I’m not 100% sure what this is, but it exists
October 8, 2022
Darren, the silent partner at SV-POW!, pointed me to this tweet by Duc de Vinney, displaying a tableau of “A bunch of Boners (people who study bones) Not just paleontologists, some naturalists and cryptozoologists too”, apparently commissioned by @EDGEinthewild:
As you can see, Darren, Matt and I (as well as long-time Friend Of SV-POW! Mark Witton) somehow all made it into the cartoon, ahead of numerous far more deserving people. Whatever the criterion was, and whatever reason Edge In The Wild had for wanting this, I am delighted to be included alongside the likes of Owen, Osborn, Cope, Marsh, and Bob Bakker. Even if the caricatures are not especially flattering.
Here is an edit showing only the three of us, which I am sure I will find many fruitful uses for:
My thanks to Duc de Vinney for creating this!
Happy 15th birthday to SV-POW!
October 1, 2022
Matt and I, with our silent partner Darren, started SV-POW! fifteen years ago to the day, as a sort of jokey riff on NASA’s Astronomy Picture of the Day. Our first post, on 1 October 2007, was a photograph of what we called “the most iconic of sauropod vertebrae, the 8th cervical of the Brachiosaurus brancai type specimen HMN SII”. Now, here in glorious monochrome, is that same vertebra fifteen years on!
(The specimen that it’s from is now recognised as belonging to the separate brachiosaurid genus Giraffatitan, and it’s the paralectotype of the species Giraffatitan brancai.)
Obviously what we’re seeing here is not the real thing — very heavy and very fragile — but a life-sized 3D model, carved out of styrofoam by a CNC machine (computerized carving machine) using surface-scan data of the original specimen. This was done at Research Casting International, and we bring you this photo courtesy of Peter May, Garth Dallman, and the rest of the folks at RCI.
The inside of RCI’s workshop is an interesting place — I’ve never been there myself, but it’s at least Matt’s second visit, and it’s very high on my To Visit list. I especially like the “RAPTOR” box just behind and above Matt’s head.
This photo, unfortunately, makes the vertebra look smaller than it is, because when Matt took the selfie he was holding it further back than his own head. It’s still interesting, though, to see where the balance point is for holding it one-handed. It seems that the rear half of the vertebra is denser than the front half. But of course, that’s only when it’s a solid constant-density volume. The real bone, with all its pneumatic internal structures, might have been quite different.
Needless to say, HMN SII:C8 (or MB.R.2181:C8, as we must now call it) is a very old friend on this blog, to the point where it should probably have a category of its own. Among many other appearances it’s popped up in tutorials 2 (Basic vertebral anatomy), 4 (Laminae) and 21 (How to measure the length of a centrum), as well as Bifid Brachiosaurs, Batman! (6 September 2009), What a 23% longer torso looks like (20 September 2009), Plateosaurus is pathetic and its doppelganger Plateosaurus is comical (16 January and 5 September 2013), and of course Copyright: promoting the Progress of Science and useful Arts by preventing access to 105-year-old quarry maps (11 October 2015).
If you want to see more exciting photos of this glorious vertebra — and indeed of many other sauropod vertebrae — stay tuned for the next fifteen years!

Morphological variation in paramedullary airways; yellow = spinal cord, green = diverticula. The spectrum of variation is discretized into four groups: i, branches of intertransverse diverticula contact spinal cord at intervertebral joints; ii, branches of intertransverse diverticula extend partially into the vertebral canal, but remain discontinuous; iii, paramedullary diverticula form sets of tubes that are continuous through vertebral canals of at least two consecutive vertebrae; iv, continuous paramedullary diverticula anastomose with supravertebral diverticula. Each variant is depicted diagrammatically (A, dorsal view; B, E, H, & K, transverse view) and shown in two CT scans; images in each column correspond to the same morphology. Morphology i: C, cormorant; D, scrub jay. Morphology ii: F, bushtit; G, common murre. Morphology iii: I, red-tailed hawk; J, black-crowned night heron. Morphology iv: L, M, pelican. (Atterholt and Wedel 2022: figure 5)
New paper out:
Quick aside, which will soon be of historical interest only: so far, only the accepted-but-unformatted manuscript is available, with the final, fully-formatted ‘version of record’ due along at some point in the future. We’re not sure when that will be — could be next week, could be months from now — which is why I’m following my standard procedure and yapping about the new paper now. This has paid off in the past, when papers that were only available in accepted ms form were read and cited before the final version was published. UPDATE on April 9: the formatted version of record is out now, as an open-access article with a CC-BY license, and I swapped it for the ‘accepted ms’ version in the links above and at the end of this post.
This paper has had a weirdly drawn-out gestation. Jessie and I hatched the idea of it way back in 2017, when we were teaching in the summer anatomy course together. I learned that Jessie had a big war chest of CTs of dead birds, and I’d been obsessed with supramedullary diverticula in birds and sauropods for some time already (e.g., an SVPCA talk: Wedel et al. 2014). There were detailed published descriptions of the supramedullary diverticula in a handful of species — namely chickens, turkeys, and pigeons — but no broad survey of those diverticula across living birds. Jessie had the CT scans to do that big survey, which we got rolling on right away. She presented our preliminary results at SVPCA in 2018 (Atterholt and Wedel 2018), and by rights the paper should have been along shortly thereafter. More on that in a sec.
