DIY dinosaurs: more dinosaur bone standees
January 25, 2023

Michelle Stocker with an apatosaur vertebra (left) and a titanosaur femur (right), both made from foam core board.
In the last post I showed the Brachiosaurus humerus standee I made last weekend, and I said that the idea had been “a gleam in my eye for a long time”. That’s true, but it got kicked into high gear late in 2021 when I got an email from a colleague, Dr. Michelle Stocker at Virginia Tech. She wanted to know if I had any images of big sauropod bones that she could print at life size and mount to foam core board, to demonstrate the size of big sauropods to the students in her Age of Dinosaurs course. We had a nice conversation, swapped some image files, and then I got busy with teaching and kinda lost the plot. I got back to Michelle a couple of days ago to tell her about my Brach standee, and she sent the above photo, which I’m posting here with her permission.
That’s OMNH 1670, a dorsal vertebra of the giant Oklahoma apatosaurine and a frequent guest here at SV-POW!, and MPEF-PV 3400/27, the right femur of the giant titanosaur Patogotitan, from Otero et al. (2020: fig. 8). (Incidentally, that femur is 236cm [7 feet, 9 inches] long, or 35cm longer than our brachiosaur humerus.) For this project Michelle vectorized the images so they wouldn’t look low-res, and she used 0.5-inch foam core board. She’s been using both standees in her Age of Dinosaurs class at VT (GEOS 1054) every fall semester, and she says they’re a lot of fun at outreach events. You can keep up with Michelle and the rest of the VT Paleobiology & Geobiology lab group at their research page, and follow them @VTechmeetsPaleo on Twitter.
Michelle’s standees are fully rad, and naturally I’m both jealous and desirous of making my own. I’ve been wanting a plywood version of OMNH 1670 forever. If I attempt a Patagotitan femur, I’ll probably follow Michelle’s lead and use foam core board instead of plywood — the plywood Brach humerus already gets heavy on a long trek from the house or the vehicle.
Speaking of, one thing to think about if you decide to go for a truly prodigious bone is how you’ll transport it. I can haul the Brach humerus standee in my Kia Sorento, but I have to fold down the middle seats and either angle it across the back standing on edge, or scoot the passenger seat all the way forward so I can lay it down flat. I could *maybe* get the Patagotitan femur in, but it would have to go across the tops of the passenger seats and it would probably rest against the windshield.

Thierra Nalley and me with tail vertebrae of Haplocanthosaurus (smol) and the giant Oklahoma apatosaur (ginormous), at the Tiny Titan exhibit opening.
As long as I’m talking about cool stuff other people have built, a formative forerunner of my project was the poster Alton Dooley made for the Western Science Center’s Tiny Titan exhibit, which features a Brontosaurus vertebra from Ostrom & McIntosh (1966) blown up to size of OMNH 1331, the largest centrum of the giant Oklahoma apatosaurine (or any known apatosaurine). I wouldn’t mind having one of those incarnated in plywood, either.
I’ll bet more things like this exist in the world. If you know of one — or better yet, if you’ve built one — I’d love to hear about it.
References
- Alejandro Otero , José L. Carballido & Agustín Pérez Moreno. 2020. The appendicular osteology of Patagotitan mayorum (Dinosauria, Sauropoda). Journal of Vertebrate Paleontology, DOI: 10.1080/02724634.2020.1793158
- Ostrom, John H., and John S. McIntosh. 1966. Marsh’s Dinosaurs. Yale University Press, New Haven and London. 388 pages including 65 absurdly beautiful plates.
A close, fast encounter with a pronghorn
July 29, 2022
I was in the Oklahoma panhandle in late June for fieldwork in the Morrison with Anne Weil and her crew at the Homestead Quarry. It’s always a fun trip, in part because we see a lot of wildlife out there. One of my favorite panhandle critters, and in fact one of my favorite animals, period, is the pronghorn, Antilocapra americana. Pronghorns are North America’s fastest land animals, and probably the fastest land animals in the world after cheetahs. That’s because they evolved to outrun American cheetahs, Miracinonyx, which went extinct about 12,000 years ago. Once you are familiar with pronghorns, you could never mistake one for a deer. Body profile alone is enough to tell, even at great distances: deer are graceful-looking animals with long, tapering legs, whereas pronghorns look like lozenges on stilts.
