Turns out that if Mike and I don’t post about sauropods for a while, people start doing it for us! This very interesting project by Tom Johnson of Loveland, Colorado, first came to my attention when Tom emailed Mark Hallett about it and Mark kindly passed it on to me. I got in touch with Tom and asked if he’d be interested in writing it up for SV-POW!, and here it is. Many thanks to Tom for his willingness to share his work with us. Enjoy! – Matt Wedel

– – – – – – – – – – – – – – – – – – – –

The sauropod formerly known as Apatosaurus in the American Museum of Natural History was the first permanently mounted sauropod dinosaur in the world, and for many years, the most famous (Brinkman 2010). The greater part of the skeleton consists of the specimen AMNH 460 from the Nine Mile Crossing Quarry north of Como Bluff, Wyoming, supplemented with bones from other AMNH specimens from Como Bluff, Bone Cabin Quarry, and with plaster casts of the forelimbs of the holotype specimen of Brontosaurus excelsus (YPM 1980) at the Yale Peabody Museum.

A herd of Brontosaurus skeleton models parading before four box covers issued between the 1950s and 1990s.

Like many aging boomer dinophiles, my dinosaur epiphany was the result of books, movies, and toys available in the 1950s, but especially a series of plastic model dinosaur skeletons that appeared around 1958. The Brontosaurus was my personal favorite, and, like the Tyrannosaurus and Stegosaurus models in the series, was very obviously based on the AMNH mount. The models were reissued at least three times over the years and can still be found either “mint in box” or more often in various stages of completion.

Apatosaurus lousiae 1/12 scale skeleton, modelled by Phil Platt, assembled and photographed by Brant Bassam. Image courtesy of BrantWorks.com.

The crème de la crème today, of course, is the 1:12 scale Apatosaurus skeleton model by Phil Platt, available from Gaston Design in Fruita, Colorado. A particularly nice example is the one completed and mounted by Brant Bassam of BrantWorks. The Platt skeleton is a replica in the true sense of the word. The plastic models are pretty crude in comparison, as cool as they appeared to us as kids.

I was interested in skeletal illustrations I have seen of Tyrannosaurus rex, which compare the completeness of various specimens by showing the actual bones included by coloring them red. A 2005 study of Apatosaurus by Upchurch et. al. examined eleven of the most complete Apatosaurus individuals, and I was interested to see the actual bones known for each specimen. Using published descriptions, red markers, and copies of a skeletal silhouette of Apatosaurus (permission obtained from the artist), I prepared a comparison of the most completely known Apatosaurus specimens. It was clear, of course, that Apatosaurus louisae (CM 3018) is the most complete specimen of the Apatosaurus/Brontosaurus group. But it also was apparent that old AMNH 460 included a substantial portion of the skeleton, even if it is a composite.

I grabbed some additional markers and, using the illustration of the mount in William Diller Matthew’s popular book Dinosaurs (Matthew 1915, fig. 20, which I trust is in the public domain by now), I color-coded the bones according to the composition as listed in Matthew’s (1905) article:

  • AMNH 460, Nine-Mile Crossing Quarry: 5th, 6th, 8th to 13th cervical vertebrae; 1st to 9th dorsal; 3rd to 19th caudal; all ribs; both coracoids; “parts of” sacrum and ilia; both ischia and pubes; left femur and astragalus; and “part of” the left fibula. RED
  • AMNH 222, Como Bluff: right scapula, 10th dorsal vertebra, right femur and tibia. GREEN
    (Visitors to AMNH: you can see the rest of AMNH 222 under the feet of the hunched-over Allosaurus)
  • AMNH 339, Bone Cabin Quarry: 20th to 40th caudal vertebrae. LIGHT BLUE
  • AMNH 592, Bone Cabin Quarry: metatarsals of the right hind foot. VIOLET
  • YPM 1980, Como Bluff: left scapula, forelimb long bones (casts). YELLOW
  • The remaining parts of the skeleton are either modeled in plaster or are unspecified (“a few toe bones”). BLACK

It occurred to me that I might have sufficient spare parts of old ITC and Glencoe Brontosaurus models to create a three-dimensional version. I did, and painting prior to assembly definitely made the job easier.

