Here’s the story of my fascination with supramedullary airways over the last 20 years, and how Jessie Atterholt and I ended up working on them together, culminating with her talk at SVPCA last week. (Just here for the preprint link? Here you go.)

Müller (1908: fig. 12). Upper respiratory tract, trachea, and lungs in pink, air sacs and diverticula in blue. DSPM = diverticulum supramedullare.

Way back when I was working on my Master’s thesis at the University of Oklahoma and getting into pneumaticity for the first time, Kent Sanders found Müller (1908) and gave me a photocopy. This would have been the spring or summer of 1998, because we used some of Müller’s illustrations in our poster for SVP that year (Wedel and Sanders 1998). Müller’s description of pneumatic diverticula in the pigeon formed part of my intellectual bedrock, and I’ve referenced it a lot in my pneumaticity papers (complete list here).

One of the systems that Müller described is the diverticulum supramedullare, a.k.a. supramedullary diverticula, or, informally, supramedullary airways (SMAs). Traditionally these are defined as pneumatic diverticula that enter the neural canal and lie dorsal (supra) to the spinal cord (medulla), although O’Connor (2006) noted that in some cases the diverticula could completely envelop the spinal cord in a tube of air. I yapped about SMAs a bit in this post, and they’re flagged in almost every ostrich CT or dissection photo I’ve ever published, here on the blog or in a paper.

CT sections of a Giraffatitan cervical, with connections between the neural canal and pneumatic chambers in the spine highlighted in blue. Modified from Schwarz & Fritsch (2004: fig. 4).

Fast forward to 2006, when Daniela Schwarz and Guido Fritsch documented pneumatic foramina in the roof of the neural canal in cervical vertebrae of Giraffatitan. As far as I know, this was the first published demonstration of SMAs in a non-bird, or in any extinct animal. Lemme repeat that: Daniela Schwarz found these first!

OMNH 60718: too ugly for radio. This is an unfused neural arch in ventral view. Anterior is to the left. Neurocentral joint surfaces are drawn over with ladders; pneumatic foramina lie between them.

Shortly thereafter I independently found evidence of SMAs in a sauropod, in the form of multiple pneumatic foramina in the roof of the neural canal in an unfused neural arch of a basal titanosauriform (probably a brachiosaurid) from the Cloverly Formation of Montana. It’s a pretty roadkilled specimen and I was busy with other things so I didn’t get around to writing it up, but I didn’t forget about it, either (I rarely forget about stuff like this).

Then in 2013 I went to the Perot Museum in Dallas to see the giant Alamosaurus cervical series, and I also visited the off-site research facility where juvenile Alamosaurus from Big Bend is housed. When Ron Tykoski let me into the collections room, I was literally walking through the door for the first time when I exclaimed, “Holy crap!” I had spotted an unfused neural arch of a juvenile Alamosaurus on a shelf across the room, with complex pneumatic sculpting all over the roof of the neural canal.

Title slide for the 2014 SVPCA presentation.

The Big Bend and Cloverly specimens were the basis for my talk on SMAs at SVPCA in 2014, coauthored with Anthony Fiorillo, Des Maxwell, and Ron Tykoski. As prep for that talk, I visited the ornithology collections at the Natural History Museum of Los Angeles County, photographed a lot of bird vertebrae with foramina inside their neural canals, and shot this pelican video. That was four years ago – why no paper yet? It’s because I wanted one more piece of smoking-gun evidence: a CT scan of a bird that would show a direct communication between the SMAs and the air spaces inside a vertebra, through one or more foramina in the roof, wall, or floor of the neural canal.

A spectrum of pneumatic traces in the neural canals of birds, including complexes of large or small foramina, isolated foramina, and sculpting without foramina.

