I choose Haplocanthosaurus

November 18, 2016

snowmass-haplocanthosaurus-caudals

Oh man, 2016, you are really working on my nerves.

Sometimes it’s a positive balm to hold a piece of an animal dead and gone for 145 million years, or stare at a thousand vertical feet of sandstone, and know that we are all ants.

These lovelies here intrigue me deeply. They’re the three caudal vertebrae recovered from the Snowmass Haplocanthosaurus that John Foster and I described a couple of years ago. Pretty sure I’ll have more to say about them in the future. For now it’s enough that they’ve come across such a vast gulf of time and given this stressed-out primate a little perspective.

Reference

Foster, J.R., and Wedel, M.J. 2014. Haplocanthosaurus (Saurischia: Sauropoda) from the lower Morrison Formation (Upper Jurassic) near Snowmass, Colorado. Volumina Jurassica 12(2): 197–210. DOI: 10.5604/17313708 .1130144

Prologue

Back when I started writing about issues in scholarly publishing, I would sometimes write about the distinction between for-profit (bad) and non-profit (good) publishers. While I still recognise this as an issue, thinking it through over the last few years has made it clear that this distinction is largely orthogonal to the one that really matters — which is between open and non-open publishers.

In fact, all four quadrants exist:

 For-profit  Non-profit
 Open  PeerJ  PLOS
 Non-Open  Elsevier  ACS

ACS may be a 501(c)(3) nonprofit organization, and PeerJ may be a private company primarily owned by two individuals — but it’s PeerJ that’s pushing openness forward, and ACS doing quite the opposite.

Logue

img_4496

Beautifully preserved cervical vertebra of Barosaurus in the prep. lab at the North American Museum of Natural Life (NAML).

I’ve found myself thinking about this recently for two reasons.

The first is that, like anyone who works on sauropods, I’ve had involvement with specimens at the Sauriermuseum Aathal (SMA), a privately owned museum in Switzerland that holds some astonishingly beautiful and complete specimens, including the Kaatedocus holotype, SMA 0009. In particular, I’ve been invited a few times to peer-review manuscripts describing SMA specimens, and I’ve always felt conflicted about this because of the SVP’s strong position on privately held specimens.

The second thing that’s pushed me to rethink the private-public distinction has been working on Barosaurus. Our experiences with specimens have been varied. Yale University was very helpful when we went to see the holotype YPM 429, and BYU really couldn’t have done more for us on our recent visit. This is what we would hope for, of course. But what we didn’t particularly anticipate is how generous and helpful the people at the commercial fossil hunters Western Paleo Labs would be. When, visiting the North American Museum of Ancient Life, we gazed in awe through their prep. lab window at their several gorgeous Barosaurus cervicals (see photo above), they invited us in to play with them. (The vertebrae, not the people.)

And that made me think about our much less satisfactory experience trying to photograph the presacrals of AMNH 6341 at the American Museum of Natural History — they are entombed in a glass case surmounted by a not-really-transparent walkway:

amnh-presacrals

Which meant that, when trying to obtain dorsal-view photographs, I had to use this technique:

amnh-photography

With results like these:

amnh-dorsal-view

Now I want to be clear that everyone we dealt with at the AMNH was as helpful as they could be. No-one that we met there was in any way obstructive. Yet the fact remains, the crucially important presacral verterbrae of the most widely recognised Barosaurus in the world were essentially impossible to study.

Worse: papers that have been published about those specimens are now essentially irreproducible, because the specimens are not really available for re-study — much as though they’d been sold to Nicolas Cage to display over his mantelpiece.

Whereas the Barosaurus vertebrae at Western Paleo Labs do seem to be available for study.

Hmm.

Just as we were mistaken in focussing primarily on the for-profit/non-profit distinction between publishers when what we really cared about was the open/non-open distinction, could it be that we’ve been misfocussing on the public/private ownership distinction when what we really care about is availability of specimens?

Is there a way to be confident about which museums will and will not always make specifimens available for study? Here’s where my knowledge cuts out, but one would think this would be the key element in museum certification. But then no doubt museum certification is done differently in different jurisdictions. Knowing that a German museum is accredited may tell you something completely different from knowing that an America museum is accredited.

So perhaps what we need is some globally recognised statement that any museum in the world can sign up to: formally committing to keep its specimens available to researchers; and comitting never to sell them to any party that has not also signed up to the statement.

