Computer programmer, essayist and venture capitalist Paul Graham writes:

In most fields, prototypes have traditionally been made out of different materials. Typefaces to be cut in metal were initially designed with a brush on paper. Statues to be cast in bronze were modelled in wax. Patterns to be embroidered on tapestries were drawn on paper with ink wash. Buildings to be constructed from stone were tested on a smaller scale in wood.

What made oil paint so exciting, when it first became popular in the fifteenth century, was that you could actually make the finished work from the prototype. You could make a preliminary drawing if you wanted to, but you weren’t held to it; you could work out all the details, and even make major changes, as you finished the painting.

You can do this in software too. A prototype doesn’t have to be just a model; you can refine it into the finished product. I think you should always do this when you can. It lets you take advantage of new insights you have along the way. But perhaps even more important, it’s good for morale.

– Paul Graham, “Design and Research

Mike and I have long been drawn by the idea that blog posts, like conference talks and posters, could be first drafts of research papers. In practice, we haven’t generated many successful examples. We basically wrote our 2013 neural spine bifurcation paper as a series of blog posts in 2012. And Mike’s 2014 neck cartilage paper grew out of this 2013 blog post, although since he accidentally ended up writing 11 pages I suppose the blog post was more of a seed than a draft.

I should also note that we are far from the first people to do the blog-posts-into-papers routine. The first example I know of in paleo was Darren’s Tet Zoo v1 post on azhdarchid paleobiology, which formed part of the skeleton of Witton and Naish (2008).

Nevertheless, the prospect of blogging as a way to generate research papers remains compelling.

And as long as I’m on about blogging and papers: sometimes people ask if blogging doesn’t get in the way of writing papers. I can’t speak for anyone else, but for me it goes in the opposite direction: I blog most when I am most engaged and most productive, and drops in blogging generally coincide with drops in research productivity. I think that’s because when I’m rolling on a research project, I am constantly finding or noticing little bits that are cool and new, but which aren’t germane to what I’m working on at the moment. I can’t let those findings interfere with my momentum, but I don’t want to throw them away, either. So I blog them. Also the blog gives me a place to burn off energy at the end of the day, when I can still produce words but don’t have the discipline to write technical prose.

– – – – – – – – – – – –

The photo at the top of the post is of Giraffatitan dorsal vertebrae in a case at the MfN Berlin, from Mike’s and my visit with the DfG 533 group back in late 2008. I picked that photo so I could make the following dumb off-topic observation: with its upturned transverse processes, the dorsal on the right looks like it’s being all faux melodramatic, a la:

Advertisements

It’s that time of year…

December 22, 2017

This year Santaposeidon comes to you courtesy of OMNH vert paleo head preparator and 20th-level fossil conservation wizard Kyle Davies, who took the photo, composed the card, and gave me kind permission to share it here. Needless to say, we’re happy to pass on the happy holiday wishes to all of you, wherever you are and whenever you are reading this.

For previous Santaposeidon sightings, please see:

 

aquilops-display-omnh-dec-2016-1

I’m back in Oklahoma for the holidays, and anytime I’m near Norman I pop in to the OMNH to see old friends, both living and fossil. Here’s the Aquilops display in the hall of ancient life, which has been up for a while now. I got some pictures of it when I was here back in March, just never got around to posting them.

aquilops-close-up-omnh-dec-2016-2

Aquilops close up. You can’t see it well in this pic, but on the upper right is a cast of the Aquilops cranium with a prosthesis that shows what the missing bits would have looked like. That prosthesis was sculpted by – who else? – Kyle Davies, the OMNH head preparator and general sculpting/molding/casting sorceror. You’ve seen his work on the baby apatosaur in this post. I have casts of everything shown here – original fossil, fossil-plus-prosthesis, and reconstructed 3D skull – and I should post on them. Something to do in the new year.

ceratopsians-large-and-small-omnh-dec-2016-3

The Aquilops display is set just opposite the Antlers Formation exhibit, which has a family of Tenontosaurus being menaced by two Deinonychus, and at the transition between Early and Late Cretaceous. The one mount in the Late Cretaceous area is the big Pentaceratops, which is one of the best things in this or any museum.

pentaceratops-omnh-dec-2016-4

Evidence in support of that assertion. Standing directly in front of this monster is a breathtaking experience, which I highly recommend to everyone.

It’s just perfect that you can see the smallest and earliest (at least for now) North American ceratopsian adjacent to one of the largest and latest. Evolution, baby!

mammoth-santa-omnh-dec-2016-5

I didn’t only look at dinosaurs – the life-size bronze mammoth in the south rotunda is always worth a visit, especially in holiday regalia.

santaposeidon-omnh-dec-2016-6

No holiday post about the OMNH would be complete without a shot of “Santaposeidon” (previously seen here). I will never get tired of this!

The chances that I’ll get anything else posted in 2016 hover near zero, so I hope you all have a safe and happy holiday season and a wonderful New Year.

Today, we were at the BYU Museum of Paleontology, which is in a ridiculously scenic setting with snow-capped mountains on the horizon in almost every direction.

