Matt dropped me a line midweek about the catalogue of complete sauropod necks, with some interesting thoughts. He broke down the necks as listed across a basic phylogeny of sauropods, and counted the occurrences:

Simplified phylogeny of Sauropoda, showing counts of complete and near-complete necks. Captions: C, complete and described; U, complete but undescribed; –1, missing the atlas but otherwise complete; O, other near-complete necks; T, total.

Matt and I were both surprised to see that non-neosauropods are quite well represented, both inside and outside of Mamenchisauridae — although it’s a pity that two of those ten specimens are of Jobaria, for which we have next to zero information.

Diplodocoids are surprisingly poorly represented, with essentially just one each in Dicraeosauridae and Diplodocidae that are complete. And brachiosaurids are a black hole, with absolutely no representation — see the 2015 preprint for details on how unconvincing the neck of Giraffatitan is.

But camarasaurids are crushing it, probably just by being the most abundant sauropods of all time in terms of individual specimens in museums. (Of course when we say “camarasaurids”, we just mean Camarasaurus, which is the only named sauropod currently considered to belong to Camarasauridae unless you follow Mateus and Tschopp (2013) in considering Cathetosaurus to be generically distinct. But Matt and I both suspect that Camarasaurus is way over-lumped, so we’ll see how this pans out over the next decade or two.)

It’s surprising, though, that the second and third best represented sauropods in museums, Diplodocus and Apatosaurus, are both barely represented in terms of complete necks. And while it’s encouraging to see quite a few complete and nearly-complete necks among somphospondyls, including titanosaurs,it’s disappointing that about half of them are not yet described.


A couple of months ago, I asked for your help in compiling a list of all known complete sauropods necks. This has gone really well, and I want to thank everyone who chipped in, and all the various authors I have contacted for details as a result.

My next step is to take the raw data in the Google spreadsheet that I have been maintaining, and write it up as prose for the paper that I am shortly going to resubmit, having first done so back in 2015. And I thought it would make sense to draft that section here on SV-POW!, so I can get any further feedback before I finalize it for the manuscript.

Young and Zhao (1972:figure 3). Mamenchisaurus hochuanensis holotype CCG V 20401 as is occurred in the field.

So here goes: any additional comments at this stage will be welcome!

Unambiguously complete necks are known from published accounts of only a few sauropod specimens. In chronological order of description, the following specimens were found with their necks complete and articulated, and have been adequately described:

  • CM 11338, a referred specimen of Camarasaurus lentus described by Gilmore (1925). This is a juvenile specimen, and thus does not fully represent the adult morphology. (McIntosh et al. 1996:76 claim that this specimen is the holotype, but this is not correct: YPM 1910 is the holotype — see below.)
  • CM 3018, the holotype of Apatosaurus louisae, described by Gilmore (1936). The neck was separated from the torso but articulated from C1–C15, though the last three cervicals were badly crushed: see below for details.
  • CCG V 20401, the Mamenchisaurus hochuanensis holotype, described by Young and Zhao (1972). Each vertebra is broken in half at mid-length, with the posterior part of each adhering to the anterior part of the its successor; and all the vertebrae are badly crushed in an oblique plane.
  • ZDM T5402, a Shunosaurus lii referred specimen, described in Chinese by Zhang (1988), with English figure captions. Figure 22 depicts the atlas. Unlike the holotype T5401, this specimen is mature.
  • BYU 9047, the Cathetosaurus lewisi holotype, described by Jensen (1988). (Jensen incorrectly gives the specimen number as BYU 974.) This specimen was redescribed, and the species referred to Camarasaurus, by McIntosh et al. (1996). Although all 12 cervicals are present, “10–12, particularly 12, have suffered such severe damage that it is impossible to restore them” (McIntosh et al. 1996:76).
  • MACN-N 15, the holotype of Amargasaurus cazaui MACN-N 15, described by Salgado and Bonaparte (1991) who desribed “22 presacral vertebrae articulated with each other and attached to the skull and sacrum, relatively complete” (Salgado & Bonaparte 1991:335, translated.
  • ZDM 0083, the holotype of Mamenchisaurus youngi, described in Chinese by Ouyang and Ye (2002) with English figure captions. Figure 14 depicts the atlas and axis.
  • MUCPv-323, the holotype of Futalognkosaurus dukei, initially described by Calvo et al. 2007a and redescribed by Calvo et al. 2007b. The neck was found in two articulated sections which fit together without needing additional vertebrae in between (Jorge O. Calvo, pers. comm., 2021).
  • SSV12001, the holotype of Xinjiangtitan shanshanesis, described by Zhang et al. (2018). The original description of this specimen by Wu et al. 2013 included only the last two cervicals, which were the only ones that had been excavated at that time.

