re reduced to feeding on scraps. McIntosh (2005:47) says:

The neural spine of cervical 8 is flat across the top, and that of cervical 9 shows the first trace of a divided spine (Fig. 2.2A). This division increases gradually in sequential vertebrae, being moderately developed in cervicals 12 and 13, and as a deep V-shape in cervicals 15 and 16.

Sadly, McIntosh illustrates only cervicals 8 and 13 in anterior view: Fig 2.2A does not illustrate C9, as the text implies. And neither of the illustrated vertebrae much resembles what we see in BYU 9024.

So while in 2016 we interpreted BYU 9024 is having “the first trace of a divided spine”, we do hold open the possibility that what we’re seeing is a vertebra in which the spine bifurcation is a little more developed than we’d realised, but with strange morphology that does not correspond closely to any well-preserved vertebra we’ve seen of any sauropod. (Most Barosaurus cervicals are either crushed and damaged; the well preserved ones outside of the AMNH walkway tomb are from a more anterior part of the neck where there is no bifurcation of the spine.)

There is one more possibility. Here is a truly lovely (privately owned) Barosaurus cervical in the prep lab at the North American Museum of Ancient Life (NAMAL):

Uncrushed Barosaurus cervical vertebra, serial position uncertain, in the NAMAL prep lab.

In this blessedly undistorted vertebra, we can see that the summit of the neural spine is flared, with laterally projecting laminae that are likely homologous with metapophyses. (The vertebra is symmetrical in this respect.) Might it be possible that the tab-like metapophyses of BYU 9024 were like this in life, but have been folded upwards post-mortem?

All of this leaves the serial position of the vertebra far from certain. But what we can do is compare it with the lengths of all the known AMNH Barosaurus vertebrae. Columns 1 and 2 in the table below show the serial position and total length of the AMNH cervicals. Column 3 shows the factor by which the 1370 mm length of BYU 9024 exceeds the relevant cervical, and column 4 shows the corresponding estimate for total neck length, based on 8.5 m (Wedel 2007:206–207) for AMNH Barosaurus.

Cv# Length (mm) BYU 9224 ratio BYU 9024 neck length
8 618 2.217 18.84
9 685 2.000 17.00
10 737 1.859 15.80
11 775 1.768 15.03
12 813 1.685 14.32
13 850 1.612 13.70
14 865 1.584 13.46
15 840 1.631 13.86
16 750 1.827 15.53

So to finally answer Andrea’s question from waaay back at the start of this post, the smallest possible interpretation of the BYU 9024 animal gives it a neck 1.584 times as long as that of the AMNH individual, which comes out around 13.5 m (and implies a total length of maybe 43 m).

But I don’t at all think that’s right: I am confident that the serial position of BYU 9024 is some way anterior to C14, likely no further back than C11 — which gives us a neck at least 15 m long (and a total length of maybe 48 m and a mass of maybe 12 × 1.768^3 = 66 tonnes).



  • Hatcher, Jonathan B. 1901. Diplodocus (Marsh): its osteology, taxonomy and probable habits, with a restoration of the skeleton. Memoirs of the Carnegie Museum 1:1-63 and plates I-XIII.
  • McIntosh, John S. 2005. The genus Barosaurus Marsh (Sauropoda, Diplodocidae). pp. 38-77 in: Virginia Tidwell and Ken Carpenter (eds.), Thunder Lizards: the Sauropodomorph Dinosaurs. Indiana University Press, Bloomington, Indiana. 495 pp.
  • Wedel, Mathew J. 2007. Postcranial pneumaticity in dinosaurs and the origin of the avian lung. Ph.D dissertation, Integrative Biology, University of California, Berkeley, CA. Advisors: Kevin Padian and Bill Clemens. 290 pages.

Last time, we reviewed what’s known about Jensen’s three giant sauropods based on published papers (and one abstract). This time, I want to talk a bit about what Matt and I have discovered, and intend to publish when we get around to it.

The Three Baro Jacket

It all followed on from our work on Barosaurus (which for now remains available only as a preprint, becalmed as it is in the peer-review doldrums — mostly my fault). Because of that, we were on the alert for Barosaurus material when we were travelling around Utah in Spring of 2016, and one of the first things we locked onto at the Brigham Young University’s Museum of Paleontology (BYU) was this:

We’ve been informally calling this “Three Baro Jacket”, or “3BJ” for short. But if we’re being formal, it’s specimen BYU 20815, being field jacket 3GR from BYU Locality 601 (The Jensen/Jensen quarry at Jensen, Utah), excavated in 1966. It also has an accession number, JJ/66 (which I didn’t realise was different from the specimen number).