In 2017, Jessie Atterholt taught in our summer anatomy course at WesternU as an adjunct (her full-time employment was at the Webb Schools in Claremont, home of the Alf Museum). Jessie and I had been acquainted for a few years, but we’d never had the opportunity to really talk science. As we chatted between dissections, I learned that she had a huge warchest of CT scans of whole birds from her dissertation work at Berkeley (we’d missed each other by a few years). My antennae twitched: one nice thing about SMAs is that, being bounded by bone, they can’t collapse after death, unlike more peripheral diverticula. And air is jet black on CT scans, so SMAs are easy to spot even on comparatively low-res scans. All you need is one or two black pixels. I proposed a collaboration: we could use her CT scans to survey the presence and distribution of SMAs in as many birds as possible.

Vertebral diverticula in two sagittally-exploded cervical vertebrae of a turkey. Anterior is to the left, #5 is the SMA. Cover (1953: fig. 2). Yes, I know this is gross – if anyone has a cleaner scan, I’m interested.

You might think that such a survey would have been done ages ago, but it’s not the case. A few authors have mentioned supramedullary airways, and O’Connor (2006) gave a good description of some of the variation in SMAs in extant birds as a whole. But the only detailed accounts to illustrate the morphology and extent of the SMAs in a single species are Müller (1908) on the common pigeon and Cover (1953) on the domestic turkey. I’d seen what I suspected were traces of SMAs in the vertebrae of many, mostly large-bodied birds, and I’d seen them in CTs of ostriches and hummingbirds, and in ostriches and turkeys in dissection. But Jessie was offering the chance to see both the SMAs and their osteological traces in dozens of species from across the avian tree.

SMAs in a micro-CT of a female Anna’s hummingbird, Calypte anna. Scale bars are in mm.

Real life intervened: we were both so busy teaching last fall that we didn’t get rolling until just before the holidays. But the project gradually built up steam over the course of 2018. One story that will require more unpacking later: everything I’ve written on this blog about neural canals, Haplocanthosaurus, or CT scanning in 2018 is something serendipitously spun out of the SMA survey with Jessie. Expect a lot more Atterholt and Wedel joints in the near future – and one Atterholt et al. (minus Wedel) even sooner, that is going to be big news. Watch this space.

It didn’t hurt that in the meantime Jessie got a tenure-track job teaching human anatomy at WesternU, to run the same course she’d taught in as an adjunct last year, and started here at the beginning of June. By that time we had an abstract on our findings ready to go for this year’s SVP meeting. Alas, it was not to be: we were out in the field this summer when we learned that our abstract had been rejected. (I have no idea why; we’ve increased the taxonomic sampling of SMAs in extant birds by a factor of six or so, most of our important findings are in the abstract, and we mentioned the relevance to fossils. But whatever.)

We were bummed for a day, and then Jessie decided that she’d submit the abstract to SVPCA, only slightly chopped for length, and go to Manchester to present if it was accepted – which it was. Unfortunately I’d already made other plans for the fall, so I missed the fun. Fortunately the SVPCA talks were livestreamed, so last Friday at 1:30 in the morning I got to watch Jessie give the talk. I wish the talks had been recorded, because she knocked it out of the park.

Title slide for the 2018 SVPCA presentation.

And now everything we’re in a position to share is freely available at PeerJ. The SVPCA abstract is up as a PeerJ preprint (Atterholt and Wedel 2018), the longer, rejected SVP abstract is up as a supplementary file (because it has a crucial paragraph of results we had to cut to make the length requirement for SVPCA, and because why not), and our slideshow is up now, too. I say ‘our’ slideshow but it’s really Jessie’s – she built it and delivered it with minimal input from me, while I held down the sauropod side of our expanding empire of neural canal projects. She has the paper mostly written, too.

Oh, and we did get the smoking-gun images I wanted, of SMAs communicating with pneumatic spaces in the vertebrae via foramina in the neural canal. Often these foramina go up into the neural arch and spine, but in some cases – notably in pelicans and the occasional ratite – they go down into the centrum. So I now have no excuse for not getting back to the sauropod SMA paper (among many other things).