Epilogue

It’s worth noting the Sauriermuseum Aathal seems, as far as I’ve ever heard, to have conducted itself in every way as we would wish. They seem pretty unambiguously to be among the good guys. More: they seem to have unilaterally done more or less what I advocated above: their website declares:

Declaration Concern: Holotypes of the fossil-collection of the Sauriermuseum Aathal.

The Sauriermuseum Aathal, Switzerland (SMA), is being recognized more and more as valuable scientific institution. We hereby state publicly the SMA policy concerning holotype specimens. We recognize the importance of these reference specimens for science, and strongly agree that they have to be available for science in perpetuity. Therefore, we declare that all holotypes present at the Sauriermuseum Aathal, Switzerland (and all new holotypes that will be described in future), will always be publicly accessible to all bona fide researchers, and will never be allowed to be sold to any private collection.

Are they one step ahead of us? And if so, should we cast off our reservations about publishing on their specimens?

 

Suppose that I and Matt were right in our SVPCA talk this year, and the
Supersaurus” cervical BYU 9024 really is the C9 of a gigantic Barosaurus. As we noted in our abstract, its total length of 1370 mm is exactly twice that of the C9 in AMNH 6341, which suggests its neck was twice as long over all — not 8.5 m but 17 m.

How horrifying is that?

I realised one good way to picture it is next to the entire mounted skeleton of Giraffatitan at the Museum für Naturkunde Berlin. That skeleton is 13.27 m tall. At 17 m, the giant barosaur neck would be 28% longer than the total height Giraffatitan.

Giraffatitan brancai mounted skeleton MB.R.2181 at the Museum für Naturkunde Berlin, with neck of Barosaurus ?lentus BYU 9024 at the same scale. Photo by Axel Mauruszat, from Wikipedia; drawing from Scott Hartman's Supersaurus skeleton reconstruction.

Giraffatitan brancai mounted skeleton MB.R.2181 at the Museum für Naturkunde Berlin, with neck of Barosaurus ?lentus BYU 9024 at the same scale. Photo by Axel Mauruszat, from Wikipedia; drawing from Scott Hartman’s Supersaurus skeleton reconstruction.

Yes, this looks ridiculous. But it’s what the numbers tell us. Measure the skeleton’s height and the neck length off the image yourself if you don’t believe me.

(Note, too, that the size of the C9 in that big neck is about right, compared with a previous scaled image that Matt prepared, showing the “Supersaurus” vertebra in isolation alongside the Chicago Brachiosaurus.)

Here is a vertebra that Matt and I saw on our recent travels through Utah:

IMG_2530

IMG_2542

I will explain in a subsequent post where we saw it, who gave us access, where and when it is from, and so on.

For now, I want people’s gut reactions: what is it?

As regular readers will know, Matt and I have recently spent ten glorious days travelling the dinosaur museums of Utah, in a once-in-a-lifetime event that we have been calling the Sauropocalypse. In that time, we visited seven different museums and — this is the truth — had an absolutely fantastic time in all of them. One of the big reasons is of course the quality of their collections and galleries. But equally important is the welcome we got from our hosts at each of these places, and the help they all generously and cheerfully gave us.

Here’s where we visited, in chronological order, with a word of thanks to each host.

1. BYU Museum of Paleontology, Provo

IMG_3392

Mike compares Jensen’s sculpture of the big Supersaurus cervical BYU 9024 with the actual fossil.

At the amazing BYU — where we spent three full days, as it has almost certainly the largest collection of sauropod fossils anywhere in the world — our host was Brooks Britt. (Matt’s mentioned Brooks previously on this blog, as one of the most formative influences on his career: the person who put him onto pneumaticity.)

Brooks set us free in his collections and gallery with no restrictions. He had specimens fork-lifted down from high shelves for us, gave us a pallet lifter so we could move them around at will, and generally did everything he could to make our stay productive. He also took us out to lunch, twice: once at a cheap but delicious taco place, and once at a Brazilian eat-all-you-want barbecue place where I could happily have spent the entire afternoon.

2. The Prehistoric Museum, Price

IMG_2464

Matt inspects the beautifully preserved and prepared anterior cervicals of a Camarasaurus in the main gallery.