One thing that may seem odd: we use the term ‘paramedullary diverticula’ instead of the more familiar and established ‘supramedullary diverticula’. That’s because these diverticula are not always dorsal to the spinal cord; sometimes they’re lateral, sometimes they’re ventral, and sometimes they completely surround the spinal cord, like an inflated cuff. So we decided that the term ‘paramedullary’, or ‘next to the spinal cord’, was more accurate than ‘supramedullary’, or ‘above the spinal cord’, for describing this class of diverticula.

Observed variation in the shape, arrangement, and orientation of paramedullary diverticula relative to the spinal cord; yellow = spinal cord, green = diverticula. A, paired diverticula dorsal to spinal cord in an ostrich. B, paired diverticula lateral to spinal cord in a bushtit. C, paired diverticula ventral to spinal cord in a violet turaco. D, three diverticula dorsal to spinal cord in an ostrich. E, four diverticula dorsal to spinal cord in an eclectus parrot. F, single, c-shaped diverticulum dorsal to spinal cord in an ostrich. G, diverticula completely surrounding spinal cord and pneumatizing vertebra in a violet turaco. H, no paramedullary diverticula present in a Pacific loon. I, diverticula completely surrounding spinal cord in a pelican. (Atterholt and Wedel 2022: figure 6)
I will have more to say about the science in other posts, and you can get the scientific backstory in this post and this one and the abstracts cited above and linked below. The rest of this post is mostly about me, so if you stick around, buckle up for some advanced navel-gazing.
There’s no one reason why this paper didn’t come out sooner. In short, I hit a wall. We went through a curriculum change at work, and suddenly the annual schedule that I’d relied on for a decade was completely upended. I had some unexpected challenges in my personal life. But the biggest problem was that my attitude toward research and writing had changed, for the worse.
When I was fresh out of grad school I had this kinda snotty attitude that my research was MINE, and wherever I was teaching was just, like, a paycheck, man, but they don’t own me, or my research. And as my teaching and committee responsibilities ramped up I still felt like research and writing was something I did for myself, and that my mission was to steal however many hours I could away from the “day-job work” to get done the things that I really wanted to do. Like a guerilla insurgency. In retrospect, it was a pretty good attitude for getting stuff done.
But somewhere along the way, I stopped thinking about research as something that belonged to me, something that I did for myself, and started thinking about it as part of my job. (This also maybe is not so flattering in what it reveals about how I think, or at least thought, about my job.) Instead of using my research time as a source of energy and a wellspring of satisfaction and positivity, I starting thinking of it only as a sink. And it happened so insidiously that I didn’t even realize it. My productivity plummeted, and I didn’t understand why. I was restless and depressed, and I didn’t understand that either. At the level of my superficial thoughts I still wanted to get research done, but my subconscious was turned off to it, so I just spun my wheels.
Then the pandemic hit. I’d always been a pretty optimistic, upbeat person, but I found myself just staring off into space franticizing about all the horrible things going on in the world, or staying up too late doom-scrolling the news. I slept too little, and poorly, and by the end of 2020 I felt worn down to a nub.

Osteological evidence of paramedullary diverticula. A, pocked texturing inside the vertebral canal of a pelican (LACM 86262). B, pneumatic foramen on the roof of the vertebral canal of an albatross (Phoebastria nigripes, LACM 115139). C, pneumatic foramina in the floor of the vertebral canal of an ostrich (Struthio camelus, LACM 116205). D, deep pneumatic fossae in the roof of the vertebral canal of an Eastern moa (Emeus sp., LACM unnumbered). (Atterholt and Wedel 2022: figure 7)
Then a series of positive things happened:
- I received a long, heartfelt email from Jessie (fittingly!), asking after me and laying out a plan for getting the paper done and out. It was the kick I needed to look inside and start picking myself apart, to figure out what the heck was going on. Much of this post is cribbed from my reply to her.
- I got a little break from lecturing in the spring of 2021, and that gave me the space to get a couple of things finished and submitted — the pneumatic variation paper with Mike in January (Taylor and Wedel 2021), and the Haplocanthosaurus neural canal paper, which was submitted even earlier in January, although it came out much later (Wedel et al. 2021; more on that publication delay in a future post).
- Finally, I had young, energetic coauthors who were moving projects forward that required modest levels of effort from me, but which paid off with highly visible publications that I’m proud to be an author on, including the saltasaur pneumaticity paper (Aureliano et al. 2021) and the ‘Sauro-Throat’ paper (Woodruff et al. 2022).
It’s impossible to overstate how energizing it was to get new things done and out, and how much it helped to have collaborators who were putting wins on the board even when I was otherwise occupied. One of those collaborators was Jessie, who just kept pushing this thing forward — and, sometimes, pushing me forward — until it was done. So the paper you can read today is a testament not only to her acumen as a morphologist, but also to her tenacity as a scholar, and as a friend.
The part of the paper I’m happiest about is the “Conclusions and Directions for Future Research”, which points the way toward a LOT of further studies that need to be done, both on extant birds and on fossil archosaurs, ranging from bone histology to functional morphology to macroevolution. As we wrote in the concluding sentence of the paper, “We hope that this study serves as a foundation and an enticement for further studies of this most unusual anatomical system, in both extinct and extant archosaurs.”
I can’t wait to see what comes next.
References
- Atterholt, J., and Wedel, M. 2018. A CT-based survey of supramedullary diverticula in extant birds. 66th Symposium on Vertebrate Palaeontology and Comparative Anatomy, Programme and Abstracts, p. 30.
- Atterholt, Jessie, and Wedel, Mathew J. 2022. A computed tomography-based survey of paramedullary diverticula in extant Aves. The Anatomical Record, 1– 22. https://doi.org/10.1002/ar.24923
- Aureliano, Tito, Aline M. Ghilardi, Bruno A. Navarro, Marcelo A. Fernandes, Fresia Ricardi-Branco, & Mathew J. Wedel. 2021. Exquisite air sac histological traces in a hyperpneumatized nanoid sauropod dinosaur from South America. Scientific Reports 11: 24207.