We’re making this all available because not only are we not afraid of getting scooped, we’re trying to get the word out. SMAs are phylogenetically widespread in birds and we know they were present in sauropods as well, so we should see some evidence of them in theropods and pterosaurs (because reasons). I made such a nuisance of myself at the recent Flugsaurier meeting, talking to everyone who would listen about SMAs, that Dave Hone went and found some pneumatic foramina in the neural canals of Pteranodon vertebrae during the conference – I suspect just to shut me up. That’ll be some kind of Hone-Atterholt-Wedel-and-some-others joint before long, too.

Anyway, point is, SMAs are cool, and you now have everything you need to go find them in more critters. Jessie and I are happy to collaborate if you’re interested – if nothing else, we have the background, lit review, and phylogenetic sampling down tight – but we don’t own SMAs, and we’ll be nothing but thrilled when your own reports start rolling in. Unexplored anatomical territory beckons, people. Let’s do this.

References

Advertisements

No time right now for me to dig into the interesting and important discussion on how we should orient vertebrae (here and here so far) – that will be coming soon. In the meantime, here’s something else.

As printed, in one of WesternU’s 3D printers.

Coming off the tray.

Cleaned up and in my hand. This is a 70% scale print, so a little smaller than the original, but all the important morphology is clear enough. For one thing, I can finally make sense of the dorsal views of the vertebra.

I have been astonished at how useful a 3D print can be as an aid to thought. The caudals of the Snowmass Haplocanthosaurus are among the smallest sauropod vertebrae I’ve spent a lot of time with, and they’re still heavy enough and fragile enough that I don’t just whip them out and twirl them around in my fingers. But I can do that with the 3D prints, and it really helps ram the morphology home in my brain. There are a thousand subtle things I might not otherwise have noticed if I hadn’t been able to turn those shapes over easily in my hand. Not to mention the other things you can do with prints, like physically sculpt on them without gooping up your fossils (we’re midway through step #8 from that post, BTW).

Anyway, back to Xeno. Mike reminded me that I have seen the actual specimen in person exactly once, very briefly during our 2005 visit to the NHM collections when I was over there for SVPCA. But it wasn’t Xeno yet, and we had other fish to fry, including a lot of pneumatic and possibly-pneumatic stuff for me to see and photograph for my dissertation. So I have to admit that it didn’t register. Being able to handle it now, so much that Mike has written about it snaps into focus. Not that his writing isn’t clear, there’s just a huge gulf between the best written description and holding a thing in your hands.

Why do I have this thing? Partly to educate myself, partly because it’s relevant to a current project, and partly because we may not be done with Xeno. Stay tuned.

Many thanks to Gary Wisser for setting up the print, and to Jeff Macalino for pulling it for me.

This is SUSA 515, a partial skeleton of Camarasaurus on display in the Museum of Moab. (SUSA stands for Southeastern Utah Society of Arts & Sciences.) It was described by John Foster in 2005.

I like this thing. The neural spines are blown off so you can see right down into the big pneumatic cavities in the dorsal vertebrae. And unlike the plastered, painted, and retouched-to-seeming-perfection mounted skeletons in most museums, this specimen reflects how most sauropod specimens look when they come out of the ground. With a few dorsal centra, a roadkilled sacrum, and some surprisingly interesting caudals, it puts me strongly in mind of MWC 8028, the Snowmass Haplocanthosaurus (another John Foster joint: see Foster and Wedel 2014).

Frankly, it doesn’t look like much: 17 centra and some odd bits of pelvis. Surely, with so many good Camarasaurus specimens in the world, this one couldn’t possibly have anything new to tell us about the anatomy of that genus. And yet, it has a couple of unusual features that make it worthy of attention. My colleagues and I are working on those things right now, and you’ll be hearing more about this specimen in the very near future.

References

Remember this broken Giraffatitan dorsal vertebra, which Janensch figured in 1950?

It is not only cracked in half, anteroposteriorly, it’s also unfused.