Here it is being winched out of the ground at the Jensen/Jensen quarry, back in 1966 (photo courtesy of Brooks Britt):

This jacket contains — as our name for it suggests — three Barosaurus cervicals. The easiest way to see them is in 3D, using this red-cyan anaglyph, which shows the structure of the block much more informatively than the flat photo above:

(Do you have red-cyan anaglyph glasses? If not get some. They are dirt cheap, and will show you a whole world of morphology. For example, Amazon will send you ten pairs for $3.26, so you can keep two at home and two at work, and give half a dozen to your friends.)

For those stuck in the 2D world, these interpretive drawings should help to pick out the vertebrae from the matrix: they show individually the three vertebrae that we arbitrarily designated as A, B and C in that order.

Characters of Barosaurus cervicals

We spent some time looking pretty closely at these vertebra to figure out what they were — after all, the jacket wasn’t presented to us as “Here are some Barosaurus cervicals”. As we did so, we kept comparing the 3BJ vertebrae with photos we’d taken of the YPM and AMNH Barosaurus cervicals, and published illustrations. And as we did this, we discovered a whole set of distinctive characteristics of Barosaurus cervicals. We will properly describe and illustrate these characters another time, but to briefly summarise:

  • 1. Centra very long relative to vertebral height (measured at the posterior articular surface). This one will come as no surprise.
  • 2. Neural spine low and fairly smooth in profile.
  • 3. Postzygapophyses set forward slightly from posterior margin of centrum — as opposed to set well forward in brachiosaurs, or overhanging the posterior margin in apatosaurs.
  • 4. Parapophysis set much further forward than diapophysis, so that the cervical rib loop projects anteroventrally from the diapophysis.
  • 5. Cervical rib loop very thin anteroventrally (and lateromedially).
  • 6. Distinct hollow “thumb groove” between prezygapophyseal facet and pre-epipophysis.
  • 7. “U”-shaped notch in dorsal view where prezygapophyseal rami meet.
  • 8. Prezygapophyseal rami have two “faces” at right angles: one facing dorsomedially (bearing the prezgapophyseal facet), one facing dorsolaterally.
  • 9. Prezyagpophyseal rami very broad.
  • 10. Process projecting posteriorly from diapophysis.
  • 11. Prezyadiapophyseal lamina sweeps out smoothly to diaphophysis in dorsal view.

(These characters are all illustrated in our 2016 SVPCA talk: check the slides if you want to get a better handle on what we’re describing here. The reason I listed them in the slightly odd order above is so you can easily match them up with the slides.)

Now these vertebrae are well worthy of proper study and description in their own right, and we do plan to give them the attention they deserve. But for today’s story, they have done their part.

What is BYU 9024?

Now, here’s the thing. Literally a couple of yards away from the Three Baro Jacket in BYU collections sits the single longest vertebra of anything ever discovered: our old friend BYU 9024 (what Jensen called BYU 5003), which was originally assigned to Ultrasaurus (Jensen 1985), then reassigned to Supersaurus (Jensen 1987).

Mike compares Jensen’s sculpture of the big Supersaurus cervical BYU 9024 with the actual fossil.

And the more we looked at Barosaurus cervicals, then looked at BYU 9024, then looked back at Barosaurus, the more convinced we became that BYU 9024 is itself a Barosaurus cervical.

You would not immediately think this to look at the bone, as it’s pretty smashed up, and very difficult to interpret from photos, but this anaglyph will help:

As we discussed before, the posterior end looks much taller dorsoventrally than it should, because the postzygapophysis is folded upwards and the ventrolateral processes folded down.

Here’s what we see in BYU 9024 in terms of the characters we picked out from the 3BJ vertebrae. First, in left lateral view, with the characters highlighted in green:

  • 1. Centra very long relative to vertebral height (measured at the posterior articular surface).
  • 2. Neural spine low and fairly smooth in profile.
  • 3. Postzygapophyses set forward slightly from posterior margin of centrum.
  • 4. Parapophysis set much further forward than diapophysis, so that the cervical rib loop projects anteroventrally from the diapophysis.
  • 10. Process projecting posteriorly from diapophysis.