- Taylor, Michael P., and Mathew J. Wedel. 2021. Why is vertebral pneumaticity in sauropod dinosaurs so variable? Qeios 1G6J3Q. doi:10.32388/1G6J3Q.5
- Wedel, M.J., Fiorillo, A., Maxwell, D., and Tykoski, R. 2014. Pneumatic diverticula associated with the spinal cord in birds, sauropod dinosaurs, and other ornithodiran archosaurs. 62nd Symposium on Vertebrate Palaeontology and Comparative Anatomy, Meeting Proceedings, p. 60.
- Wedel, Mathew; Atterholt, Jessie; Dooley, Jr., Alton C.; Farooq, Saad; Macalino, Jeff; Nalley, Thierra K.; Wisser, Gary; and Yasmer, John. 2021. Expanded neural canals in the caudal vertebrae of a specimen of Haplocanthosaurus. Academia Letters, Article 911, 10pp. DOI: 10.20935/AL911
- Woodruff, D. Cary, Wolff, Ewan D.S., Wedel, Mathew J., Dennison, Sophie, and Witmer, Lawrence M. 2022. The first occurrence of an avian-style respiratory infection in a non-avian dinosaur. Scientific Reports 12, 1954. https://doi.org/10.1038/s41598-022-05761-3
Matt Wedel will be yapping about Brachiosaurus. Again.
October 7, 2021
I have the honor of giving the National Fossil Day Virtual Lecture for The Museums of Western Colorado – Dinosaur Journey, next Wednesday, October 13, from 7:00 to 8:00 PM, Mountain Daylight Time. The title of my talk is “Lost Giants of the Jurassic” but it’s mostly going to be about Brachiosaurus. And since I have a whole hour to fill, I’m gonna kitchen-sink this sucker and put in all the good stuff, even more than last time. The talk is virtual (via Zoom) and free, and you can register at this link.
The photo up top is from this July. That’s John Foster (standing) and me (crouching) with the complete right humerus of Brachiosaurus that we got out of the ground in 2019; that story is here. The humerus is in the prep lab at the Utah Field House of Natural History State Park Museum in Vernal, and if you go there, you can peer through the tall glass windows between the museum’s central atrium and the prep lab and see it for yourself.
If you’ve forgotten what a humerus like that looks like in context, here’s the mounted Brachiosaurus skeleton at the North American Museum of Ancient Life with my research student, Kaelen Kay, for scale. Kaelen is 5’8″ (173cm) and as you can see, she can just get her hand on the animal’s elbow. The humerus–in this case, a cast of the right humerus from the Brachiosaurus altithorax holotype–is the next bone up the line. Kaelen came out with us this summer and helped dig up some more of our brachiosaur–more on that story in the near future.
Want more Brachiosaurus? Tune in next week. Here’s that registration link again. I hope to see you there!
Burpee PaleoFest 2020: my last conference
March 8, 2021
Last spring I was an invited speaker at PaleoFest at the Burpee Museum of Natural History in Rockford, Illinois. I meant to get these photos posted right after I got back. But I flew back from Illinois on Monday, March 9, 2020, and by the following weekend I was throwing together virtual anatomy labs for the med students. You know the rest.
I had a fantastic time at PaleoFest. The hosts were awesome, the talks were great, the Burpee is a cool museum to explore, and the swag was phenomenal.

An ontogenetic series of Triceratops skulls. Check out how the bony horn cores switch from back-curving to forward-curving. The keratin sheaths over the horn cores elongated, but they didn’t remodel, so adult trikes probably had S-curving horns.
I know I poke a lot of fun at non-sauropods around here, but the truth is that I’m a pan-dino-geek at heart. When I’m looking at theropods and ceratopsians I am mostly uncontaminated by specialist knowledge or a desire to work on them, so I can relax, and squee the good squee.

I’m a sucker for dinosaur skin. It’s just mind-blowing that we can tell more or less what it would feel like to pet a dinosaur.
Among the memorable talks last year: Win McLaughlin educated me about rhinos, which are a heck of a lot weirder than I thought; Larisa DeSantis gave a mind-expanding talk about mammalian diets, evolution, and environmental change; and Holly Woodward explained in convincing detail why “Nanotyrannus” is a juvenile T. rex.
But my favorite presentation of the conference was Susie Maidment’s talk on stegosaurs. It was one of the those great talks in which the questions I had after seeing one slide were answered on the next slide, and where by end of the presentation I had absorbed a ton of new information almost effortlessly, by just listening to an enthusiastic person talk almost conversationally about their topic. And when I say “effortlessly”, I mean for the audience–I know from long experience that presentations like that are born from deep, thorough knowledge of one’s topic, deliberate planning, and rehearsal.
That’s not to slight the other speakers, of course. All the talks were good, and that’s not an easy thing to pull off. Full credit to Josh Matthews and the organizing committee for putting on such an engaging and inspiring conference.
Did I say the swag was phenomenal? The swag was phenomenal. Above are just a few of my favorite things: a Burpee-plated Rite-in-the-Rain field notebook, a fridge magnet, a cool sticker, and at the center, My Precious: a personalized Estwing rock hammer. Estwing makes nice stuff, and a lot of paleontologists and field geologists carry Estwing rock hammers. Estwing is also based in Rockford, and they’ve partnered with the Burpee Museum to make these personalized rock hammers for PaleoFest, which is pretty darned awesome.