Here’s a better view of the broken face, more clearly showing that the neural canal is (a) much taller than wide – unlike all vertebrate spinal cords – and (b) almost entirely situated ventral to the neurocentral joint, getting close to the condition in the perverted Camarasaurus figured by Marsh.

Here’s a dorsal view, anterior to the top, with Mike’s distal forelimbs for scale.

Left lateral view.

Right lateral view – note the subtle asymmetries in the pneumatic foramen/camera. A little of that might be taphonomic distortion but I think much of it is real (and expected, most pneumatic systems produce asymmetries).

And postero-dorsal view, really showing the weird neural canal to good advantage. In this photo and in the pure dorsal view, you can see that the two platforms for the “neural arch” – which, as in the aforementioned Camarasaurus, is neither neural nor an arch – converge so closely as to leave only a paper-thin gap.

A few points arise. As explained in this post, it makes more sense to talk about the neurocentral joint migrating up or down relative to the neural canal, which is right where it always is, just dorsal to the articular faces of the centrum.

So far, in verts I’ve seen with “offset” neurocentral joints, the joint tends to migrate dorsally in dorsal vertebrae, putting the canal inside the developmental domain of the centrum (which now includes a partial or total arch in an architectural sense, even though the chunk of bone we normally call the neural arch develops as a separate bit) – as shown in the first post in this series. In sacral and caudal vertebrae, the situation is usually reversed, with the joint shifted down into what would normally be the centrum, and the canal then mostly or completely surrounded by the arch – as shown in the second post in the series. This post then doesn’t really add any new concepts, just a new example.

Crucially, we can only study this in the vertebrae of juveniles and subadults, because once the neurocentral joints are fused and remodeled, we usually can’t tell where the old joint surface was. So it’s like cervicodorsal and caudal dorsal pneumatic hiatuses, in that the feature of interest only exists for part of the ontogeny of the animal, and our sample size is therefore inherently limited. Not necessarily limited by material – most museums I’ve visited have a fair amount of juvenile and subadult material in the collections – but limited in published visibility, in that for many sauropods only the largest and most complete specimens have been monographically described.

So once again, the answer is simply to visit collections, look at lots of fossils, and stay alert for weird stuff – happily, a route that is open to everyone with a legitimate research interest.

Reference

  • Janensch, W. 1950. Die Wirbelsaule von Brachiosaurus brancai. Palaeontographica (Suppl. 7) 3:27-93.

Computer programmer, essayist and venture capitalist Paul Graham writes:

In most fields, prototypes have traditionally been made out of different materials. Typefaces to be cut in metal were initially designed with a brush on paper. Statues to be cast in bronze were modelled in wax. Patterns to be embroidered on tapestries were drawn on paper with ink wash. Buildings to be constructed from stone were tested on a smaller scale in wood.

What made oil paint so exciting, when it first became popular in the fifteenth century, was that you could actually make the finished work from the prototype. You could make a preliminary drawing if you wanted to, but you weren’t held to it; you could work out all the details, and even make major changes, as you finished the painting.

You can do this in software too. A prototype doesn’t have to be just a model; you can refine it into the finished product. I think you should always do this when you can. It lets you take advantage of new insights you have along the way. But perhaps even more important, it’s good for morale.

– Paul Graham, “Design and Research

Mike and I have long been drawn by the idea that blog posts, like conference talks and posters, could be first drafts of research papers. In practice, we haven’t generated many successful examples. We basically wrote our 2013 neural spine bifurcation paper as a series of blog posts in 2012. And Mike’s 2014 neck cartilage paper grew out of this 2013 blog post, although since he accidentally ended up writing 11 pages I suppose the blog post was more of a seed than a draft.

I should also note that we are far from the first people to do the blog-posts-into-papers routine. The first example I know of in paleo was Darren’s Tet Zoo v1 post on azhdarchid paleobiology, which formed part of the skeleton of Witton and Naish (2008).

Nevertheless, the prospect of blogging as a way to generate research papers remains compelling.

