Ray Wilhite posted this gorgeous image on a Facebook thread, and we’re re-posting it here with his permission.

It’s taken from a poster that Ray co-authored (Roberts et al. 2016). We’re looking here at a coronal cross-section of a hen (age not specified), with anterior to the left. Latex has been injected into the air sacs and lungs, highlighting them in shocking pink.

FInding your way around: the big yellow blobs near the middle are vitelline follicles. Just to their left, the two rounded red triangles that look like networks are the lungs. All the rest of the pink is diverticula and air-sacs: the interclavicle air-sac to the left, the caudal thoracic air-sac right behind the left (lower) lung, and abdominal air-sacs running backwards from the tips of the lungs. The big white oval is a calcified egg.

More from this poster in a subsequent post!

References

  • Roberts, John, Ray Wilhite, Gregory Almond, Wallace D Berry, Tami Kelly, Terry Slaten, Laurie McCall and Drury R. Reavill. 2016. Gross and histologic diagnosis of retrograde yolk inhalation in poultry. The American Association of Avian Pathologists, San Antonio, Texas. doi:10.13140/RG.2.2.28204.26246

 

Advertisements

If you were curious about the Wedel et al. presentation on the Snowmass Haplocanthosaurus at the 1st Palaeo Virtual Congress but didn’t attend the event, it is now preserved for posterity and freely available to the world as a PeerJ Preprint (as promised). Here’s the link.

I’ll have much more to say about this going forward, but for now here are slides 20 and 21 on the intervertebral joint spaces. This is obviously just the same vert cloned three times and articulated with itself. With the digital rearticulation of the reconstructed and retrodeformed caudal series still in progress, we cloned caudal 3, the only vertebra that preserves both sets of zygapophyses, to get a rough estimate of the sizes and shapes of the soft tissues that filled the intervertebral spaces and neural canal.

The reconstructed intervertebral discs (in blue) are very crude and diagrammatic. The reason I’m putting these particular slides up is to get the cited references out in the open on the blog, to start correcting the misapprehension that all non-mammalian amniotes have exclusively synovial intervertebral joints (see the discussion in the comments on this post). In the list below I’m including Banerji (1957), which is not cited in the presentation but which I did cite in that comment thread; it’s an important source and at least for now it is a free download. These refs are just the tip of a very big iceberg. One of my goals for 2019 is to do a series of posts reviewing the extensive literature on amphiarthrodial (fibrocartilaginous) intervertebral joints in living lepidosaurs and birds. Stay tuned!

And please go have a look at the presentation if you are at all interested or curious. As we said in the next to last slide, “this research is ongoing, and we welcome your input. If there are facts or hypotheses we haven’t considered but should, please let us know!”

References

Here’s a frozen pig head being hemisected with a band saw.

The head in question, and the other bits we’ll get to later on in this post, both came from Jessie Atterholt’s Thanksgiving pig. As soon as Jessie knew she was cooking a pig for Thanksgiving, she had a plan for the head and the feet: cut ’em in half, skeletonize one half (like Mike did with his pig head), and plastinate the other. Jessie has her own plastination setup and you can see some of her work in her Instagram feed, here.

Here’s the freshly hemisected head. At one time or another, about four of us were involved in checking the alignment of the cut, with the intention of just missing the nasal septum (it can be easier to see some of the internal nasal anatomy if the septum’s all on one side). But we were all wrong–not only did the saw hit the nasal septum dead on, it hemisected the septum itself. Which I guess is the next-best possible outcome. The septum is the big expanse of white cartilage behind the nose and in front of the brain. You have one, too–it separates your left and right nasal cavities–but yours is a lot thinner.

Here’s the left half washed off and cleaned up a bit.

I was completely entranced by the little blood vessels inside the nasal septum, seen here as tiny traceries of red inside the blue-white cartilage. Also notice the frontal sinus above the septum and in front of the brain.

Here’s the right half in a postero-medial oblique view. Shown well here are the first two cervical vertebrae, plus part of the third, and the intervertebral joints. This was a young pig and the remains of growth plates are still visible between the different ossification centers of the vertebrae. If I get inspired (= if I get time) I might do a whole post on that.

It wasn’t my pig or my show, but Jessie made me a gift of two pig feet, and I got a little time on the saw. Here I’m using a plastic tool to push one of the pig’s hind feet through the saw.

We had been dithering over how best to prep the feet but the lure of the band saw proved irresistable: we hemisected all four. We’re planning to do half skeletonized/half plastinated preps for all of them, a forefoot and a hindfoot set for each of us.

