Heinrich Mallison sent me this amazing photo, which he found unattributed on Facebook:

Infuriatingly, I’ve not been able to track down an original source for this: searching for the text just finds a bunch of reposts on meme sites, and Google’s reverse image search just reports a bunch of hits on Reddit:

The line-drawing shows some scientific understanding of bird skeletons, so I imagine someone put real thought into this and is unhappy that the image is propagating uncredited. If that person reads this, please leave a comment: I’d love to credit it properly.

Anyway … what’s going on here?

Birds (like all vertebrates) have two tubes running down the ventral aspect of the neck (i.e. below the vertebrae): the trachea, for breathing, and the oesophagus, for swallowing. But these both open into the back of the mouth and are not piped up past it. I’ve not dissected enough bird heads to show this clearly, but when I was taking Veronica apart the trachea was pretty visibly ending in the mouth cavity, not plumbed up past the mouth into the nasal space:

So yes, I think it’s true: shoebills can bulge their spines out of their mouths.

Why? My best guess that there’s just nowhere else for the spine to go when the neck is retracted. There’s a big empty space in the mouth, why let it go to waste?

Turkeys lie

December 18, 2018

We all know what turkeys look like, right?

Turns out that two thirds of that bird is a lie. Here’s a diagram produced for hunters on which part of the turkey to shoot. (It’s all over the Internet, and I can’t trace the original source, but I got it from here):

Bascially, if you fire an arrow at a visible turkey, there’s a 2/3 chance that it’ll pass straight through feathers and completely miss the actual bird.

Now, then: what do we think a theropod looked like in life? Probably not much like what skeleton reconstructions show as the flesh envlope, as for example in Scott Hartman’s Guanlong:

Instead, it might have looked like this:

(Note: this is not in any way a criticism of Scott’s fine work, which is a scientific restoration of the soft tissue, and does not address integument at all.)

And now that pterosaurs have feathers, too(*), we have to assume that they, too, probably had body outlines bearing little resemblance to the flesh-on-bone shapes we’ve been used to seeing.

 


(*) As Matt pointed out: “I can’t be bothered to write “integumentary structures” when I mean “feathers”. I realize they may be independently derived, but eyes evolved independently like 40 times and we don’t refer to the other 39 instances as “photoreceptive structures”.” (He actually wrote “I can’t be arsed”, but I changed it to “bothered” to make him appear more professional.)

 

Here at SV-POW! we’re big fans of the way that animals’ neck skeletons are much more extended, and often much longer, than you would guess by looking at the complete animal, with its misleading envelope of flesh.

Here’s another fine example, from John Hutchinson’s new post A Museum Evolves:

Solitaire (flightless bird), skeleton and taxidermy at University Museum of Zoology at Cambridge (UMZC). Photo by John Hutchinson.

Looking at the stuffed bird, it seems that it could get by perfectly well with half as many cervical vertebra, if only it didn’t carry them in such a strange posture.

Well — I say strange. It seems inefficient, yet it must be doing something useful, because it’s essentially ubiquitous among birds and many mammals … including rabbits, as long-time readers will remember.

Owl legs lie

May 12, 2017

Here is your occasional reminder of how very misleading feathers can be in understanding the true shape of an animal. An owl:

And the same owl showing a bit of leg:

And here are the two photos side by side:

We’ve often told you here on SV-POW! that necks lie. But legs lie, as well. Not to mention arms. Which is why so most of our life restorations of dinosaurs (theropods at least) probably look nothing like these animals looked in life.

Credit: I got the owl images from this Japanese page, but I have no idea where they originated. There are copies all over the Web, and figuring out which are the originals — if they’re even still up — would be a major research project. At any rate, you ought to be told that they are not my photos.

Just a quick post to link to all six (so far) installments of the “necks lie” series. I need this because I want to cite all the “necks lie” posts in a paper that I’ll shortly submit, and it seems better to cite a single page than four of them.

I’ll update this post as and when we write more about lying necks.

Also:

What a world we live in.

 

X-ray of the neck of a seal, from Irish Seal Sanctuary. Note that the vertebral column becomes much more vertical than the fleshy envelope suggests.

X-ray of the neck of a seal, from Irish Seal Sanctuary. Note that the vertebral column becomes much more vertical than the fleshy envelope suggests.

 

In a comment on the previous post, Emily Willoughby links to an excellent post on her own blog that discusses the “necks lie” problem in herons. Most extraordinarily, here are two photos of what seems to be the same individual:

You should get over to Emily’s blog right now and read her article. (Kudos, too, for the Portal reference in the title. I’ve been playing Portal and Portal 2 obsessively for the last week. Quite brilliant, and a very rare example of true innovation in computer gaming.)

Also of interest: this composite of two shoebill (Balaeniceps rex) individuals, which I made from two of the images mentioned in a comment by AL on Emily’s post:

Oh, birds, you crazy creatures!

Back when we were at Cambridge for the 2010 SVPCA, we saw taxidermied and skeletonised hoatzins, and were struck that the cervical skeleton was so very much longer than the neck as it appears in life — because necks lie. At Oxford last week for the 2012 SVPCA, we saw a similar pair of hoatzin mounts (one adult, one juvenile) that clarified the situation:

And here is juvenile in side-view:

As you can see, it’s folding its neck way down out of the way, so that externally it appears much shorter. (And comparing with the Cambridge specimen, you can see that the neck skeleton is proportionally much longer than this in adult.)

Why does it do this? I have no idea.

But I do know it’s not unique to hoatzins. Another nice illustration of how misleading birds’ necks are when viewed in a live animal is this parrot (probably Amazona ochrocephala) in the Natuurhistorisch Museum of Rotterdam (from this Love in the Time of Chasmosaurs post):

One thing that’s not clear to me is how much of the neck the bird can extend in life. If the parrot wants to uncoil all that spare cervical skeleton to reach upwards or forwards, can it? Will the soft tissue envelope allow it? My guess is not, otherwise you’d surely see them doing it. But then … why is all that neck in there at all?