On June 21, we were heading back to Black Mesa after checking out some new-to-me Morrison outcrops north of Boise City, Oklahoma (see Richmond et al. 2020). I was driving my Kia Sorento, with a couple of students also in the truck. I came over a hill going about 65 mph (105 kph), and a female pronghorn that had been grazing in the ditch decided that would be the perfect time to bolt across the road. I thought I was about to have a fairly disastrous high-speed collision with a large-ish ungulate, but between my braking and her veering off a bit, we narrowly missed colliding. Instead, she ended up running down the road, parallel with my truck, seriously about 1 meter ahead and left of the driver’s side front tire. For a few seconds, I was driving 55 mph (89 kph) and she was keeping pace, and it didn’t look like she was really taxing herself. Then I realized that she was technically out ahead of the bumper and could still decide to run in front of the truck, so I accelerated and got past her, but the key point is that I had to speed up to about 60 mph (97 kph) to do it. Once I was past her, she trotted to a stop and stood in the middle of the road, watching me drive off (the road ahead was empty, and I was watching her in the rearview mirror).
I’ve read other anecdotal accounts of people driving alongside pronghorns that were really booking it — some memorable ones are recounted in the Guinness Book of Animal Facts and Feats (Wood 1982) — but I never imagined that I’d get to experience something like that. It was cool as heck, and one of the best wildlife encounters of my life. It all happened too quickly to get any photos, so I’m illustrating this post with pronghorn photos I got on a stargazing expedition to Black Mesa in September, 2020. I also have some half-decent pronghorn photos in this post from 2016.
References
- Richmond, D.R., Hunt, T.C. and Cifelli, R.L. 2020. Stratigraphy and sedimentology of the Morrison Formation in the western panhandle of Oklahoma with reference to the historical Stovall dinosaur quarries. The Journal of Geology 128(6): 477-515.
- Wood, G. L. 1982. The Guinness Book of Animals Facts & Feats (3rd edition). Guinness Superlatives Ltd., Enfield, Middlesex, 252 pp.
Cabinet of curiosities: a visit to Peter Dodson’s office
June 17, 2018
I’ve known who Peter Doson was since I was nine years old. A copy of The Dinosaurs by William Stout and William Service, with scientific content by Peter, showed up at my local Waldenbooks around the same time as the New Dinosaur Dictionary – much more on The Dinosaurs another time. Then when I started doing research as an undergrad at the University of Oklahoma, Peter’s chapter on sauropod paleobiology in The Dinosauria (Dodson 1990) was one of the first things I read. At the SVP banquet in 2000, I ran into Peter and he shook my hand and said, “Sauroposeidon rocks!” I managed not to swoon – barely.
When I was in Philadelphia this March, Peter invited me to the UPenn vet school for an afternoon. He gave me a tour of the building with its beautiful lecture halls and veterinary dissection lab, and then we spent a couple of hours rummaging around in his office. That was one of the highlights of the trip, because it turns out that Peter and I are both comparative anatomy junkies. He’s been at it for longer, and he has more regular access to dead critters and more space to display them, so his collection puts mine to shame. But he kindly let me play with study whatever I wanted.
In fact, he went farther than that: he quizzed me. A lot. I take it that it’s a right of passage for people coming through Peter’s office. It was an enjoyable challenge, and I got photos of a few quiz items so you can play, too. This transversely-sectioned skull was one of the first mystery specimens. I figured it out pretty quickly, for reasons I’ll reveal in a future post. Can you? Post your IDs in the comments.
I don’t remember all of the quiz items. One of them was the dark skull lying upside down behind the ratite skeleton in the photo up top. I had to figure that one out without picking it up, so you have about as much information as I did. We’ll call that one quiz item #2. Embiggenate for all the clues you’ll need.
This wasn’t a quiz item, just something cool: the skull of a large dog with the top of the cranium removed. In the paired cavities at the top, we’re looking down through the frontal sinuses to see the respiratory turbinates in the nasal cavities. The single large space behind is the braincase. At the very front, in the shadowed recess, you can see the cribriform plate of the ethmoid bone, perforated with dozens of holes to let the olfactory nerve endings through from the back of the nasal cavities. We have the same thing on a smaller scale a centimeter or two behind our brows, and oriented horizontally. But what really drew my attention were the linear arrays of paired foramina arcing across the floor of the braincase – holes to let cranial nerves and the internal jugular veins out of the skull, and the internal carotid arteries in. We have the same structures in our heads, of course, but the layout isn’t as neat – our big brains, bent forward at such a sharp angle from the spinal cord, have squished things around a bit.
Here are more skulls, garnished with a human femur and a ratite pelvis and synsacrum. Peter quizzed me on the Archaeoceratops (front) and Auroraceratops (back) skulls on the far right. I IDed them correctly, but only because I spent some quality time with the Alf Museum’s casts when I was reconstructing the skull of Aquilops. On the far left is an alligator skull with injected arteries, which is definitely worth a closer look.
Here’s a dorsal view of the injected alligator skull. The arteries have been injected with red resin, and then all of the soft tissue has been macerated away, leaving just the bone and the internal cast of the arterial tree. Some of the midline bone has been removed here to reveal the courses of the cerebral, ethmoid, and nasal arteries. Also note the artery looping around in the left supratemporal fenestra.