Now in anterodorsal view, with dorsal to the left:

  • 7. “U”-shaped notch in dorsal view where prezygapophyseal rami meet.
  • 8. Prezygapophyseal rami have two “faces” at right angles: one facing dorsomedially (bearing the prezgapophyseal facet), one facing dorsolaterally.
  • 9. Prezyagpophyseal rami very broad.

(It’s not easy to tell from this photo, but the broken-off area of flattish bone highlighted in the circle is part of the dorsolaterally-facing aspect of the prezygapophyseal ramus, where is it merging into the prezygadiapophyseal lamina.)

Three of the characters we saw in 3BJ we couldn’t determine in BYU 9024, due to breakage:

  • 5. Cervical rib loop very thin anteroventrally (and lateromedially).
  • 6. Distinct hollow “thumb groove” between prezygapophyseal facet and pre-epipophysis.
  • 11. Prezyadiapophyseal lamina sweeps out smoothly to diaphophysis in dorsal view.

But the morphology that’s preserved is certainly compatible with all of these. There are also a couple more characters in this vertebra that indicate that it’s Barosaurus, which we were not able to isolate in any of the 3BJ vertebrae:

  • A pair of posteroventrally directed accessory laminae radiating from the part of the centrum surface medial to the diapophysis. (These may be homologous with PCDLs but they seem to come out from under the PODL.)
  • It lacks paired foramina on the ventral surface separated by a midline ridge, as seen in Apatosaurus and WDC Supersaurus. (Thanks to David Lovelace from drawing our attention to that one in a comment on the last post!)

No one or two of these characters is a slam-dunk in isolation. But when you put them all together, they leave us pretty much 100% satisfied that BYU 9024 is a Barosaurus cervical.

How big was the BYU 9024 animal?

Before we say anything at all about this, please first hear our standard disclaimer: any size estimate based on a single bone is necessarily going to be wildly speculative, and could easily be a long way out in either direction.

That said, here’s the thinking behind our best guess.

First, what is the serial position of BYU 9024? We’d like to determine this by comparing with the cervical series of AMNH 6341, which is pretty well preserved — but unfortunately it has never been adequately illustrated and is now impossible to photograph as it is entombed below a walkway in the AMNH public gallery. Here’s the best published illustration, from McIntosh (2005:figure 2.1):

We judge it most similar to C9 or maybe C10, based largely on neural spine bifurcation and general proportions when corrected for distortion.

In AMNH, C9 is 685 mm long and C10 is 737 mm long (McIntosh 2005:table 2.1). Since BYU 9024 is 1370 mm in length, it is exactly twice as long as the C9 and 1.86 times as long as the C10.

I think I speak for all right-thinking people when I say holy crap.

If our identification of BYU 9024 as a C9 of Barosaurus is correct, then we are talking about an animal twice as large in linear dimension as the AMNH specimen whose cast looms over the rotunda (and the one at the Natural History Museum of Utah, which by eye is about the same size). Since the neck of the AMNH specimen is 8.5 m long (Wedel 2007:206–207), that would mean that the neck alone of BYU 9024 would have been 17 m long: longer than most complete sauropods and substantially taller than the mounted Giraffatitan skeleton in Berlin. The length of the whole animal is harder to predict, even if we assume isometry, but if Paul’s (2010:189) length estimate of 27 m for regular Barosaurus is correct, we’re probably looking at a total length exceeding 50 m.

This animal would, other things being equal, be eight times as massive (2 × 2 × 2) as the AMNH Barosaurus. There aren’t a lot of Barosaurus mass estimates out there, but Wedel (2005:217–221) did a lot of careful work to arrive at about 12 tonnes for the Diplodocus carnegii holotype CM 84, which is about the same size as the AMNH Barosaurus. If that’s right, then the BYU 9024 animal might have massed about 8 × 12 = 96 tonnes, which puts it right up there among the heaviest known sauropods: probably the heaviest represented by extant fossils, as the other strong contenders for that title are Maraapunisaurus and Bruhathkayosaurus, both known only from illustrations of now-destroyed specimens.

[UPDATE, the next day: see the next post for more on the serial position of the vertebra and the size of the animal.]

We presented most of this reasoning in our 2016 SVPCA talk, whose abstract and slides are online. (Sadly, there is no recording of the actual talk.)

Tune in for the post after that as we (finally!) reach the part promised by the title of this series, and consider where Jensen’s Big Three genera stand today.