There are obviously limitations to using Matthew’s (1915) reconstruction (e.g., only 13 cervicals) and the model (12 cervicals). It is also not clear from Matthew’s description how much of the sacrum and ilia were restored. Nevertheless, the painted model does provide a colorful, if crude, visualization of the composition of the composite.

Here are some more photos of the finished product:

A view from the front of the model, compared with a historical AMNH photo of the forelimbs and pelvic girdle.

Long considered a specimen of Brontosaurus excelsus or Apatosaurus excelsus, AMNH 460 was referred to Apatosaurus ajax by Upchurch et. al. in 2005. In the most comprehensive analysis of diplodocid phylogeny to date, Tschopp et. al. (2015) found AMNH 460 to be an “indeterminate apatosaurine” pending a “detailed analysis of the specimen.” What to call it? Oh, yeah, that’s been covered in another post!

This is a nostalgia shot for the old brontophiles. Notice that the Triceratops is entering the lake for a swim!

Tom Johnson with the mounted skeleton of Amphicyon, a Miocene “bear-dog”,
in the Raymond Alf Museum of Paleontology in Claremont, California.


  • Brinkman , Paul D. (2010). The Second Jurassic Dinosaur Rush, University of Chicago Press, 2010.
  • Matthew, William Diller, (1905). “The Mounted Skeleton of Brontosaurus,” The American Museum Journal, Vol. V, No. 2, April.
  • Matthew, W.D. (1915). Dinosaurs, With Special Reference to the American Museum Collections, American Museum of Natural History, New York.
  • Tschopp, Emanuel, Octávio Mateus, and Roger Benson. (2015). “A Specimen-Level Phylogenetic Analysis and Taxonomic Revision of Diplodocidae (Dinosauria, Sauropoda).” Ed. Andrew Farke. PeerJ 3 (2015): e857.
  • Upchurch, P., Tomida, Y., Barrett, P.M. (2005). “A new specimen of Apatosaurus ajax (Sauropoda: Diplodocidae) from the Morrison Formation (Upper Jurassic) of Wyoming, USA”. National Science Museum Monographs (Tokyo) 26 (118): 1–156.

I got an email this morning from Jim Kirkland, announcing:

All of the lectures (with permission to be filmed) will be available on the NHMU YouTube channel. I just wrapped the edit of the 6th video which should be available later today. However, 5 of the lectures are now edited and already available for viewing. They can be found here.

And by the time I read that message, the sixth talk had appeared!

Each talk is 20-25 minutes long, so there’s a good two and a quarter hours of solid but accessible science here, freely available to anyone who wants to watch them. Here, to get you started, is long-time friend of SV-POW!, Randy Irmis, on Discovering Dinosaur Origins in Utah:

It’s great that the DinoFest people are doing this. In 2017, it should really be the default — and yet I can’t think of a single vertebrate palaeo conference that has done this before. (Did I miss some? Links, please!)

I know it’s one more thing for conference organisers to have to think about (or, more optimistically, one more thing for them to delegate). but I hope we’ll be seeing a lot more of it!


I’m back in Oklahoma for the holidays, and anytime I’m near Norman I pop in to the OMNH to see old friends, both living and fossil. Here’s the Aquilops display in the hall of ancient life, which has been up for a while now. I got some pictures of it when I was here back in March, just never got around to posting them.


Aquilops close up. You can’t see it well in this pic, but on the upper right is a cast of the Aquilops cranium with a prosthesis that shows what the missing bits would have looked like. That prosthesis was sculpted by – who else? – Kyle Davies, the OMNH head preparator and general sculpting/molding/casting sorceror. You’ve seen his work on the baby apatosaur in this post. I have casts of everything shown here – original fossil, fossil-plus-prosthesis, and reconstructed 3D skull – and I should post on them. Something to do in the new year.