Our host at Price was occasional SV-POW! commenter Ken Carpenter, who also arranged for us to give a pair of talks at the museum in the evening. (Mine: Why giraffes have short necks. Matt’s: Why elephants are so small.) Ken gave us free reign to get in among the exhibits, and we took full advantage to make a potentially important discovery (to be discussed in a future post).

Ken also took us to see the CEUM collections, and invited us to take on a huge descriptive project, working on the PR2 brachiosaur. Sadly, that project is just too big for either of us. But there are individual elements within the PR2 collection that are of interest, and no doubt we’ll be posting more about those, too.

3. Dinosaur National Monument, Jensen

IMG_2603

Matt looms ominously over an Apatosaurus cervical in ventral view — or is it Camarasaurus?

Matt has already paid tribute to Dan Chure, our host up on the wall, who came in on his day off just to help us. An extraordinary host at an astonishing venue.

4. Utah Field House of Natural History, Vernal

IMG_2719

Diplodocus butt. Wedel for scale. He likes big butts and he cannot lie.

Here, we were hosted by Mary Beth Bottomley. She went beyond the call of duty in not only allowing us access to the prep room and collections, but helping us to take apart the shelving in collections so we could get better photos of a big, difficult-to-move specimen. Mary Beth was particularly interested in what we were working on, and will (I hope) now be a regular reader of this blog.

5. Dinosaur Journey, Fruita

IMG_2940

Mike, astonished by a particularly extreme apatosaur cervical. But then aren’t they all extreme?

We were, inadvertently, sensationally rude to our host, Julia McHugh. She’d arranged to take us for lunch, but Matt was so obsessed with the transit of Mercury across the sun that he completely forgot, and sent me off to get salads from Subway instead. (Note that I am making the point here that Matt forgot this arrangement. I make no comment on my own recall.) As a result, we cheated ourselves out of a BBQ lunch.

But Julia was great about it, and once again we were given free reign in collections. Matt and I were each able to make valuable observations, one for an already-in-progress paper and one for a new one.

6. Natural History Museum of Utah, Salt Lake City

IMG_3836

Barosaurus, an Allosaurus adult and several juveniles, and Mike.

Here, our host was Carrie Levitt. She welcomed us to the museum, gave us a tour of collections, left us to it, and … we spent almost the entire day in the public gallery instead! I did get a couple of nice photos of the holotype skulls of Kosmoceratops and Diabloceratops, but the truth is that the public gallery was so awesome, it just sucked us in.

But Carrie was great about it. Rather than resenting our having wasted her time in the collections orientation, she was just glad that we got useful observations out of the museum. (And we did. Matt and I can sometimes get so wrapped up in individual vertebrae that we forget they’re part of whole animals. The many fine mounted dinosaur skeletons at UMNH helped to redress this failing.)

7. North American Museum of Ancient Life, Thanksgiving Point

IMG_4641

Matt is attacked by a Utahraptor, but is all like “Am I bovvered?”. To be honest, I suspect he was all dinosaured out by this point.

On our last day — I had to be at the airport by 6pm — we went to NAMAL, We’d not been able to make contact with staff ahead of time, as Matt’s old contact seems to be no longer at the museum. But as we walked past the prep lab near the museum entrance, we saw some beautiful Barosaurus cervicals. As we stood gawping, Rick Hunter, inside the lab, recognised Matt and invited us in.

With no prior notice at all, Rick dropped what he was doing to help us out as we inspected their gorgeous material. That’s been really helpful as we’ve firmed up our ideas on what Barosaurus is. (And I hope we’ve helped them get a better handle on the serial positions of their vertebrae, too.)

In summary, pretty much everyone we met in Utah was super-helpful and super-nice. That also includes John and ReBecca Foster, who put us up for the night in Moab, the night before we went to Arches National Park. The people are one of three reasons why Utah is now my favourite US state. (The others are the sauropods, naturally, and the landscapes.)

Museum folks of Utah, we salute you!