I already had an Estwing hammer–one of blue-grip models–which is good, because the engraved one is going in my office, not to the field. (If you’re wondering why my field hammer looks so suspiciously unworn, it’s because my original was stolen a few years ago, and I’m still breaking this one in. By doing stuff like this.)
There’s a little Burpee logo with a silhouette of Jane down at the end of the handle, so I had to take Jane to meet Jane.
Parting shot: I grew up in a house out in the country, about 2 miles outside of the tiny town of Hillsdale, Oklahoma, which is about 20 miles north of Enid, which is about 100 miles north-northwest of Oklahoma City. Hillsdale is less than an hour from Salt Plains National Wildlife Refuge, where you can go dig for selenite crystals like the ones shown above. The digging is only allowed in designated areas, to avoid unexploded ordnance from when the salt plains were used as a bombing range in World War II, and at certain times of year, to avoid bothering the endangered whooping cranes that nest there.
I don’t know how many times I went to Salt Plains to dig crystals as a kid, either on family outings or school field trips, but it was a lot. I still have a tub of them out in the garage (little ones, nothing like museum-quality). And there are nice samples, like the one shown above, in the mineral hall of just about every big natural history museum on the planet. One of my favorite things to do when I visit a new museum is go cruise the mineral display and find the selenite crystals from Salt Plains. I’ve seen Salt Plains selenite in London, Berlin, and Vienna, and in most of the US natural history museums that I’ve visited for research or for fun. The farm boy in me still gets a little thrill at seeing a little piece of northwest Oklahoma, from a place that I’ve been and dug, on display in far-flung cities.
I already credited Josh Matthews for organizing a fabulous conference, but I need to thank him for being such a gracious host. He helped me arrange transportation, saw that all my needs were met, kept me plied with food and drink, and drove me to Chicago, along with a bunch of other folks, for a Field Museum visit before my flight home, which is how I got this awesome photo, and also these awesome photos. Thanks also to my fellow speakers, for many fascinating conversations, and to the PaleoFest audience, for bringing their A game and asking good questions. I didn’t know that PaleoFest 2020 would be my last conference for a while, but it was certainly a good one to go out on.
A funny thing happened on the way to the Shiny Digital Future
February 4, 2021

Picture is unrelated. Seriously. I’m just allergic to posts with no visuals. Stand by for more random brachiosaurs.
Here’s something I’ve been meaning to post for a while, about my changing ideas about scholarly publishing. On one hand, it’s hard to believe now that the Academic Spring was almost a decade ago. On the other, it’s hard for me to accept that PeerJ will be only 8 years old next week–it has loomed so large in my thinking that it feels like it has been around much longer. The very first PeerJ Preprints went up on April 4, 2013, just about a month and a half after the first papers in PeerJ. At that time it felt like things were moving very quickly, and that the landscape of scholarly publishing might be totally different in just a few years. Looking back now, it’s disappointing how little has changed. Oh, sure, there are more OA options now — even more kinds of OA options, and things like PCI Paleo and Qeios feel genuinely envelope-pushing — but the big barrier-based publishers are still dug in like ticks, and very few journals have fled from those publishers to re-establish themselves elsewhere. APCs are ubiquitous now, and mostly unjustified and ruinously expensive. Honestly, the biggest changes in my practice are that I use preprint servers to make my conference talks available, and I use SciHub instead of interlibrary loan.
But I didn’t sit down to write this post so I could grumble about the system like an old hippie. I’ve learned some things in the past few years, about what actually works in scholarly publishing (at least for me), and about my preferences in some areas, which turn out to be not what I expected. I’ll focus on just two areas today, peer review, and preprints.
How I Stopped Worrying and Learned to Love Peer Review
Surprise #1: I’m not totally against peer review. I realize that the way it is implemented in many places is deeply flawed, and that it’s no guarantee of the quality of a paper, but I also recognize its value. This is not where I was 8 years ago; at the time, I was pretty much in agreement with Mike’s post from November, 2012, “Well, that about wraps it up for peer-review”. But then in 2014 I became an academic editor at PeerJ. And as I gained first-hand experience from the other side of the editorial desk, I realized a few things:
- Editors have broad remits in terms of subject areas, and without the benefit of peer reviews by people who specialize in areas other than my own, I’m not fit to handle papers on topics other than Early Cretaceous North American sauropods, skeletal pneumaticity, and human lower extremity anatomy.
- Even at PeerJ, which only judges papers based on scientific soundness, not on perceived importance, it can be hard to tell where the boundary is. I’ve had to reject a few manuscripts at PeerJ, and I would not have felt confident about doing that without the advice of peer reviewers. Even with no perceived importance criterion, there is definitely a lower bound on what counts as a publishable observation. If you find a mammoth toe bone in Nebraska, or a tyrannosaur tooth in Montana, there should probably be something more interesting to say about it, beyond the bare fact of its existence, if it’s going to be the subject of a whole paper.
- In contentious fields, it can be valuable to get a diversity of opinions. And sometimes, frankly, I need to figure out if the author is a loony, or if it’s actually Reviewer #2 that’s off the rails. Although I think PeerJ generally attracts fairly serious authors, a handful of things that get submitted are just garbage. From what I hear, that’s the case at almost every journal. But it’s not always obvious what’s garbage, what’s unexciting but methodologically sound, and what’s seemingly daring but also methodologically sound. Feedback from reviewers helps me make those calls. Bottom line, I do think the community benefits from having pre-publication filters in place.