The Aquilops display is set just opposite the Antlers Formation exhibit, which has a family of Tenontosaurus being menaced by two Deinonychus, and at the transition between Early and Late Cretaceous. The one mount in the Late Cretaceous area is the big Pentaceratops, which is one of the best things in this or any museum.


Evidence in support of that assertion. Standing directly in front of this monster is a breathtaking experience, which I highly recommend to everyone.

It’s just perfect that you can see the smallest and earliest (at least for now) North American ceratopsian adjacent to one of the largest and latest. Evolution, baby!


I didn’t only look at dinosaurs – the life-size bronze mammoth in the south rotunda is always worth a visit, especially in holiday regalia.


No holiday post about the OMNH would be complete without a shot of “Santaposeidon” (previously seen here). I will never get tired of this!

The chances that I’ll get anything else posted in 2016 hover near zero, so I hope you all have a safe and happy holiday season and a wonderful New Year.

I choose Haplocanthosaurus

November 18, 2016


Oh man, 2016, you are really working on my nerves.

Sometimes it’s a positive balm to hold a piece of an animal dead and gone for 145 million years, or stare at a thousand vertical feet of sandstone, and know that we are all ants.

These lovelies here intrigue me deeply. They’re the three caudal vertebrae recovered from the Snowmass Haplocanthosaurus that John Foster and I described a couple of years ago. Pretty sure I’ll have more to say about them in the future. For now it’s enough that they’ve come across such a vast gulf of time and given this stressed-out primate a little perspective.


Foster, J.R., and Wedel, M.J. 2014. Haplocanthosaurus (Saurischia: Sauropoda) from the lower Morrison Formation (Upper Jurassic) near Snowmass, Colorado. Volumina Jurassica 12(2): 197–210. DOI: 10.5604/17313708 .1130144


Back when I started writing about issues in scholarly publishing, I would sometimes write about the distinction between for-profit (bad) and non-profit (good) publishers. While I still recognise this as an issue, thinking it through over the last few years has made it clear that this distinction is largely orthogonal to the one that really matters — which is between open and non-open publishers.

In fact, all four quadrants exist:

 For-profit  Non-profit
 Open  PeerJ  PLOS
 Non-Open  Elsevier  ACS

ACS may be a 501(c)(3) nonprofit organization, and PeerJ may be a private company primarily owned by two individuals — but it’s PeerJ that’s pushing openness forward, and ACS doing quite the opposite.



Beautifully preserved cervical vertebra of Barosaurus in the prep. lab at the North American Museum of Natural Life (NAML).

I’ve found myself thinking about this recently for two reasons.

The first is that, like anyone who works on sauropods, I’ve had involvement with specimens at the Sauriermuseum Aathal (SMA), a privately owned museum in Switzerland that holds some astonishingly beautiful and complete specimens, including the Kaatedocus holotype, SMA 0009. In particular, I’ve been invited a few times to peer-review manuscripts describing SMA specimens, and I’ve always felt conflicted about this because of the SVP’s strong position on privately held specimens.

The second thing that’s pushed me to rethink the private-public distinction has been working on Barosaurus. Our experiences with specimens have been varied. Yale University was very helpful when we went to see the holotype YPM 429, and BYU really couldn’t have done more for us on our recent visit. This is what we would hope for, of course. But what we didn’t particularly anticipate is how generous and helpful the people at the commercial fossil hunters Western Paleo Labs would be. When, visiting the North American Museum of Ancient Life, we gazed in awe through their prep. lab window at their several gorgeous Barosaurus cervicals (see photo above), they invited us in to play with them. (The vertebrae, not the people.)