A few additional specimens are known to have complete and articulated necks, but have not yet been described:

  • USNM 13786, a referred subadult specimen of Camarasaurus lentus recently mounted at the Smithsonian. The specimen “was almost completely buried before the sinews had allowed the bones to separate” (letter from Earl Douglass to William J. Holland, 22 August 1918), and photographs kindly supplied by Andrew Moore show that the atlas was preserved.
  • MNBH TIG3, the holotype of Jobaria tiguidensis. Sereno et al. (1999:1343) assert that this species has 12 cervicals in all and say “One articulated neck was preserved in a fully dorsiflexed, C-shaped posture”. Sereno (pers. comm., 2021) confirms that the articulated neck is MNBH TIG3
  • SMA 002, referred to Camarasaurus sp. Tschopp et al. (2016), in a description of its feet, say that this specimen “lacks only the vomers, the splenial bones, the distal end of the tail, and one terminal phalanx of the right pes. The bones are preserved in three dimensions and in almost perfect articulation”.
  • MAU-Pv-LI-595, the “La Invernada” Titanosaur. Filippi et al. (2016) give a very brief account in an abstract. Filippi, pers. comm, 2021) says that the entire preserved specimen was articulated.
  • MAU-Pv-AC-01, an unnamed titanosaur mentioned in abstracts by Calvo et al. (1997) and Coria and Salgado (1999). The specimen was found in perfect articulation from skull down to the last caudal vertebrae (Rodolfo Coria, pers. comm., 2021).

The first cervical (the atlas) in sauropods is very different in form from the other vertebrae, and small and fragile. Consequently it is easily lost. Some further specimens have necks that are complete and articulated from C2 (the axis) backwards:

  • MB.R.4886, the holotype of Dicraeosaurus hansemanni, described by Janensch (1929), has a neck that complete and well preserved from C2 to C12 (the last cervical). Janensch referred to this as “specimen m” and writes “It was found articulated from the 19th caudal vertebra to the 9th cervical vertebra inclusive. The proximal part of the neck from the 8th cervical vertebra up to the axis was bent ventrally and lay at right angles to the distal part of the neck.” (Janensch 1929:41).
  • PMU 233, the holotype of Euhelopus zdanskyi, described by Wiman (1929) as “exemplar a” and redescribed by Wilson and Upchurch (2009).
  • ZDM T5401, the subadult holoype of Shunosaurus lii, described in Chinese by Zhang et al 1984. The quarry map (Zhang et al. 1984:figure 1) suggests that the atlas is missing.
  • MCT 1487-R, informally known as “DGM Series A”, described by Powell (2003). Gomani (2005:9) summarises as “12 cervical vertebrae, except the atlas, preserved in articulation with three proximal dorsal vertebrae”.
  • GCP-CV-4229, the holotype of Spinophorosaurus nigerensis, described by Remes et al. (2009). The specimen was found in very good condition and well articulated from C2 to C13, the last cervical. The atlas seems to be missing (Remes, pers. comm., 2021.

One other sauropod is complete from the first cervical, but probably not to the last:

  • MOZ-Pv1232, the holotype of Lavocatisaurus agrioensis, described by Canudo et al. (2018). This is complete from C1-C11. Canudo’s guess is that this is complete neck (Canudo, pers. comm, 2021), but the specimen doesn’t demand that conclusion and no known eusauropod has fewer than 12 cervicals.

Other sauropod specimens have necks that are complete and articulated from further back in the cervical sequence:

  • YPM 1910, Camarasaurus lentus, a mounted specimen described by Lull (1930). The neck is complete from C2 or C3, Lull was uncertain which.
  • SMA 0004, Kaatedocus siberi, described by Tschopp and Mateus (2012). Cervicals 3-14 are preserved.
  • AODF 888 (informally “Judy”), probably referrable to Diamantinasaurus, briefly described by Poropat et al. (2019). Preserved from C3 or maybe C4. “One posterior cervical (XIII or XIV) found several metres from articulated series, but appears to slot nicely into the gap between the articulated cervical series and the unprepared thoracic section, which might include at least one additional cervical (XIV or XV)” (Poropat, pers. comm. 2021).