- Finally, I think editors have a responsibility to help authors improve their work, and reviewers catch a lot of stuff that I would miss. And occasionally I catch something that the reviewers missed. We are collectively smarter and more helpful than any of us would be in isolation, and it’s hard to see that as anything other than a good thing.
The moral here probably boils down to, “white guy stops bloviating about Topic X when he gains actual experience”, which doesn’t look super-flattering for me, but that’s okay.
You may have noticed that my pro-peer-review comments are rather navel-gaze-ly focused on the needs of editors. But who needs editors? Why not chuck the whole system? Set up an outlet called Just Publish Everything, and let fly? My answer is that my time in the editorial trenches has convinced me that such a system will silt up with garbage papers, and as a researcher I already have a hard enough time keeping up with all of the emerging science that I need to. From both perspectives, I want there to be some kind of net to keep out the trash. It doesn’t have to be a tall net, or strung very tight, but I’d rather have something than nothing.
What would I change about peer review? Since it launched, PeerJ has let reviewers either review anonymously, or sign their reviews, and it has let authors decide whether or not to publish the reviews alongside the paper. Those were both pretty daring steps at the time, but if I could I’d turn both of those into mandates rather than options. Sunlight is the best disinfectant, and I think almost all of the abuses of the peer review system would evaporate if reviewers had to sign their reviews, and all reviews were published alongside the papers. There will always be a-holes in the world, and some of them are so pathological that they can’t rein in their bad behavior, but if the system forced them to do the bad stuff in the open, we’d all know who they are and we could avoid them.

Femur of Apatosaurus and right humerus Brachiosaurus altithorax holotype on wooden pedestal (exhibit) with labels and 6 foot ruler for scale, Geology specimen, Field Columbian Museum, 1905. (Photo by Charles Carpenter/Field Museum Library/Getty Images)
Quo Vadis, Preprints?
Maybe the advent of preprints was more drawn out than I know, but to me it felt like preprints went from being Not a Thing, Really, in 2012, to being ubiquitous in 2013. And, I thought at the time, possibly transformative. They felt like something genuinely new, and when Mike and I posted our Barosaurus preprint and got substantive, unsolicited review comments in just a day or two, that was pretty awesome. Which is why I did not expect…
Surprise #2: I don’t have much use for preprints, at least as they were originally intended. When I first confessed this to Mike, in a Gchat, he wrote, “You don’t have a distaste for preprints. You love them.” And if you just looked at the number of preprints I’ve created, you might get that impression. But the vast majority of my preprints are conference talks, and using a preprint server was just the simplest way to the get the abstract and the slide deck up where people could find them. In terms of preprints as early versions of papers that I expect to submit soon, only two really count, neither more recent than 2015. (I’m not counting Mike’s preprint of our vertebral orientation paper from 2019; he’s first author, and I didn’t mind that he posted a preprint, but neither is it something I’d have done if the manuscript was mine alone.)
My thoughts here are almost entirely shaped by what happened with our Barosaurus preprint. We put it up on PeerJ Preprints back in 2013, we got some useful feedback right away, and…we did nothing for a long time. Finally in 2016 we revised the manuscript and got it formally submitted. I think we both expected that since the preprint had already been “reviewed” by commenters, and we’d revised it accordingly, that formal peer review would be very smooth. It was not. And the upshot is that only now, in 2021, are we finally talking about dealing with those reviews and getting the manuscript resubmitted. We haven’t actually done this, mind, we’re just talking about planning to make a start on it. (Non-committal enough for ya?)
Why has it taken us so long to deal with this one paper? We’re certainly capable — the two of us got four papers out in 2013, each of them on a different topic and each of them substantial. So why can’t we climb Mount Barosaurus? I think a big part of it is that we know the world is not waiting for our results, because our results are already out in the world. We’re the only ones being hurt by our inaction — we’re denying ourselves the credit and the respect that go along with having a paper finally and formally published in a peer-reviewed journal. But we can comfort ourselves with the thought that if someone needs our observations to make progress on their own project, we’re not holding them up. Just having the preprint out there has stolen some of our motivation to the get the paper done and out, apparently enough to keep us from doing it at all.
Mike pointed out that according to Google Scholar, our Barosaurus preprint has been cited five times to date, once in its original version and four times in its revised version. But to me, the fact that the Baro manuscript has been cited five times is a fail. Because all of my peer-reviewed papers from 2014-2016, which have been out for less long, have been cited more. So I read that as people not wanting to cite it. And who can blame them? Even I thought it would be supplanted by the formally-published, peer-reviewed paper within a few weeks or months.
Mike then pointed me to his 2015 post, “Four different reasons to post preprints”, and asked how many of those arguments still worked for me now. Number 2 is good, posting material that would otherwise never see the light of day — it’s basically what I did when I put my dissertation on arXiv. Ditto for 4, which is posting conference presentations. I’m not moved by either 1 or 3. Number 3 is getting something out to the community as quickly as possible, just because you want to, and number 1 is getting feedback as quickly as possible. The reason that neither of those move me is that they’re solved to my satisfaction by existing peer-reviewed outlets. I don’t know of any journals that let reviewers take 2-4 months to review a paper anymore. I don’t know how much credit for the acceleration should go to PeerJ, which asks for reviews in 10 to 14 days, but surely some. And I don’t usually have a high enough opinion of my own work to think that the community will suffer if it takes a few months for a paper to come out through the traditional process.
(If it seems like I’m painting Mike as relentlessly pro-preprint, it’s not my intent. Rather, I’d dropped a surprising piece of news on him, and he was strategically probing to determine the contours of my new and unexpected stance. Then I left the conversation to come write this post while the ideas were all fresh in my head. I hope to find out what he thinks about this stuff in the comments, or ideally in a follow-up post.)
