Hey sports fans, as the year winds down I bring you another podcast appearance. This time out I’m rolling with Mark Hallett, and we’re talking about sauropods through the lens of our still-plausibly-somewhat-newish book, The Sauropod Dinosaurs: Life in the Age of Giants, on the I Know Dino podcast. Many thanks to Sabrina and Garret for having us on the show. While you’re on that page, check out the nice preview of Mark’s 2018 dinosaur calendar, which is available at Pomegranate and Amazon.

The photo shows the Diplodocus carnegii cast mounted in the natural history museum in Vienna, one of Andrew Carnegie’s gifts to the world. A happy seasonal metaphor, sez me. Hope your new year is equally happy!

Advertisements

It’s that time of year…

December 22, 2017

This year Santaposeidon comes to you courtesy of OMNH vert paleo head preparator and 20th-level fossil conservation wizard Kyle Davies, who took the photo, composed the card, and gave me kind permission to share it here. Needless to say, we’re happy to pass on the happy holiday wishes to all of you, wherever you are and whenever you are reading this.

For previous Santaposeidon sightings, please see:

 

Utah Field House Diplodocus 1

Mounted Diplodocus at the Utah Field House of Natural History State Park Museum in Vernal.

I love Utah. I love how much of the state is given over to exposed Mesozoic rocks. I love driving through Utah, which has a strong baseline of beautiful scenery that is frequently punctuated by the absolutely mind-blowing (Arches, Bryce Canyon, Zion, Monument Valley…). I love doing fieldwork there, and I love the museums, of which there are many. It is not going too far to say that much of what I learned firsthand about sauropod morphology, I learned in Utah (the Carnegie Museum runs a close second on the dragging-Matt-out-of-ignorance scale).

DNM baby Camarasaurus

Cast of the juvenile Camarasaurus CM 11338 at Dinosaur National Monument.

There is no easy way to say this so I’m just going to get it over with: Mike has never been to Utah.

I know, right?

But we’re going to fix that. Mike’s flying into Salt Lake City this Wednesday, May 4, and I’m driving up from SoCal to meet him. After that we’re going to spend the next 10 days driving around Utah and western Colorado hitting museums and dinosaur sites. We’re calling it the Sauropocalypse.

UMNH Barosaurus mount

Mounted Barosaurus at the Natural History Museum of Utah in Salt Lake City.

Why am I telling you this, other than to inspire crippling jealousy?

First, Mike and I are giving a pair of public talks next Friday evening, May 6, at the USU-Eastern Prehistoric Museum in Price. The talks start at 7:00 and will probably run until 8:00 or shortly after, and there will be a reception with snacks afterward. Mike’s talk will be, “Why giraffes have such short necks”, and my own will be, “Why elephants are so small”.

Second, occasionally people leave comments to the effect of, “Hey, if you’re ever passing through X, give me a shout.” I haven’t kept track of all of those, so this is me doing the same thing in reverse. Here’s our itinerary as of right now:

May 4, Weds: MPT flies in. MJW drives up from Cali. Stay in SLC/Provo area.
May 5, Thurs: recon BYU collections in Provo. Stay in SLC/Provo area.
May 6, Fri: drive to Price, visit USU-Eastern Prehistoric Museum, give evening talks. Stay in Price.
May 7, Sat: drive to Vernal, visit DNM. Stay in Vernal.
May 8, Sun: visit Utah Field House, revisit DNM if needed, drive to Fruita.
May 9, Mon: visit Rabbit Valley camarasaur in AM, visit Dinosaur Journey museum in PM. Go on to Moab.
May 10, Tues: drive back to Provo, visit BYU collections.
May 11, Weds: BYU collections.
May 12, Thurs: drive to SLC to visit UMNH collections, stay for Utah Friends of Paleontology meeting that evening.
May 13, Fri: BYU collections.
May 14, Sat: visit North American Museum of Ancient Life. MPT flies home. MJW starts drive home.

We’re planning lots of time at BYU because we’ll need it, the quantity and quality of sauropod material they have there is ridiculous. As for the rest, some of those details may change on the fly but that’s the basic plan. Maybe we’ll see you out there.

Clash of the Titans from above

Here’s the “Clash of the Titans” exhibit at the Sam Noble Oklahoma Museum of Natural History, featuring the reconstructed skeletons of the giant Oklahoma Apatosaurus – which I guess should now be called the giant Oklahoma apatosaurine until someone sorts out its phylogenetic position – and the darn-near-T. rex-sized Saurophaganax maximus, which may be Allosaurus maximus depending on who you’re reading.