Several necks are probably nearly complete, but it is not possible to knew due to their not being found in articulation:

  • CM 84, the holotype of Diplodocus carnegii, described by Hatcher (1901). C2–C15 are preserved, though not all in articulation; C11 may be an intrusion: see below for details.
  • ZDM T5701, the holotype of Omeisaurus tianfuensis, described by He et al. (1988). The neck was not articulated (He et al. 1988:figure 1), and was missing “two elements or so” (He et al. 1988:120).
  • QJGPM 1001, the holotype of Qijianglong guokr, described by Xing et al. (2015). On page 8, the authors say “The axis to the 11th cervical vertebra were fully articulated in the quarry. The atlas intercentrum and the 12th–17th cervical vertebrae were closely associated with the series.”
  • MNBH TIG9, a referred specimen of Jobaria tiguidensis. Wilson (2012:103) writes that this specimen “includes a partially articulated series of 19 vertebrae starting from the axis and extending through the mid-dorsal vertebrae.”
  • MNBH TIG6, another referred specimen of Jobaria tiguidensus, which has not been mentioned in the literature. Sereno (pers. comm., 2021) says that it is “a subadult partial skeleton with excellent neck” and that “the sequence was articulated from C2–11. Most of the ribs were attached as well.”

At the time of writing, the Paleobiology Database ( lists more than 270 sauropod species. The nine unambigously complete and articulated necks therefore represent only one in 30 known sauropod species.

Note. The Jobaria tiguidensis individuals previously had specimen numbers beginning MNN, but the Musee National du Niger changed its name to Musée National Boubou Hama and the specimen numbers have changed with it.

What if I told you that when Matt was in BYU collections a while ago, he stumbled across a cervical vertebra — one labelled DM/90 CVR 3+4, say — that looked like this in anterior view?

I think you would say something like “That looks like a Camarasaurus cervical, resembling as it does those illustrated in the beautiful plates of Osborn and Mook (1921)”. And then you might show me, for example, the left half of Plate LXII:

And then you might think to yourself that, within its fleshy envelope, this vertebra might have looked a bit like this, in a roughly circular neck:

Reasonable enough, right?

But when what if I then told you that in fact the vertebra was twice this wide relative to its height, and looked like this?

I’m guessing you might say “I don’t believe this is real. You must have produced it by stretching the real photo”. To which I would reply “No no, hypothetical interlocutor, the opposite is the case! I squashed the real photo — this one — to produce the more credible-seeming one at the top of the post”.

You would then demand to see proper photographic evidence, and I would respond by posting these three images (which Matt supplied from his 2019 BYU visit):

BYU specimen DM/90 CVR 3+4, cervical vertebra of ?Camarasaurus in anterior view. This is the photo from which the illustration above was extracted.

The same specimen in anteroventral view.

The same specimen in something approaching ventral view.

So what’s going on here? My first thought was that this speicmen has to have been dorsoventrally crushed — that this can’t be the true shape.

And yet … counterpoint: the processes don’t look crushed: check out the really nice 3d preservation of the neural spine metapophyses, the prezygs, the transverse processes, the nice, rounded parapophyseal rami, and even the ventral aspect of the centrum. This vertebra is actually in pretty good condition.

So is this real? Is this the vertebra more or less as it was in life? And if so, does that mean that the flesh envelope looked like this?

Look, I’m not saying it isn’t ridiculous; I’m just saying this seems to be more or less where the evidence is pointing. We’ve made a big deal about how the necks of apatosaurines were more or less triangular in cross-section, rather than round as has often been assumed; perhaps we need to start thinking about whether some camarasaur necks were squashed ovals in cross section?

Part of what’s crazy here is that this makes no mechanical sense. A cantilevered structure, such as a sauropod neck, needs to be tall rather than wide in order to attain good mechanical advantage that can take the stress imposed by the neck’s weight. A broad neck is silly: it adds mass that needs to be carried without providing high anchors for the tension members. Yet this is what we see. Evolution doesn’t always do what we would expect it to do — and it goes off the rails when sexual selection comes into play. Maybe female camarasaurus were just really into wide-necked males?

Final note: I have been playing fast and loose with the genus name Camarasaurus and the broader, vaguer term camarasaur. Matt and I have long felt (without having made any real attempt to justify this feeling) that Camarasaurus is way over-lumped, and probably contains multiple rather different animals. Maybe there is a flat-necked species in among them?

(Or maybe it’s just crushing.)

Xinjiangtitan when originally described, from Wu et al. (2013)

We’re way late to this party, but better late than never I guess. Wu et al. (2013) described Xinjiangtitan shanshanesis as a new mamenchisaurid from the Middle Jurassic of China. At the time of the initial description, all of the dorsal and sacral vertebrae had been uncovered, as well as a handful of the most posterior cervicals and most anterior caudals.