Back to task: at least for me, a preprint of a manuscript I’m going to submit anyway is a mechanism to get extra reviews I don’t want*, and to lull myself into feeling like the work is done when it’s not. I don’t anticipate that I will ever again put up a preprint for one of my own manuscripts if there’s a plausible path to traditional publication.
* That sounds awful. To people who have left helpful comments on my preprints: I’m grateful, sincerely. But not so grateful that I want to do the peer review process a second time for zero credit. I didn’t know that when I used to file preprints of manuscripts, but I know it now, and the easiest way for me to not make more work for both of us is to not file preprints of things I’m planning to submit somewhere anyway.
So much for my preprints; what about those of other people? Time for another not-super-flattering confession: I don’t read other people’s preprints. Heck, I don’t have time to keep up with the peer-reviewed literature, and I have always been convinced by Mike’s dictum, “The real value of peer-review is not as a mark of correctness, but of seriousness” (from this 2014 post). If other people want me to part with my precious time to engage with their work, they can darn well get it through peer review. And — boomerang thought — that attitude degrades my respect for my own preprint manuscripts. I wouldn’t pay attention to them if someone else had written them, so I don’t really expect anyone else to pay attention to the ones that I’ve posted. In fact, it’s extremely flattering that they get read and cited at all, because by my own criteria, they don’t deserve it.
I have to stress how surprising I find this conclusion, that I regard my own preprints as useless at best, and simultaneously extra-work-making and motivation-eroding at worst, for me, and insufficiently serious to be worthy of other people’s time, for everyone else. It’s certainly not where I expected to end up in the heady days of 2013. But back then I had opinions, and now I have experience, and that has made all the difference.
The comment thread is open. What do you think? Better still, what’s your experience?
Werner Janensch, Wannabe, Lovefool
November 22, 2019
Here’s how I got my start in research. Through a mentorship program, I started volunteering at the Oklahoma Museum of Natural History in the spring of 1992, when I was a junior in high school. I’d been dinosaur-obsessed from the age of three, but I’d never had an anatomy course and didn’t really know what I was doing. Which is natural! I had no way of knowing what I was doing because I lacked training. Fortunately for me, Rich Cifelli took me under his wing and showed me the ropes. I started going out on digs, learned the basics of curatorial work, how to mold and cast fossils, how to screenwash matrix and then pick microfossils out of the concentrate under a dissecting microscope, and—perhaps most importantly—how to make a rough ID of an unidentified bone by going through the comparative element collection until I found the closest match.
All set, right? Ignition, liftoff, straight path from there to here, my destiny unrolling before me like a red carpet.
No.
It could have gone that way, but it didn’t. I had no discipline. I was a high-achieving high school student, but it was all to satisfy my parents. When I got to college, I didn’t have them around to push me anymore, and I’d never learned to push myself. I went off the rails pretty quickly. Never quite managed to lose my scholarships, without which I could not have afforded to be in college, period, but I skimmed just above the threshold of disaster and racked up a slate of mediocre grades in courses from calculus to chemistry. I even managed to earn a C in comparative anatomy, a fact which I am now so good at blocking out that I can go years at a time without consciously recalling it.
After three years of this, I had the most important conversation of my life. Because I was a zoology major I’d been assigned a random Zoology Dept. faculty member as an undergrad advisor. I was given to Trish Schwagmeyer, not because we got on well (we did, but that was beside the point) or had similar scientific interests, just luck of the draw. And it was lucky for me, because in the spring of 1996 Trish looked at my grades from the previous semester, looked me in the eye, and said, “You’re blowing it.” She then spent the next five minutes explaining in honest and excruciating detail just how badly I was wrecking my future prospects. I’ve told this story before, in this post, but it bears repeating, because that short, direct, brutal-but-effective intervention became the fulcrum for my entire intellectual life and future career.
Roughly an hour later I had the second most important conversation of my life, with Rich Cifelli. While I’d been lost in the wilderness my museum volunteering had petered out to zero, and Rich would have been completely justified in telling me to get lost. Not only did he not do that, he welcomed me back into the fold, in a terrifyingly precise recapitulation of the Biblical parable of the prodigal son. When I asked Rich if I could do an independent study with him in the next semester, he thought for a minute and said, “Well, we have these big dinosaur vertebrae from the Antlers Formation that need to be identified.” Which is how, at the age of 21, with a rubble pile of an academic transcript and no real accomplishments to stand on, I got assigned to work on OMNH 53062, the future holotype of Sauroposeidon proteles.
I was fortunate in four important ways beyond the forgiveness, patience, and generosity of Richard Lawrence Cifelli:
- OMNH 53062 was woefully incomplete, just three and a half middle cervical vertebrae, which meant that the project was small enough in concept to be tractable as an independent study for an undergrad. Rich and I both figured that I’d work on the vertebrae for one semester, come up with a family-level identification, and maybe we’d write a two-pager for Oklahoma Geology Notes documenting the first occurrence of Brachiosauridae (or whatever it might turn out to be) in the vertebrate fauna of the Antlers Formation.
- Because the specimen was so incomplete, no-one suspected that it might be a new taxon, otherwise there’s no way such an important project would have been assigned to an undergrad with a spotty-to-nonexistent track record.
- Despite the incompleteness, because the specimen consisted of sauropod vertebrae, it held enough characters to be identifiable–and eventually, diagnosable. Neither of those facts were known to me at the time.
- All of Rich’s graduate students were already busy with their own projects, and nobody else was about to blow months of time and effort on what looked like an unpromising specimen.