Now, I love this exhibit in both concept and execution. But one thing that is more obvious in this view from the upper level balcony is that despite its impressive weaponry, a lone 3-to-5 ton Saurophaganax had an Arctic ice cap’s chance in the Anthropocene of taking down a healthy 30-meter, 40-50 ton apatosaur (which is to say, none). I like to imagine that in the photo above, the apatosaur is laughing at the pathetically tiny theropod and its delusions of grandeur.

Clash of the Titans from behind

In this shot from behind, you get a better look at the baby apatosaur standing under the big one, and it hints at a far more likely target for Saurophaganax and other large Morrison theropods: sauropods that were not fully-grown, which was almost all of them. I am hip to the fact that golden eagles kill deer, and some lions will attack elephants – as Cookie Monster says, “Sometime food, not anytime food” – but not only were smaller sauropods easier prey, they were far more numerous given the inevitable population structure of animals that started reproducing at a young age and made more eggs the bigger they got (as essentially all egg-laying animals do).

In fact, as discussed in our recent paper on dinosaur ontogeny (Hone et al. 2016), there may have been times when the number of fully-grown sauropods in a given population was zero, and the species was maintained by reproducing juveniles. The giant Oklahoma apatosaurine is a unique specimen today – by far the largest apatosaurine we have fossils of – but it may also have been an anomaly in its own time, the rare individual that made it through the survivorship gauntlet to something approaching full size.

Amazingly enough, there is evidence that even it was not fully mature, but that’s a discussion for another day. Parting shot:

Oklahoma Apatosaurus neck and head

Reference

AMNH 460 skeleton model 2

In a recent post I showed some photos of the mounted apatosaurine at the American Museum of Natural History in New York, AMNH 460, which Tschopp et al. (2015) regarded as an indeterminate apatosaurine pending further study.

A lot of museums whose collections and exhibits go back to the late 19th and early 20th centuries have scale model skeletons and sculptures that were used to guide exhibit design. I have always been fascinated by these models, partly because they’re windows into another era of scientific research and science communication, and partly because they’re just cool – basically the world’s best dinosaur toys – and I covet them. In my experience, it is very, very common to find these treasures of history buried in collections, stuck up on top of specimen cabinets, or otherwise relegated to some out-of-the-way corner where they won’t be in the way. I know that exhibit space is always limited, and these old models often reflect ideas about anatomy, posture, or behavior that we now know to be mistaken. But I am always secretly thrilled when I see these old models still on exhibit.

AMNH T rex skeleton model

The AMNH has a bunch of these things, because Henry Fairfield Osborn was crazy about ’em. He not only used 2D skeletal reconstructions and 3D model skeletons to guide exhibit design, he published on them – see for example his 1898 paper on models of extinct vertebrates, his 1913 paper on skeleton reconstructions of Tyrannosaurus, and his 1919 paper with Charles Mook on reconstructing Camarasaurus. That genre of scientific paper seems to have disappeared. I wonder if the time is right for a resurgence.

So in a glass case at the feet of AMNH 460 is a model – I’d guess about 1/12 or 1/15 scale – of that very skeleton. You can tell that it’s a model of that particular skeleton and not just some average apatosaur by looking carefully at the vertebrae. Apatosaurines weren’t all stamped from quite the same mold and the individual peculiarities of AMNH 460 are captured in the model. It’s an amazing piece of work.

AMNH 460 skeleton model

The only bad thing about it is that – like almost everything behind glass at the AMNH – it’s very difficult to photograph without getting a recursive hell of reflections. But at least it’s out where people can see and marvel at it.

Oh, and those are the cervical vertebrae of Barosaurus behind it – Mike and I spent more time trying to look and shoot past this model than we did looking at it. But that’s not the model’s fault, those Barosaurus cervicals are just ridiculously inaccessible.

So, memo to museums: at least some of us out here are nuts about your old dinosaur models, and where there’s room to put them on exhibit, they make us happy. They also give us views of the skeletons that we can’t get otherwise, so they serve a useful education and scientific purpose. More, please.

References

Osborn, H. F. (1898). Models of extinct vertebrates. Science, New Series, 7(192): 841-845.

Osborn, H.F. (1913). Tyrannosaurus, restoration and model of the skeleton. Bulletin of the American Museum of Natural History, 32: 91-92, plates 4-6.