  • Jensen, James A. 1985. Three new sauropod dinosaurs from the Upper Jurassic of Colorado. Great Basin Naturalist 45(4):697–709.
  • Jensen, James A. 1987. New brachiosaur material from the Late Jurassic of Utah and Colorado. Great Basin Naturalist 47(4):592–608.
  • McIntosh, John S. 2005. The genus Barosaurus Marsh (Sauropoda, Diplodocidae). pp. 38-77 in: Virginia Tidwell and Ken Carpenter (eds.), Thunder Lizards: the Sauropodomorph Dinosaurs. Indiana University Press, Bloomington, Indiana. 495 pp.
  • Paul, Gregory S. 2010. Dinosaurs: a Field Guide. A. & C. Black Publishers ltd. London, UK. 320 pp.
  • Wedel, Mathew J. 2005. Postcranial skeletal pneumaticity in sauropods and its implications for mass estimates. pp. 201-228 in Wilson, J. A., and Curry-Rogers, K. (eds.), The Sauropods: Evolution and Paleobiology. University of California Press, Berkeley
  • Wedel, Mathew J. 2007. Postcranial pneumaticity in dinosaurs and the origin of the avian lung. Ph.D dissertation, Integrative Biology, University of California, Berkeley, CA. Advisors: Kevin Padian and Bill Clemens. 290 pages.

Hello, ladies!

March 28, 2019

To my shock, I find that we seem never to have posted Bob Nicholls’ beautiful sketch Hello, ladies! on SV-POW!. His recent tweet reminded me about this piece, so here it is!

Like so many classic sauropod sketches, this was executed during a mammal-tooth talk at SVPCA: this one back in 2013, the year of our first Barosarus talk. (Our second was in 2016.)

Bob’s sketch shows speculative sexual display behaviour. We have no direct evidence for (or against) such behaviour; but while we don’t believe sexual selection was the main reason for sauropods evolving long necks, it seems inevitable that long necks evolved for other purposes would be exapted for sexual display.

I always love Bob’s sketches — in fact, for most palaeoartists, I tend to like their sketches more than their finished pieces. Among the many things about this one that make me jealous is all the females in the background admiring the male: the economy of line where Bob can not only summon up a perfectly cromulent diplodocid head in a few strokes, but imbue it with a sense of being inquisitive about the display. It’s magical.


Whatever happened to that 2013 Barosaurus project?, you may ask.

Well, the first thing that happened is that after we submitted the abstract, entitled Barosaurus revisited: the concept of Barosaurus (Dinosauria: Sauropoda) is based on erroneously referred specimens, we realised that there was a tiny, tiny mistake in our work. So by the time I gave the talk at the actual conference, the title slide was this:

Then you will recall we did an efficient job of converting the conference presentation into a manuscript, which we submitted as a preprint less than a month after the conference. The preprint quickly garnered amazingly helpful comments, which we used to extensively revise the manuscript.

For reasons we don’t understand, there was a three-year delay before we got it submitted for peer-review in 2016; but when we did finally submit, we did it in the confident hope that it would sail through peer-review, having already been extensively reviewed and revised.

But it was not to be. When we got the reviews back, they asked for a ton of changes, and that process was just too dispiriting to face having already made a ton of changes based on the first set of comments just prior to the submission. So the tedious process got back-burnered, and the suddenly three more years passed.

The upshot is that I still need to handle the reviews on the 2nd version of the paper, and shove the blasted thing through the peer-review process. I will, to be frank, be glad to get it out of my POOP chute, so I can think about other things — not least, the 2016 Barosaurus project.

Suppose that I and Matt were right in our SVPCA talk this year, and the
Supersaurus” cervical BYU 9024 really is the C9 of a gigantic Barosaurus. As we noted in our abstract, its total length of 1370 mm is exactly twice that of the C9 in AMNH 6341, which suggests its neck was twice as long over all — not 8.5 m but 17 m.

How horrifying is that?

I realised one good way to picture it is next to the entire mounted skeleton of Giraffatitan at the Museum für Naturkunde Berlin. That skeleton is 13.27 m tall. At 17 m, the giant barosaur neck would be 28% longer than the total height Giraffatitan.

Giraffatitan brancai mounted skeleton MB.R.2181 at the Museum für Naturkunde Berlin, with neck of Barosaurus ?lentus BYU 9024 at the same scale. Photo by Axel Mauruszat, from Wikipedia; drawing from Scott Hartman's Supersaurus skeleton reconstruction.

Giraffatitan brancai mounted skeleton MB.R.2181 at the Museum für Naturkunde Berlin, with neck of Barosaurus ?lentus BYU 9024 at the same scale. Photo by Axel Mauruszat, from Wikipedia; drawing from Scott Hartman’s Supersaurus skeleton reconstruction.