There is a risk here, in that I come off looking like some kind of kid genius for grasping the importance of OMNH 53062, and Rich’s other students look like fools for not seeing it themselves. It ain’t like that. The whole point is that nobody grasped the importance of the specimen back then. It would take Rich and me a whole semester of concentrated study just to come to the realization that OMNH 53062 might be distinct enough to be diagnosable as a new taxon, and a further three years of descriptive and comparative work to turn that ‘maybe’ into a paper. People with established research programs can’t afford to shut down everything else and invest six months of study into every incomplete, garbage-looking specimen that comes down the pike, on the off chance that it might be something new. Having the good judgment to not pour your time down a rat-hole is a prerequisite for being a productive researcher. But coming up with a tentative ID of an incomplete, garbage-looking specimen is a pretty good goal for a student project: the student learns some basic comparative anatomy and research skills, the specimen gets identified, no existing projects get derailed, and no-one established wastes their time on what is most likely nothing special. If the specimen does turn out to be important, that’s gravy.
So there’s me at the start of the fall of 1996: with a specimen to identify and juuuust enough museum experience, from my high school mentorship, to not be completely useless. I knew that one identified a fossil by comparing it to known things and looking for characters in common, but I didn’t know anything about sauropods or their vertebrae. Rich got me started with a few things from his academic library, I found a lot more in OU’s geology library, and what I couldn’t find on campus I could usually get through interlibrary loan. I spent a lot of time that fall standing at a photocopier, making copies of the classic sauropod monographs by Osborn, Hatcher, Gilmore, Janensch, and others, assembling the raw material to teach myself sauropod anatomy.
In addition to studying sauropods, I also started going to class, religiously, and my grades rose accordingly. At first I was only keeping up with my courses so that I would be allowed to continue doing research; research was the carrot that compelled me to become a better student. There was nothing immediate or miraculous about my recovery, and Rich would have to give me a few well-deserved figurative ass-kickings over the next few years when I’d occasionally wander off course again. But the point was that I had a course. After a few months I learned—or remembered—to take pride in my coursework. I realized that I had never stopped defining myself in part by my performance, and that when I’d been adrift academically I’d also been depressed. It felt like crawling out of a hole.
(Aside: I realize that for many people, depression is the cause of academic difficulty, not the reverse, and that no amount of “just working harder” can offset the genuine biochemical imbalances that underlie clinical depression. I sympathize, and I wish we lived in a world where everyone could get the evaluation and care that they need without fear, stigma, crushing financial penalties, or all of the above. I’m also not describing any case here other than my own.)
Out of one hole, into another. The biggest problem I faced back then is that if you are unfamiliar with sauropod vertebrae they can be forbiddingly complex. The papers I was struggling through referred to a pandemonium of laminae, an ascending catalog of horrors that ran from horizontal laminae and prespinal laminae through infraprezygapophyseal laminae and spinopostzygapophyseal laminae. Often these features were not labeled in the plates and figures, the authors had just assumed that any idiot would know what a postcentrodiapophyseal lamina was because, duh, it’s right there in the name. But that was the whole problem: I didn’t know how to decode the names. I had no map. SV-POW! tutorials didn’t exist. Jeff Wilson’s excellent and still-eminently-useful 1999 paper codifying the terminology for sauropod vertebral laminae was still years in the future.
Then I found this, on page 35 of Werner Janensch’s 1950 monograph on the vertebrae of what was then called Brachiosaurus brancai (now Giraffatitan):
It was in German, but it was a map! I redrew it by hand in my very first research notebook, and as I was copying down the names of the features the lightbulb switched on over my head. “Diapophyse” meant “diapophysis”, and it was the more dorsal of the two rib attachments. “Präzygapophyse” was “prezygapophysis”, and it was one of the paired articular bits sticking out the front of the neural arch. And, crucially, “Präzygodiapophysealleiste” had to be the prezygodiapophyseal lamina, which connected the two. And so on, for all of the weird bits that make up a sauropod vertebra.
It’s been 22 years and I still remember that moment of discovery, my pencil flying across the page as I made my own English translations of the German anatomical terms, my mind buzzing with the realization that I was now on the other side. Initiated. Empowered. I felt like I had pulled the sword from the stone, found Archimedes’ lever that could move the world. In the following weeks I’d go back through all of my photocopied sauropod monographs with my notebook open to the side, reading the descriptions of the vertebrae for the second or third times but understanding them for the first time, drawing the vertebrae over and over again until I could call up their basic outlines from memory. This process spilled over from the fall of 1996 into the spring of 1997, as Rich and I realized that OMNH 53062 would require more than one semester of investigation.
My memories of those early days of my sauropod research are strongly shaped by the places and circumstances in which I was doing the work. Vicki and I had gotten married in the summer of 1996 and moved into a two-bedroom duplex apartment on the north side of Norman. The upstairs had a long, narrow bathroom with two sinks which opened at either end onto the two upstairs bedrooms, the one in which we slept and the one we used as a home office. In the mornings I could get showered and dressed in no time, and while Vicki was getting ready for work or school I’d go into the office to read sauropod papers and take notes. Vicki has always preferred to have music on while she completes her morning rituals, so I listened to a lot of Top 40 hits floating in from the other upstairs rooms while I puzzled out the fine details of sauropod vertebral anatomy.
Two songs in particular could always be counted on to play in any given hour of pop radio in the early spring of 1997: Wannabe by the Spice Girls, and Lovefool by the Cardigans. I am surely the only human in history to have this particular Pavlovian reaction, but to this day when I hear either song I am transported back to that little bedroom office where I spent many a morning poring over sauropod monographs, with my working space illuminated by the light of the morning sun pouring through the window, and my mind illuminated by Werner Janensch, who had the foresight and good grace to give his readers a map.