Osborn, H. F., & Mook, C. C. (1919). Characters and restoration of the sauropod genus Camarasaurus Cope. From type material in the Cope Collection in the American Museum of Natural History. Proceedings of the American Philosophical Society, 58(6): 386-396.

AMNH 460 left anterolateral view

Apatosaurines on the brain right now.

I’ve been thinking about the question raised by Jerry Alpern, a volunteer tour guide at the AMNH, regarding the recent Tschopp et al. (2015) diplodocid phylogeny. Namely, if AMNH 460 is now an indeterminate apatosaurine, pending further study, what should the museum and its docents tell the public about it?

Geez, Apatosaurus, it’s not like we’re married!

I think it’s a genuinely hard problem because scientific and lay perspectives on facts and hypotheses often differ. If I say, “This animal is Apatosaurus“, that’s a fact if I’m talking about YPM 1860, the genoholotype of Apatosaurus ajax; it would continue to be a fact even if Apatosaurus was sunk into another genus (as Brontosaurus was for so long). We might call that specimen something else, but there would always be a footnote pointing out that it was still the holotype of A. ajax, even if the A. part was at least temporarily defunct – the scientific equivalent of a maiden name.* For every other specimen in the world, the statement, “This animal is Apatosaurus” is a hypothesis about relatedness, subject to further revision.

* This is going to sound kinda horrible, but when one partner in a marriage takes the other’s surname, that’s a nomenclatural hypothesis about the future of the relationship.

Apatosaurine cervicals are the best cervicals.

Apatosaurine cervicals are the best cervicals.

Fuzzy science

Things that look fairly solid and unchanging from a distance – specifically, from the perspective of the public – often (always?) turn out to be fairly fuzzy or even arbitrary upon closer inspection. Like what is Apatosaurus (beyond the holotype, I mean) – or indeed, what is a planet.** There is no absolute truth to quest for here, only categories and hypotheses that scientists have made up so that we can have constructive conversations about the crazy spectrum of possibilities that nature presents us. We try to ground those categories and hypotheses in evidence, but there will always be edge cases, and words will always break down if you push them too hard. Those of us who work on the ragged frontier of science tend to be fairly comfortable with these inescapable uncertainties, but I can understand why people might get frustrated when they just want to know what the damned dinosaur is called.

** Triton, the largest body orbiting Neptune, is almost certainly a captured Kuiper Belt object, and it’s bigger than Pluto. Moon or planet? Probably best to say a former dwarf planet currently operating as a satellite of Neptune – but that’s a mouthful (and a mindful, if you stop to think about it), not a short, convenient, easily-digestible label. Any short label is going to omit important information. This is related to the problem of paper title length – below some threshold, making something shorter means making it incomplete.

What I would say

I suppose the short version that is most faithful to the Tschopp et al. results is:

This skeleton (AMNH 460) might be Apatosaurus or Brontosaurus or a third, new thing – scientists aren’t sure yet.

A reasonable follow-up sentence – and an answer to the inevitable “Why not?” – would be:

They have to look at 477 anatomical details for lots of skeletons and weigh all the evidence, and that takes time.

Personally, if I was talking to museum visitors I would lean in conspiratorially and say:

If you want to call it Apatosaurus or Brontosaurus, go ahead – those are both ‘live’ hypotheses, and even the world’s experts on this problem can’t tell you that you’re guessing the wrong way – at least not yet.

And if there was a kid in the group, I’d add:

Maybe you’ll be the one to figure it out!

What would you say?

My neck is fat.

My neck is fat.

P.S. I wouldn’t change the signage. It could still turn out to be Apatosaurus, and the Tschopp et al. results do not lend themselves to easy label-ification.

P.P.S. With some modification for taxonomy, all of this applies to the Field Museum diplodocid FMNH P25112 as well.

Reference

Tschopp E, Mateus O, Benson RBJ. (2015) A specimen-level phylogenetic analysis and taxonomic revision of Diplodocidae (Dinosauria, Sauropoda) PeerJ3:e857 https://dx.doi.org/10.7717/peerj.857

Look on my works, ye mighty, and despair!

DSCN0476

[Giraffatitan brancai paralectotype MB.R.2181 (formerly HMN S II), mounted skeleton in left anteroventrolateral view. Presacral vertebrae sculpted, skull scaled and 3d-printed from specimen T1. Round the decay of that colossal wreck, boundless and bare, the lone and level sands stretch far away.]