Yes, this looks ridiculous. But it’s what the numbers tell us. Measure the skeleton’s height and the neck length off the image yourself if you don’t believe me.

(Note, too, that the size of the C9 in that big neck is about right, compared with a previous scaled image that Matt prepared, showing the “Supersaurus” vertebra in isolation alongside the Chicago Brachiosaurus.)

Long-time SV-POW! readers will remember that three years ago, full of enthusiasm after speaking about Barosaurus at the Edinburgh SVPCA, Matt and I got that talk written up in double-quick time and had it published as a PeerJ Preprint in less than three weeks. Very quickly, the preprint attracted substantive, helpful reviews: three within the first 24 hours, and several more in the next few days.

This was great: it gave us the opportunity to handle those review comments and get the manuscript turned around into an already-reviewed formal journal submission in less then a month from the original talk.

So of course what we did instead was: nothing. For three years.

I can’t excuse that. I can’t even explain it. It’s not as though we’ve spent those three years churning out a torrent of other awesome papers. We’ve both just been … a bit lame.

Anyway, here’s a story that will be hauntingly familiar. A month ago, full of enthusiasm after speaking about Barosaurus at the Liverpool SVPCA, Matt and I found ourselves keen to write up that talk in double-quick time. It’s an exciting tale of new specimens, reinterpretation of an important old specimen, and a neck eight times as long as that 0f a world-record giraffe.

But it would be crazy to write the new Barosaurus paper without first having dealt with the old Barosaurus paper. So now, finally, three years on, we’ve done that. Version 2 of the preprint is now available (Taylor and Wedel 2016), incorporating all the fine suggestions of the people who reviewed the first version — and with a slightly spiffed-up title. What’s more, the new version has also been submitted for formal peer-review. (In retrospect, I can’t think why we didn’t do that when we put the first preprint up.)

Taylor and Wedel 2016: Figure 3. Barosaurus lentus holotype YPM 429, vertebra R, C?15. Top row: dorsal view; middle row, left to right: posterior, right lateral and anterior views; bottom row: ventral view, from Lull (1919: plate II). Note the apparently very low, undivided neural spine at the intersection of the PRSLs and POSLs, forward-shifted neural arch, broad prezygapophyses, broad, wing-like prezygadiapophyseal laminae, and great width across the diapophyses and across the parapophyses. Abbreviations: dia, diapophysis; para, parapophysis; prz, prezygapophysis; prdl, prezygadiapophyseal lamina; spol, spinopostzygapophyseal lamina; sprl, spinoprezygapophyseal lamina. Scale bar = 500 mm.

Taylor and Wedel 2016: Figure 3. Barosaurus lentus holotype YPM 429, vertebra R, C?15. Top row: dorsal view; middle row: posterior, right lateral and anterior views; bottom row: ventral view, from Lull (1919: plate II). Note the apparently very low, undivided neural spine at the intersection of the SPRLs and SPOLs, forward-shifted neural arch, broad prezygapophyses, broad, wing-like prezygadiapophyseal laminae, and great width across the diapophyses and across the parapophyses. Abbreviations: dia, diapophysis; para, parapophysis; prz, prezygapophysis; prdl, prezygadiapophyseal lamina; spol, spinopostzygapophyseal lamina; sprl, spinoprezygapophyseal lamina. Scale bar = 500 mm.

A big part of the purpose of this post is to thank Emanuel Tschopp, Mark Robinson, Andy Farke, John Foster and Mickey Mortimer for their reviews back in 2013. I know it’s overdue, but they are at least all acknowledged in the new version of the manuscript.

Now we cross our fingers, and hope that the formally solicited reviews for the new version of the manuscript are as helpful and constructive as the reviews in that first round. Once those reviews are in, we should be able to move quickly and painlessly to a formally published version of this paper. (I know, I know — I shouldn’t offer such a hostage to fortune.)

Meanwhile, I will finally be working on handling the reviews of this other PeerJ submission, which I received back in October last year. Yes, I have been lax; but I am back in the saddle now.