IMG_2054

We got through a lot of good work in collections, and we’ll show you some photos from there in due course. But for today, here are a couple of pictures from the public galleries.

First, here in a single photo is definitive proof that the “Toroceratops hypothesis” is wrong:

DSCN0815

Say what you want about ontegenetic trajectories, that huge and well ossified Triceratops is not a juvenile of anything.

Good, glad we go that sorted out.

Meanwhile, at the even better end of the gallery, here is a very nice — and very well lit — cast of the famous articulated juvenile Camarasaurus specimen CM 11338 described by Gilmore (1925):

DSCN0842

Further bulletins as events warrant.

References

Gilmore, Charles W. 1925. A nearly complete articulated skeleton of
Camarasaurus, a saurischian dinosaur from the Dinosaur National
Monument, Utah. Memoirs of the Carnegie Museum 10:347-384.

 

MYDD! #OpenCon edition

November 14, 2015

CTuBqNNWcAEKDwI

The palaeontology contingent at OpenCon 2015, all reminding you to Measure Your Damned Dinosaur!

Left to right: Jon Tennant, Mike Taylor, Ross Mounce.

A while back, we noted that seriously, Apatosaurus is just nuts, as proven by the illustrations in Ostrom and McIntosh (1966: plate 12).

Now I’m posting those illustrations again, in a modified form, to make the same point. Here ya go:

Brontosaurus excelsus holotype YPM 1980, cervical vertebra 8, in anterior, left lateral and ventral views. Adapted from Marsh's plates in Ostrom & McIntosh (1966).

Brontosaurus excelsus holotype YPM 1980, cervical vertebra 8, in anterior, left lateral and ventral views. Adapted from Marsh’s plates in Ostrom & McIntosh (1966: plates 12-13).

Here’s what’s changed since last time:

  1. Apatosaurusexcelsus is Brontosaurus again!
  2. I cleaned up the scans of the plates, removing all the labels
  3. In the lateral view, I added a reconstruction of the missing neural spine, based on that of Apatosaurus louisae (from Gilmore 1936: plate XXIV). This reconstruction first appeared in Taylor and Wedel (2013a: figure 7).
  4. Most importantly, I added the ventral view of the vertebra from plate 13. Only now can you properly appreciate the truly bizarre shape of this bone. (The prezygs appear to project further forward than they should because the illustrated aspect is not true ventral, but slightly anteroventral.)

If only those three views were enough to construct a 3D model by photogrammetry! Sadly, it’s not possible to get photos of the whole vertebra from different angles now, as it’s tied up in the mounted Brontosaurus skeleton at the YPM:

Part of the neck of the mounted skeleton of Brontosaurus excelsus holotype YPM 1980, in right posterodorsolateral view (i.e. from behind, above, and to the right). The vertebra in the centre of the picture may well be the one illustrated above, but don't hold me to it.

Part of the neck of the mounted skeleton of Brontosaurus excelsus holotype YPM 1980, in right posterodorsolateral view (i.e. from behind, above, and to the right). The vertebra in the centre of the picture may well be the one illustrated above, but don’t hold me to it.

The bottom line: these are some crazy-ass morphologically distinctive vertebrae. Those ventrolaterally projecting processes that bear the cervical ribs are, for my money, the single most distinctive feature of apatosaurine sauropods. And they reach their zenith (or maybe their nadir, since they point downwards) in Brontosaurus. These processes are the reason that apatosaurs had Toblerone-shaped necks — triangular in cross-section, with the base flat or even concave. Any restoration that shows a tubular neck is way off base.

References

The longest cell in Andy Farke is one of the primary afferent (sensory) neurons responsible for sensing vibration or fine touch, which runs from the tip of his big toe to his brainstem. (NB: I have not actually dissected Andy to confirm this, or performed any viral neuron tracing on him, this is assumed based on comparative anatomy.) Here’s a diagram:
Longest cell in Andy Farke

This is what happens when (a) I need to create a diagram to illustrate the longest cell in the human body for my students, and (b) my friends put stuff online with a CC-BY license.

Found this while I was checking out Aquilops art online:

Aquilops_scale

It’s a derivative work by Andy IJReid, from this Wikimedia page, based on two PhyloPic silhouettes Andy created (go here for the pathetically tiny lower vertebrate and here for Aquilops).

wedel-rln-fig2

From there it was pretty straighforward to mash up Andy’s silhouette with the nerve stuff from Wedel (2012: fig. 2).

So if you want the full deets on licensing – which I am obligated to provide whether you want them or not – the image up top is a derivative image by me, based on work by Andy published at PhlyoPic under the Creative Commons Attribution 3.0 unported (CC-BY 3.0) license, and based on my own image published in Acta, also under a CC-BY license.

If you’d like to know more about the science behind very long nerves in vertebrates, please see these posts:

Also, keep making stuff and putting it online under a license people can actually use. It’s beneficial for science and education, and hugely entertaining for me.

Reference

Wedel, M.J. 2012. A monument of inefficiency: the presumed course of the recurrent laryngeal nerve in sauropod dinosaurs. Acta Palaeontologica Polonica 57(2):251-256.

Advertisements