Here’s a look into the right side of the back of the skull, where the lateral wall of the braincase has been Dremeled away to show the course of the internal carotid artery. It’s a very cool demonstration of a bit of anatomy that I had never seen before. For more on cranial blood vessels in crocs, check out the obscenely well-illustrated recent paper by Porter et al. (2016).
To my chagrin, that’s all the good photos I got from Peter’s office – we were too busy passing specimens back and forth and frankly geeking out like a couple of kids. One of my favorite specimens from his office was the mounted foot skeleton of a horse, which Jessie Atterholt had prepared for him when she was his student at UPenn. It’s such a cool preparation that it captured my imagination, and when I got back I warned Jessie that if she didn’t get her own articulated horse foot posted soon, I was going to make something similar for myself and steal her thunder. A couple of months later, her horse foot is up on Instagram – I featured it in this post – and my cow foot is still sitting in pieces, waiting for me to put it together. Here’s a shot of Jessie’s, to hopefully prod me into action:
I didn’t get all of Peter’s quiz questions correct. I knew that the endocast of the pharyngeal pouch in a horse was an endocast, but of what I didn’t know, although I did correctly identify the hyoid apparatus of a horse, mounted separately. And there was a partial cetacean jaw that I misidentified as a shark (in my defense, it was from one of the small, short-faced weirdos). Still, Peter said that I’d done as well as anyone else ever had. That was nice to hear, but I was already happy to have gotten to see and talk about so many cool things with a fellow connoisseur. Thanks, Peter, for a wonderful afternoon, and for permission to post these pictures. I am looking forward to a rematch!
References
- Dodson, P. 1990. Sauropod paleoecology. In: D.B. Weishampel, P. Dodson, P., & H. Osmolska, (eds), The Dinosauria, 402-407. University of California Press, Berkeley.
- Porter, W.R., Sedlmayr, J.C. and Witmer, L.M., 2016. Vascular patterns in the heads of crocodilians: blood vessels and sites of thermal exchange. Journal of Anatomy 229(6): 800-824.
- Stout, W., Service, W., and Preiss, B. 1984. The Dinosaurs: A Fantastic View of a Lost Era. Bantam Dell Publishing Group, 160pp.
Not much to say this time – the pictures tell the story for now.
It was a pretty transcendental experience, as I imagine it must be for anyone who loves dinosaurs, or has a pulse.
A huge thank-you to Dan Chure, the Park Paleontologist for the Monument, who conveyed us safely up and down the Wall, taught us about the prehistory of the site and the human history of its excavation and conservation, held scale bars, moved backpacks, took photos, and generally seemed to be having just as much fun as we were. This has been a common theme on the trip – every single person we’ve interacted with at a museum or fossil site has been unfailingly welcoming and generous with their time and knowledge. Whatever challenges vert paleo faces, a lack of wonderful people is not one of them.
I was up there, too, for the second time in my life – that will be a post for another day. For now, just bask in the glory of Mike basking in the glory of a literally mind-numbing array of amazing fossils.
Natural History Museum of Utah: wall of ceratopsians
July 8, 2015
Now that, faithful readers, is a monument to evolution and its endless forms most beautiful. I’m talking about the wall of ceratopsian skulls at NHMU, of course, not the back of Brian Engh’s head (bottom center).
If you don’t know them all on sight (yet!), here’s a cheat sheet. I goofed on a couple myself: before I looked at the sheet I figured Coahuilaceratops as Pentaceratops and mistook Kosmoceratops for Vagaceratops. Still, 12 out of 14 isn’t bad for a minor-league ceratopsian scholar such as yours truly.
Here’s the chasmosaurine-centric view from lower right.
And the centrosaurine-centric view from distant left.
The world needs more things like this. Good on ya, NHMU.
For other NHMU posts, see:
Welcome, Cracked readers–here’s some eyeball bait
March 9, 2014
Although it would be nice to think that our site views have octupled in the last day because of Mike’s fine and funny posts about what search terms bring people to SV-POW!, the real reason is that we were blessed by incoming links from both pages of this Cracked.com article.
Now, as any person who has ever accomplished anything whatsoever knows, it is super-important to avoid Cracked.com or you’ll still be up 23 hours from now reading, “6 Mind-Blowing Ways that Comedy Writers are Secretly Destroying Your Productivity”. (I’m kidding, that article doesn’t really exist–but if it did, I’m sure it would consist entirely of descriptions and links to six other Cracked articles). But that’s only true because most of the articles there hit the sweet spot at the intersection of funny, surprisingly informative, mercifully short, and well-written. Crack.com would be a more honest URL, but I assume it was taken.