Xinjiangtitan revealed, from Zhang et al. (2018)

Jump a few years forward 2018, when Zhang et al. described the complete cervical series of Xinjiangtitan, based on further excavation of the holotype (they also changed some of the element identifications in the original description). It’s pretty insane: 

  • 18 cervical vertebrae, same as Mamenchisaurus youngi, and one less than M. hochuanensis, all discovered in articulation;
  • 10 of those vertebrae have centrum lengths of 1 meter or more;
  • the longest centrum, that of C12, is 123cm long;
  • the total lengths of the separate cervical vertebrae (not articulated) add up to about 15 meters;
  • even assuming that the condyles of the vertebrae were fully buried in the cotyles, the total length of articulated neck would still be 13.36 meters. 

Now, some caveating. Zhang et al. (2018) report two different lengths for most the cervicals: a maximum centrum length, which includes the anterior condyle, and a “minimum centrum length” without the anterior condyle. Reporting cervical lengths minus the condyle is fairly common–Janensch did it for what is now Giraffatitan (“ohne condylus”), McIntosh (2005) did it for the AMNH Barosaurus, Tschopp and Mateus (2017) did it for Galeamopus pabsti, and so on. In the freely available but as-yet-not-formally-published 4th chapter of my dissertation (Wedel 2007), I referred to the length without the condyle as the “functional length”, and I explicitly assumed that it was “the length that each vertebra contributes to the total neck length”. At the time I assumed that condyles were always fully buried in cotyles in life, because I didn’t know about camel necks (see Taylor and Wedel 2013b: fig. 21 and this post). 

Why am I bringing up all these minutiae? Because I’m really interested in the actual length of the neck of Xinjiangtitan in life, and that’s not so very straightforward to figure out. I’ll start with what Zhang et al. wrote, then proceed to their measurements, and then discuss their map.

At the start of the Description section, Zhang et al. (2018: p. 3) wrote:

In SSV12001, the cervical series is almost completely articulated and is exposed laterally (Figure 2). The long neck (at least 14.9 m) is well-preserved with a total of 18 cervical vertebrae. This measurement was estimated based on the maximum centrum length including the anterior condyles with the space for the cartilage assumed.

How much space is assumed for the cartilage? They don’t say, and it’s not clear, but one reading is that they just added up the total lengths of all the cervical centra and assumed that the cotyles were completely full of cartilage. Which is not so crazy as it might sound, since that’s exactly what happens in camels. But let’s see what their tables of measurements say.

Xinjiangtitan cervical vertebra measurements, from Zhang et al. (2018)

Table 1 gives the measurements of the atlas and axis, and Table 2 gives the measurements of all the remaining cervicals. Only “minimum centrum length”–without the condyle–is reported for cervicals 4 and 5, because C3-C5 were articulated as a unit, they haven’t been separated, and without CT scanning or further prep it’s going to be impossible to determine how long they were with the condyles. However, we can infer that the condyles of C4 and C5 are buried in the cotyles of C3 and C4 because (a) only the without-condyle lengths are reported, and (b) the condyles aren’t visible in the figures. File that away, it’s going to be important.

Adding up all of the max centrum lengths, including 165mm for the axis and 30mm for the atlas, per Table 1, I get a total of 14985mm, or 14.985 meters. Because Zhang et al. were so assiduous about their reporting–they really did Measure Their Damn Dinosaur–we can estimate pretty closely how much longer that total would be if it included the condyles of C4 and C5. Subtracting the min length from the max length, we find that the condyle is 70mm long in both C3 and C6, so it’s reasonable to assume the same for the vertebrae in the middle. Adding 140mm to the earlier total gets us up to 15125mm, or 15.125 meters. That’s assuming condyles end even with the rims of the cotyles, and cotyles are completely full of cartilage.