UPDATE 19 May 2016

I belatedly realized that I caused some confusion in the original version of this post. This will hopefully sort things out:

NAMAL Barosaurus cervical with features labeled

The ventrolateral processes (1) are nothing new. As Ken Carpenter pointed out in a comment, Hatcher noted them back in 1901 in his monograph on Diplodocus carnegii. These are the features I describe below as being, “huge in Barosaurus, big in Diplodocus, small in Apatosaurus, and nonexistent in Haplocanthosaurus, Camarasaurus, and the brachiosaurids, at least from what I’ve seen.” To clarify: occasionally in camarasaurs and frequently in brachiosaurs you can trace a ridge along the ventrolateral margin of the centrum from the parapophysis to the cotyle. But these ridges are basically just the ‘corners’ of the centrum, leftover by the lateral and ventral waisting of the centrum – they do not project beyond the margin of the cotyle. In contrast, what I’ve been calling the ventrolateral flanges in diplodocids do project beyond the margins of the cotyle – they are additive structures, not just architectural leftovers. They also don’t vary much, other than to be more pronounced in more posterior cervicals.

The irregular ventral ridges (2) are a totally different thing. They’re on or near the sagittal midline of the centrum, usually restricted to the anteroposterior middle of the ventral centrum (so, about halfway between the condyle and the cotyle), and as my preferred term implies, highly variable among individuals and even among vertebrae in a series.

Hope that helps! (Original post starts below.)

– – – – – – – – – – – – – – – – – – – – –

2005-07-29 BYU 16918 Diplodocus left lateral

Back in 2005 I visited BYU while I was working on my dissertation. Back then I noted ventral ridges in a few diplodocine cervical vertebrae. (I hesitate to call such flimsy things ‘keels’.)

Up above is BYU 16918, a mid-to-posterior cervical vertebra of Diplodocus from the famous Dry Mesa Quarry. Here it is again in posterior view:

2005-07-29 BYU 16918 Diplodocus posterior view labeled

The things I have labeled VLF here are ventrolateral flanges, which are huge in Barosaurus, big in Diplodocus, small in Apatosaurus, and nonexistent in Haplocanthosaurus, Camarasaurus, and the brachiosaurids, at least from what I’ve seen. See this post for details. I know that the left VLF here looks like a second ridge, but the cotyle is broken off in such a way that we’re seeing the fossa just dorsal to the VLF margin. The ridge itself is skewed to the right, which could be natural or a result of taphonomy – as you can see from the photo at the top of the post, this vert has seen better days.

Here’s another Dry Mesa vert, BYU 11617, this time an anterior cervical of Barosaurus and in left lateral view:

2005-07-29 BYU 11617 Barosaurus left lateral

Again in right lateral view – on this side you can see the fossa in the VLF more clearly:

2005-07-29 BYU 11617 Barosaurus right lateral

And here’s the ventral view showing the ridge:

2005-07-29 BYU 11617 Barosaurus ventral view labeled

I noted these things in my notebook back when, filed them under, “Huh. How about that?” and went on with life.

Then last week Mike and I were at the North American Museum of Ancient Life in Lehi, Utah, and we saw this super-nice Barosaurus cervical on display in the prep lab (left ventro-lateral view). Check out the monster ventrolateral flanges, and the ridges between them at about mid-centrum.

IMG_4605

Here’s another view, a more square-on ventral this time:

IMG_4604

We owe a big thank you to Rick Hunter, who let us into the prep lab at the North American Museum of Ancient Life to see the Barosaurus material up close.

So what’s the deal with these ridges? I assume that they’re caused by pneumatic diverticula remodeling the ventral surface of the centrum. We know that such diverticula were down there because there are actual foramina on the ventral centrum in Supersaurus, many apatosaurines (Lovelace et al., 2008), many brachiosaurids, and probably loads of other things that haven’t been checked. Oddly enough, I’ve never seen the ridges in any of those other taxa. It seems that you get foramina or ridges, but not both. I have no idea what’s up with that – to paraphrase Neal Stephenson, Barosaurus cervicals are confections of air and marketing, and you’d think that if any sauropod would have straight-up foramina down there, it would be Barosaurus. But Barosaurus gets ridges and clunky old Apatosaurus gets foramina (sometimes, not all the time).

It’s a sick world, I tell you.

Reference

  • Lovelace, D. M., Hartman, S. A., & Wahl, W. R. (2007). Morphology of a specimen of Supersaurus (Dinosauria, Sauropoda) from the Morrison Formation of Wyoming, and a re-evaluation of diplodocid phylogeny. Arquivos do Museu Nacional, Rio de Janeiro 65(4):527-544.

IMG_4590

Go home Eremotherium laurillardi, you are drunk.