Anyway, I’d like to return the favor, so here’s a list of the 6 SV-POW! Posts Most Likely to Blow the Minds of Cracked.com Readers. If I missed some goodies or recommended some stinkers, let me know–the comment thread is open.
1.How big was Amphicoelias fragillimus? I mean, really?
Who doesn’t want to read about the bizarre real-world mystery surrounding what might have been the world’s largest dinosaur? If you’re not sold, consider that the picture above shows a single vertebra that was–or at least might have been–seven and a half feet tall.
2. Oblivious sauropods being eaten
The mercifully short version of this much longer post, in which I consider the consequences of the world’s largest animals having the world’s longest cells.
Weapons-grade anatomical pedantry.
4. CONFIRMED: the Umbaran Starfighter is an Apatosaurus cervical
Yes, there is a ship in Star Wars: The Clone Wars that is basically a flying dinosaur vertebra. It took us about five weeks to unravel that story–the post linked above has links to the rest of the saga.
5. SV-POW! showdown: sauropods vs whales
Our original linkbait post. Don’t miss the shorter follow-up with more critters.
6. Friday phalanges: Megaraptor vs Saurophaganax
A deliberately goofy post in which I wax poetic about the largest predatory dinosaur claws ever discovered.
So, that was a big pile of superlatives and Star Wars. If you’re hungry for more substantial fare, you might start with our Tutorials page or our Things to Make and Do series on dissecting and skeletonizing modern animals. We also blog a lot about the evils of obstructive publishers and the need for open access to the scientific literature–you can find those posts on our Shiny Digital Future page.
A parting shot in my desperate quest for attention: this Star Wars ship flying around in the background in Firefly and Serenity is at least partly my fault–full story here. Oh, and my co-blogger Mike Taylor has written an insightful and affordable book about Doctor Who; read about it here.
Generations unite! Open Access can’t fail
November 19, 2013
Yesterday I was at the Berlin 11 satellite conference for students and early-career researchers. It was a privilege to be part of a stellar line-up of speakers, including the likes of SPARC’s Heather Joseph, PLOS’s Cameron Neylon, and eLIFE’s Mark Patterson. But even more than these, there were two people who impressed me so much that I had to give in to my fannish tendencies and have photos taken with them. Here they are.
This is Jack Andraka, who at the age of fifteen invented a new test for pancreatic cancer that is 168 times faster, 1/26000 as expensive and 400 times more sensitive than the current diagnostic tests, and only takes five minutes to run. Of course he’s grown up a bit since then — he’s sixteen now.
Right at the moment Jack’s not getting much science done because he’s sprinting from meeting to meeting. He came to us in Berlin literally straight from an audience with the Pope. He’s met Barack Obama in the oval office. And one of the main burdens of his talk is that he’s not such an outlier as he appears: there are lots of other brilliant kids out there who are capable of doing similarly groundbreaking work — if only they could get access to the published papers they need. (Jack was lucky: his parents are indulgent, and spent thousands of dollars on paywalled papers for him.)
Someone on Twitter noted that every single photo of Jack seems to show him, and the people he’s with, in thumbs-up pose. It’s true: and that is his infectious positivity at work. It’s energising as well as inspiring to be around him.
(Read Jack’s guest post at PLOS on Why Science Journal Paywalls Have to Go)
Here’s the other photo:
This is Bernard Rentier, who is rector of the University of Liège. To put it bluntly, he is the boss of the whole darned university — an academic of the very senior variety that I never meet; and of the vintage that, to put it kindly, can have a tendency to be rather conservative in approach, and cautious about open access.
With Bernard, not a bit of it. He has instituted a superb open-access policy at Liège — one that is now being taken up as the model for the whole of Belgium. Whenever members of the Liège faculty apply for anything — office space, promotions, grants, tenure — their case is evaluated by taking into account only publications that have been deposited in the university’s open-access repository, ORBi.
Needless to say, the compliance rate is superb — essentially 100% since the policy came in. As a result, Liège’s work is more widely used, cited, reused, replicated, rebutted and generally put to work. The world benefits, and the university benefits.
—
Bernard is a spectacular example of someone in a position of great power using that power for good. Meanwhile, at the other end of scale, Jack is someone who — one would have thought — had no power at all. But in part because of work made available through the influence of people like Bernard, it turned out he had the power to make a medical breakthrough.
I came away from the satellite meeting very excited — in fact, by nearly all the presentations and discussions, but most especially by the range represented by Jack and Bernard. People at both ends of their careers; both of them not only promoting open access, but also doing wonderful things with it.
There’s no case against open access, and there never has been. But shifting the inertia of long-established traditions and protocols requires enormous activation energy. With advocates like Jack and Bernard, we’re generating that energy.
Onward and upward!