Jessie and I were joined by two other WesternU anatomists, Thierra Nalley and Jeremiah Scott. Here Thierra is explaining to Jeremiah, who works on primate dentition and diet, that mammals have more parts than just teeth.

That’s a good segue to this video I shot, in which Thierra gives a quick tour of the hemisected pig head. All four of us have just come off of teaching human head and neck anatomy, so it was cool to see in another mammal the same structures we’ve just been dissecting in humans.

From 1:40 to 1:55 in the video Thierra and I are discussing the prenasal bone, something pigs have that we don’t. It’s the separate bone at the end of the snout in this mounted skeleton:

Darren discusses and illustrates the prenasal bone in this Tetrapod Zoology post.

Parting shots: many thanks to Ken Noriega and Tony Marino of WesternU’s College of Veterinary Medicine for their guidance, assistance, and expertise. Jessie covered this dissection as an Instagram story, here–I believe you have to be signed in to see it. Update: Jessie added a regular stream post, with lots of features labeled, here. I’ll probably have more to say about this pig and its bits in the future. Stay tuned!

For more hemisected heads and skulls, see:

I was lucky enough to have Phil Mannion as one of the peer-reviewers for my recent paper (Taylor 2018) showing that Xenoposeidon is a rebbachisaurid. During that process, we got into a collegial disagreement about one of the autapomorphies that I proposed in the revised diagnosis: “Neural arch slopes anteriorly 30°–35° relative to the vertical”. (This same character was also in the original Xenoposeidon paper (Taylor and Naish 2007), in the slightly more assertive form “neural arch slopes anteriorly 35 degrees relative to the vertical”: the softening to “30°–35°” in the newer paper was one of the outcomes of the peer-review.)

The reason this is interesting is because the slope of the neural arch is measured relative to the vertical, which of course is 90˚ from the horizontal — but Phil’s comments (Mannion 2018) pushed me to ask myself for the first time: what actually is “horizontal”? We all assume we know horizontality when we see it, but what precisely do we mean by it?

Three notions of “horizontal”

The idiosyncratic best-preserved caudal vertebra of the Snowmass Haplocanthosaurus MWC 8028, illustrating three different versions of “horizontal”. A. horizontality defined by vertical orientation of the posterior articular surface. B. horizontality defined by horizontal orientation of the roof of the neural canal (in this case, rotated 24˚ clockwise relative to A). C. horizontality defined by optimal articulation of two instances of the vertebra, oriented such the a line joining the same point of both instances is horizontal (in this case, rotated 17˚ clockwise relative to A). Red lines indicate exact orthogonality according to the specified criteria. Green line indicate similar but diverging orientations: that of the not-quite-vertical anterior articular surface (A) and of the not-quite-horizontal base of the neural canal (B).

There are at least three candidate definitions, which we can see yield noticeably different orientations in the case of the Snowmass Haplocanthosaurus vertebra that Matt’s been playing with so much recently.

Definition A: articular surfaces vertical

In part A, I show maybe the simplest — or, at least, the one that is easiest to establish for most vertebrae. So long as you have a reasonably intact articular surface, just rotate the vertebra until that surface is vertical. If, as is often the case, the surface is not flat but concave or convex, then ensure the top and bottom of the surface are vertically aligned. This has the advantage of being easy to do — it’s what I did with Xenoposeidon — but it conceals complexities. Most obviously, what to do when the anterior and posterior articular surfaces are not parallel, in the 7th cervical vertebra of a giraffe?

Cervical vertebra 7 of Giraffa camelopardalis FMNH 34426, in left lateral view. Note that the centrum is heavily “keystoned” so that the anterior and posterior articular surfaces are 15-20˚ away from being parallel.

Another difficulty with this interpretation of horizontality is that it can make the neural canal jagged. Consider a sequence of vertebrae oriented as in part A, all at the same height: the neural canal would rise upwards along the length of each vertebra, before plunging down again on transitioning from the front of one to the back of the next. This is not something we would expect to see in a living animal: see for example the straight line of the neural canal in our hemisected horse head(*).

Definition B: neural canal horizontal

Which leads us to the second part of the illustration above. This time, the vertebra is oriented so that the roof of the neural canal is horizontal, which gives us a straight neural canal. Nice and simple, except …

Well, how do we define what’s horizontal for the neural canal? As the Haplocanthosaurus vertebra shows nicely, the canal is not always a nice, neat tube. In this vertebra, the floor is nowhere near straight, but dishes down deeply — which is why I used to the roof, rather than the floor of the canal. Rather arbitrary, I admit — especially as it’s often easier to locate the floor of the canal, as the dorsal margin is often confluent with fossae anteriorly, posteriorly or both.