If you want to know what I thought about OMNH 53062 back in 1997, you can read my undergraduate thesis—it’s a free download here. Looking back now, the most surprising thing to me about that thesis is how few mentions there are of pneumaticity. I met Brooks Britt in the summer of 1997 and had another epochal conversation, in which he suggested that I CT scan OMNH 53062 to look at the air spaces inside the vertebrae. I filed my undergrad thesis in December of 1997, and the first session CT scanning OMNH 53062 took place in January, 1998. So in late 1997 I was still a pneumaticity n00b, with no idea of the voyage I was about to embark upon.
In 2010, after I was settled in as an anatomist at Western University of Health Sciences, I wrote a long thank-you to Trish Schwagmeyer. It had been 14 years since that pivotal conversation, but when she wrote back to wish me well, she still remembered that I’d gotten a C in comparative anatomy. I’d have a chance to make amends for that glaringly anomalous grade later the same year. At ICVM in Punta del Este, Uruguay, I caught up with Edie Marsh-Matthews, who had taught my comparative anatomy course back when. I apologized for having squandered the opportunity to learn from her, and she graciously (and to my relief) shifted the conversation to actual comparative anatomy, the common thread that connected us in the past and the present.
If the story has a moral, it’s that I owe my career in large part to people who went out of their way to help me when I was floundering. And, perhaps, that the gentle approach is not always the best one. I needed to have my head thumped a few times, verbally, to get my ass in gear, when less confrontational tactics had failed. I slid easily through the classrooms of dozens of professors who watched me get subpar grades and didn’t try to stop me (counterpoint: professors are too overworked to invest in every academic disaster that comes through the door, just like paleontologists can’t study every garbage specimen). If Trish Schwagmeyer and Rich Cifelli had not decided that I was worth salvaging, and if they not had the grit to call me out on my BS, I wouldn’t be here. As an educator myself now, that thought haunts me. I hope that I will be perceptive enough to know when a student is struggling not because of a lack of ability but through a lack of application, wise enough to know when to deploy the “you’re blowing it” speech, and strong enough to follow through.
References
- Gilmore Charles W. 1936. Osteology of Apatosaurus, with special reference to specimens in the Carnegie Museum. Memoirs of the Carnegie Museum 11:175–300 and plates XXI–XXXIV.
- Janensch, Werner. 1950. Die Wirbelsaule von Brachiosaurus brancai. Palaeontographica (Suppl. 7) 3: 27-93.
- Wedel, M.J. 1997. A new sauropod from the Early Cretaceous of Oklahoma. Undergraduate honor thesis, Department of Zoology, University of Oklahoma, Norman, OK. 43pp.
- Wilson, J.A. 1999. A nomenclature for vertebral laminae in sauropods and other saurischian dinosaurs. Journal of Vertebrate Paleontology 19: 639-653.
Final bonus image so when I post this to Facebook, it won’t grab the next image in line and crop it horribly to make a preview. This is me with OMNH 1670, in 2003 or 2004, photo by Andrew Lee.
My sauroponderous birthday card from Brian Engh
June 3, 2019
Okay, so here on the Best Coast it’s not technically my birthday for another 3 hours, but SV-POW! runs on England time, and at the SV-POW! global headquarters bunker it’s already June 3. Oh, and tomorrow Brian and I are driving to New Mexico to look for Cretaceous monsters with Andrew McDonald and crew, and I won’t be advantageously situated for blogging. So here’s my Favorite. Card. EVAR:
Two navel-gazey announcements: book signing in Pittsburgh this Sunday, and Medlife Crisis video
March 5, 2019
No time for a long post today, but there are a couple of cool developments I wanted to let you know about. The folks at the Barnes & Noble Settlers Ridge store in Pittsburgh got in touch and asked if I’d give a short talk and do a book signing while I’m in town. That will be this coming Sunday, March 10, at 1:00 PM, in the children’s section at that store, which is located at 800 Settlers Ridge Center Drive. They’ll have copies of my big sauropod book with Mark Hallett, and my kid’s book that came out last fall. Come on out if you’re in the area and interested.
In other news, the excellent Medlife Crisis channel on YouTube recently did a video on the recurrent laryngeal nerve and gave a nice shout-out to my 2012 paper. The video is five minutes long and — in my heavily biased opinion — well worth a watch:
My new dinosaur book for kids is out
November 16, 2018
Late last year I got tapped by the good folks at Capstone Press to write a dinosaur book for their Mind Benders series for intermediate readers. Now it’s out. (In fact, it’s been out for a couple of months now, I’ve just been too busy with other things to get this post up.) Covers all the major groups and some of the minor ones, includes a timeline and evolutionary tree, 112 pages, $6.95 in paperback. Despite the short, punchy, 2-3 facts per critter format, I tried to pack in as many new findings and as much weird trivia as possible, so hopefully it won’t all be old news (facts chosen for the cover notwithstanding). Suggested age range is grades 1-6 but who knows what that means; one of the best reviews that Mark Hallett and I got for our big semi-technical sauropod tome was written by a 6-year-old. Many thanks to my editors at Capstone, Shelly Lyons and Marissa Bolte, for helping me get it over the finish line and wrangling about a trillion details of art and science along the way.
If you need a gateway drug or stocking stuffer for a curious kid, give it a look. Here’s the Amazon link (and for teachers, librarians, and my future reference, the publisher’s link).