And as long as I’m on about blogging and papers: sometimes people ask if blogging doesn’t get in the way of writing papers. I can’t speak for anyone else, but for me it goes in the opposite direction: I blog most when I am most engaged and most productive, and drops in blogging generally coincide with drops in research productivity. I think that’s because when I’m rolling on a research project, I am constantly finding or noticing little bits that are cool and new, but which aren’t germane to what I’m working on at the moment. I can’t let those findings interfere with my momentum, but I don’t want to throw them away, either. So I blog them. Also the blog gives me a place to burn off energy at the end of the day, when I can still produce words but don’t have the discipline to write technical prose.

– – – – – – – – – – – –

The photo at the top of the post is of Giraffatitan dorsal vertebrae in a case at the MfN Berlin, from Mike’s and my visit with the DfG 533 group back in late 2008. I picked that photo so I could make the following dumb off-topic observation: with its upturned transverse processes, the dorsal on the right looks like it’s being all faux melodramatic, a la:

Hey, look, a new sauropod vertebra to kick off the new year!

I’ve blogged a lot about the giant – and tiny – apatosaurines from the Morrison Formation of Oklahoma, and just once on Saurophaganax. But otherwise I don’t think I’ve covered any of the other Oklahoma Morrison dinos. So here’s a start: a pretty decent Camarasaurus dorsal. Broken transverse processes traced from Osborn and Mook (1921). Like all of the Oklahoma Morrison dinos, it’s from the quarries on or near Black Mesa, at the far northwestern corner of the Oklahoma panhandle.

Based on the narrowness of the neural arch and spine, I don’t think this vert can be any farther forward than D6 – anterior Cam dorsals are w-i-d-e. It would be odd for a camarasaur to have a spine split that deeply as far back as D10 or D11 (see Wedel and Taylor 2013). The centrum is very anteriorposteriorly short, which is a posterior dorsal character, but based on Osborn and Mook (1921) the centra can be this short as far forward as D6. So on the balance of the evidence, I think it’s probably a D6 or D7. But that is just an estimate, which might be off by a couple of positions either way.

Tons more that could be said about this specimen, but I’m going to play against type and not write a dissertation for a change. So, here’s OMNH 1811. We’ll probably come back to it at some point.

 

References

I have used this photo in loads of talks, but as far as I can tell, this is the first time I’ve put it up on SV-POW! (I am certain that, having said that, someone will find a previous instance – if so, consider this an extremely inefficient and lazy form of search.) The vert is OMNH 1670, the most complete and nicest dorsal of the giant Oklahoma apatosaurine, probably a D5 or D6. That’s me back in 2004. Photo by my then fellow grad student in the Padian lab, Andrew Lee. I’m 6’2″ and have normally-proportioned human arms, but if you’re trying to figure out the scale, that vert is 135cm tall, with an anterior centrum face 38cm tall by 46cm wide (partly reconstructed but probably accurate). See this post for more details and a fairly exhaustive list of measurements.

Here’s a stupid thing: roughly 2-3 times a year I go to the field or to a museum and get hundreds of SV-POW!-able photos. Then I get back to the world and catch up on all of the work that piled up while I was away. And by the time I’m done with that, whatever motivating spark I had – to get some of those photos posted and talk about the exciting things I figured out – has dissipated.

Case in point – this bitchin’ shark, prepped in ventral view, which I saw last month in the natural history museum in Vienna. Look at that fat, muscular tail – this shark is swole.

That’s dumb. And this blog is in danger of slipping into senescence, and irrelevance.

So here’s my New Year blog resolution for 2018: I’m getting us back to our roots. I, or we – I am taking this plunge without consulting with Mike (surprise, buddy!) – will post a new, never-posted-before photo, at least once a week, for the whole year. It may not always be a sauropod vertebra, but if often will be, because that’s what I have the most of, and the most to yap about. And I will try to write something interesting about each photo, without lapsing into the logorrhea that has too often made this blog too exhausting to contemplate (at least from this side of the keyboard).

Wish me luck!