And as we can see, it makes a difference which we choose. The green line in Part B of the illustration above shows the closest thing to “horizontal” as it would be defined by the ventral margin of the neural canal — a straight line ignoring the depression and joining the anteriormost and posteriormost parts of the base of the canal. As you can see, it’s at a significantly different angle from the red line — about 6.5˚ out.

And then you have human vertebrae, where the dorsal margin of the neural canal is so convex in lateral view that you really can’t say where the anteriormost or posteriormost point is.

Left sides of hemisected human thoracic vertebrae, medial view. Note how ill-defined the dorsal margin of the neural canal is.

So can we do better? Can we find a definition of “horizontal” that’s not dependent of over-interpreting a single part of the vertebra?

Definition C: same points at same height in consecutive vertebrae

I’ve come to prefer a definition of horizontal that uses the whole vertebra — partly in the hope that it’s less vulnerable to yielding a distorted result when the vertebra is damaged. With this approach, shown in part C of the illustration above, we use two identical instances of the vertebrae, articulate them together as well as we can, then so orient them that the two vertebrae are level — that a line drawn between any point on one vertebra and its corresponding point on the other is horizontal. We can define that attitude of the vertebra as being horizontal.

Note that, while we use two “copies” of the vertebra in this method, we are nevertheless determining the horizontality of a single vertebra in isolation: we don’t need a sequence of consecutive vertebrae to have been preserved, in fact it doesn’t help if we do have them.

One practical advantage of this definition is that its unambiguous as regards what part of the vertebra is used: all of it; or any point on it, at the measurement stage. By contrast, method A requires us to choose whether to use the anterior or posterior articular surface, and method B requires a choice of the roof or floor of the neural canal.

Discussion

I have three questions, and would welcome any thoughts:

  1. Which of these definitions do you prefer, and why?
  2. Can you think of any other definitions that I missed?
  3. Does anyone know of any previous attempts to formalise this? Is it a solved problem, and Matt and I somehow missed it?

Answers in the comments, please!

References

(*) Yes, of course we have a hemisected horse head. What do you think we are, savages?

Exploded turtle skulls are cool, but what about exploding the entire turtle? (Not that way.) Folks at the Naturhistorisches Museum Wien roll hard. Or did – I assume these exhibits are old. Thankfully no museum studies doofus has insisted they be taken down and replaced with an interactive 3D display on what it feels like to be a sea turtle. Kudos to the current management for keeping the natural history museum filled with natural history.

I didn’t get back far enough from them to photograph all of the labels, mostly because I had like 90 minutes to jet through roughly 13,792 halls of amazing things. But this one is a loggerhead, Caretta caretta. Identifying the others is left as an exercise for the reader.

Or better yet, make your own, if you can procure a dead turtle.

Saw this gem back in the herpetology collections at the Academy of Natural Sciences in Philadelphia and thought, “Someone up and Beauchened a turtle head.” (My inner monologue is a tennis match between an arch language pedant and an unreconstructed hick with a penchant for folksy archaisms.)

What a sweet mount – there should be one of these for every critter in the museum. There should be a Hall of Exploded Skulls, and a Curator of Exploded Skulls. Would that be too much, or not enough? Both hypotheses remain untested. Someone should fix that.

Many, many thanks to Ted Daeschler for showing me all the awesome stuff at the Academy of Natural Sciences – or, if not all, as much as we could cram into two hours.

Marten skull on top, opossum on bottom. Internal (medial) view of the right half of each skull.

These have been in my collection for ages, I just hadn’t gotten around to posting pictures. I don’t remember where I got them, but they were definitely purchased rather than collected. It’s funny, I remember the origin story of almost every bone and skull I’ve collected myself, but stuff I’ve bought tends to slide out of recollection.

I assume the marten is the American marten, Martes americana, but I haven’t keyed it out. The opossum is definitely Didelphis virginiana.

I think the opossum skull was already hemisected when it came to me – at least, I can’t find the other half. The marten I did myself, with a Dremel. In part because I wanted to compare the size and shape of the braincases. As you can see from the photos, the marten had a big wrinkly brain that left impressions on the inside of the skull, and these are visible externally through the thin walls of the braincase.

Now, I am an opossum fan, but I will be the first to admit that the osteological evidence does not imply a lot of brainpower for North America’s only resident marsupial. Apparently its brain was small and smooth, untroubled by any thoughts more complicated than trash can access. Images of opossum brains online confirm that impression (or maybe lack of impression, since we’re talking about braincases here).

And yet, opossums are still around, thriving in the face of placentals with our wrinkly brains, high metabolisms, regular garbage collection, and whatnot. Long may they scurry.