And that made me think about our much less satisfactory experience trying to photograph the presacrals of AMNH 6341 at the American Museum of Natural History — they are entombed in a glass case surmounted by a not-really-transparent walkway:


Which meant that, when trying to obtain dorsal-view photographs, I had to use this technique:


With results like these:


Now I want to be clear that everyone we dealt with at the AMNH was as helpful as they could be. No-one that we met there was in any way obstructive. Yet the fact remains, the crucially important presacral verterbrae of the most widely recognised Barosaurus in the world were essentially impossible to study.

Worse: papers that have been published about those specimens are now essentially irreproducible, because the specimens are not really available for re-study — much as though they’d been sold to Nicolas Cage to display over his mantelpiece.

Whereas the Barosaurus vertebrae at Western Paleo Labs do seem to be available for study.


Just as we were mistaken in focussing primarily on the for-profit/non-profit distinction between publishers when what we really cared about was the open/non-open distinction, could it be that we’ve been misfocussing on the public/private ownership distinction when what we really care about is availability of specimens?

Is there a way to be confident about which museums will and will not always make specifimens available for study? Here’s where my knowledge cuts out, but one would think this would be the key element in museum certification. But then no doubt museum certification is done differently in different jurisdictions. Knowing that a German museum is accredited may tell you something completely different from knowing that an America museum is accredited.

So perhaps what we need is some globally recognised statement that any museum in the world can sign up to: formally committing to keep its specimens available to researchers; and comitting never to sell them to any party that has not also signed up to the statement.


It’s worth noting the Sauriermuseum Aathal seems, as far as I’ve ever heard, to have conducted itself in every way as we would wish. They seem pretty unambiguously to be among the good guys. More: they seem to have unilaterally done more or less what I advocated above: their website declares:

Declaration Concern: Holotypes of the fossil-collection of the Sauriermuseum Aathal.

The Sauriermuseum Aathal, Switzerland (SMA), is being recognized more and more as valuable scientific institution. We hereby state publicly the SMA policy concerning holotype specimens. We recognize the importance of these reference specimens for science, and strongly agree that they have to be available for science in perpetuity. Therefore, we declare that all holotypes present at the Sauriermuseum Aathal, Switzerland (and all new holotypes that will be described in future), will always be publicly accessible to all bona fide researchers, and will never be allowed to be sold to any private collection.

Are they one step ahead of us? And if so, should we cast off our reservations about publishing on their specimens?


Suppose that I and Matt were right in our SVPCA talk this year, and the
Supersaurus” cervical BYU 9024 really is the C9 of a gigantic Barosaurus. As we noted in our abstract, its total length of 1370 mm is exactly twice that of the C9 in AMNH 6341, which suggests its neck was twice as long over all — not 8.5 m but 17 m.

How horrifying is that?

I realised one good way to picture it is next to the entire mounted skeleton of Giraffatitan at the Museum für Naturkunde Berlin. That skeleton is 13.27 m tall. At 17 m, the giant barosaur neck would be 28% longer than the total height Giraffatitan.

Giraffatitan brancai mounted skeleton MB.R.2181 at the Museum für Naturkunde Berlin, with neck of Barosaurus ?lentus BYU 9024 at the same scale. Photo by Axel Mauruszat, from Wikipedia; drawing from Scott Hartman's Supersaurus skeleton reconstruction.

Giraffatitan brancai mounted skeleton MB.R.2181 at the Museum für Naturkunde Berlin, with neck of Barosaurus ?lentus BYU 9024 at the same scale. Photo by Axel Mauruszat, from Wikipedia; drawing from Scott Hartman’s Supersaurus skeleton reconstruction.

Yes, this looks ridiculous. But it’s what the numbers tell us. Measure the skeleton’s height and the neck length off the image yourself if you don’t believe me.

(Note, too, that the size of the C9 in that big neck is about right, compared with a previous scaled image that Matt prepared, showing the “Supersaurus” vertebra in isolation alongside the Chicago Brachiosaurus.)

Here is a vertebra that Matt and I saw on our recent travels through Utah:



I will explain in a subsequent post where we saw it, who gave us access, where and when it is from, and so on.

For now, I want people’s gut reactions: what is it?