  • Taylor, Michael P., and Mathew J. Wedel. 2016. The neck of Barosaurus: longer, wider and weirder than those of Diplodocus and other diplodocines. PeerJ PrePrints 1:e67v2 doi:10.7287/peerj.preprints.67v2

UPDATE 19 May 2016

I belatedly realized that I caused some confusion in the original version of this post. This will hopefully sort things out:

NAMAL Barosaurus cervical with features labeled

The ventrolateral processes (1) are nothing new. As Ken Carpenter pointed out in a comment, Hatcher noted them back in 1901 in his monograph on Diplodocus carnegii. These are the features I describe below as being, “huge in Barosaurus, big in Diplodocus, small in Apatosaurus, and nonexistent in Haplocanthosaurus, Camarasaurus, and the brachiosaurids, at least from what I’ve seen.” To clarify: occasionally in camarasaurs and frequently in brachiosaurs you can trace a ridge along the ventrolateral margin of the centrum from the parapophysis to the cotyle. But these ridges are basically just the ‘corners’ of the centrum, leftover by the lateral and ventral waisting of the centrum – they do not project beyond the margin of the cotyle. In contrast, what I’ve been calling the ventrolateral flanges in diplodocids do project beyond the margins of the cotyle – they are additive structures, not just architectural leftovers. They also don’t vary much, other than to be more pronounced in more posterior cervicals.

The irregular ventral ridges (2) are a totally different thing. They’re on or near the sagittal midline of the centrum, usually restricted to the anteroposterior middle of the ventral centrum (so, about halfway between the condyle and the cotyle), and as my preferred term implies, highly variable among individuals and even among vertebrae in a series.

Hope that helps! (Original post starts below.)

– – – – – – – – – – – – – – – – – – – – –

2005-07-29 BYU 16918 Diplodocus left lateral

Back in 2005 I visited BYU while I was working on my dissertation. Back then I noted ventral ridges in a few diplodocine cervical vertebrae. (I hesitate to call such flimsy things ‘keels’.)

Up above is BYU 16918, a mid-to-posterior cervical vertebra of Diplodocus from the famous Dry Mesa Quarry. Here it is again in posterior view:

2005-07-29 BYU 16918 Diplodocus posterior view labeled

The things I have labeled VLF here are ventrolateral flanges, which are huge in Barosaurus, big in Diplodocus, small in Apatosaurus, and nonexistent in Haplocanthosaurus, Camarasaurus, and the brachiosaurids, at least from what I’ve seen. See this post for details. I know that the left VLF here looks like a second ridge, but the cotyle is broken off in such a way that we’re seeing the fossa just dorsal to the VLF margin. The ridge itself is skewed to the right, which could be natural or a result of taphonomy – as you can see from the photo at the top of the post, this vert has seen better days.

Here’s another Dry Mesa vert, BYU 11617, this time an anterior cervical of Barosaurus and in left lateral view:

2005-07-29 BYU 11617 Barosaurus left lateral

Again in right lateral view – on this side you can see the fossa in the VLF more clearly:

2005-07-29 BYU 11617 Barosaurus right lateral

And here’s the ventral view showing the ridge:

2005-07-29 BYU 11617 Barosaurus ventral view labeled

I noted these things in my notebook back when, filed them under, “Huh. How about that?” and went on with life.

Then last week Mike and I were at the North American Museum of Ancient Life in Lehi, Utah, and we saw this super-nice Barosaurus cervical on display in the prep lab (left ventro-lateral view). Check out the monster ventrolateral flanges, and the ridges between them at about mid-centrum.


Here’s another view, a more square-on ventral this time:


We owe a big thank you to Rick Hunter, who let us into the prep lab at the North American Museum of Ancient Life to see the Barosaurus material up close.

So what’s the deal with these ridges? I assume that they’re caused by pneumatic diverticula remodeling the ventral surface of the centrum. We know that such diverticula were down there because there are actual foramina on the ventral centrum in Supersaurus, many apatosaurines (Lovelace et al., 2008), many brachiosaurids, and probably loads of other things that haven’t been checked. Oddly enough, I’ve never seen the ridges in any of those other taxa. It seems that you get foramina or ridges, but not both. I have no idea what’s up with that – to paraphrase Neal Stephenson, Barosaurus cervicals are confections of air and marketing, and you’d think that if any sauropod would have straight-up foramina down there, it would be Barosaurus. But Barosaurus gets ridges and clunky old Apatosaurus gets foramina (sometimes, not all the time).

It’s a sick world, I tell you.


  • Lovelace, D. M., Hartman, S. A., & Wahl, W. R. (2007). Morphology of a specimen of Supersaurus (Dinosauria, Sauropoda) from the Morrison Formation of Wyoming, and a re-evaluation of diplodocid phylogeny. Arquivos do Museu Nacional, Rio de Janeiro 65(4):527-544.