Xinjiangtitan cervicals, from Zhang et al. (2018: fig 3)

Adding up the all of the minimum centrum lengths, again including the axis and atlas, yields a total of 13360mm, or 13.36 meters. I think this smaller total is much more likely to be the actual length of the neck in life, for three reasons:

  1. As mentioned above, the condyles of C4 and C5 of this very specimen are actually buried in the cotyles of the preceding vertebrae. So we don’t need to add any space for cartilage to the summed minimum (without condyle) lengths–there certainly was cartilage between the surfaces of the condyles and cotyles, because that’s how intervertebral joints work, but there was not enough to push the condyles back outside the cotyles, unless we want to engage in some special pleading that C3-C5 were unnaturally smooshed together.
  2. Camels notwithstanding, having the condyles buried in the cotyles is pretty standard for articulated necks of big, long-necked sauropods. In the holotype specimens of Mamenchisaurus hochuanensis and Sauroposeidon, the condyles are not visible in lateral view, because they are completely buried in the cotyles of the preceding vertebrae–see the photos in this post and on this page to confirm that for yourself. In Giraffatitan, just the edges of the condyles are visible sticking out the backs of the cotyles in some of the posterior cervicals–see this post.
  3. The 13.36-meter neck is more consistent with the map of the specimen in the ground than either the 14.9-meter or 15.1-meter totals.

A little unpacking on that last point. Using the dorsal lengths from Wu et al. (2013: table 1)–and assuming that Zhang et al. are correct, and the D1 of Wu et al. is actually cervical 18, but D11 of Wu et al. is actually D10 and D11 together, so there are still 12 dorsals–I get a total length for the articulated dorsal column of 3355mm. Dividing 13360 by 3355 yields a cervical/dorsal ratio of 3.98. Using the screenshot of the map from Zhang et al. (2018: fig. 2), I measured 1505 pixels for the summed cervicals, 380 pixels for the summed dorsals, and 112 pixels for the scale bar. Assuming the scale bar is supposed to be 1 meter (and not 20 meters or 2.0 meters as it is labeled) yields a summed cervical length of 13.4 meters, a summed dorsal length of 3.39 meters, and a cervical/dorsal ratio of 3.96–all admirably close, off by no more than 4cm across 16+ meters, if the neck in the ground was articulated condyle-inside-cotyle. If we assume the map shows a 14.9-meter neck, then both the dorsal series and the scale bar are off by about 12%, which is unreasonable given the high precision of the map if the articulated neck corresponds to the summed minimum lengths.

Mounted skeleton of Omeisaurus tianfuensis: N E C C

Bonus observation #1: the holotype of Mamenchisaurus hochuanensis has a cervical/dorsal ratio of 3.52, but in Omeisaurus tianfuensis the same ratio is 4.09. So Xinjiangtitan is actually a little shorter-necked than Omeisaurus, at least compared to the length of the dorsal series.

Bonus observation #2: the 123-cm cervical of Xinjiangtitan is only the fifth-longest vertebra of anything to date:

  1. BYU 9024, possibly referable to Supersaurus or Barosaurus: 137cm
  2. Price River 2 titanosauriform: 129cm
  3. OMNH 53062, Sauroposeidon holotype: 125cm
  4. KLR1508-77-2, Ruyangosaurus giganteus referred specimen: 124cm
  5. SSV12001, Xinjiangtitan shanshanesis holotype: 123cm
  6. MPEF-PV 3400/3, Patagotitan holotype: 120cm (+?)
  7. MPM 10002, Puertasaurus holotype: 118cm

Getting pretty crowded there in the 120s, but then a big jump to BYU 9024. I’ll have more to say on that in a second.

Just to put a bow on this section, I’m pretty confident, based on all available measurements, taphonomic evidence, and the consilience between the measurements and the map, that the holotype individual of Xinjiantitan had a neck 13.36 meters (43 feet, 10 inches) long in life. 

That’s stunning.

By comparison, the second- and third-longest complete cervical series (of anything, ever, to date) belong to Mamenchisaurus hochuanensis, at 9.5 meters (Young and Zhao 1972, and confirmed by Mike in a basement in Slovenia), and Giraffatitan at 8.5 meters for MB.R.2181 (the larger XV2 specimen would have had a 9.6-meter neck).

Some other contenders, from Taylor and Wedel 2013a (fig 3)

There were things with longer necks, for sure, but none of those necks are complete (yet). Mamenchisaurus sinocanadorum is estimated to have had a neck about 12 meters long, based on the partial cervical series of the holotype. I know there are skeletal reconstructions out there with longer necks, and I will believe them as soon as the specimens they are based on are published. In the aforementioned dissertation chapter, I estimated 11.5 meters for the neck of Sauroposeidon, assuming a brachiosaurid-like cervical count of 13. Note that Mannion et al. (2013) recovered Sauroposeidon as a somphospondyl, and a cervical count of 15 or more as a synapomorphy of Somphospondyli. Adding a couple more 1.2-meter mid-cervicals would bring Sauroposeidon up to perhaps 14 meters. The longest cervicals of Patagotitan are in about the same size class, and we don’t know the cervical count in that monster, either.

BYU 9024, with the mounted (cast, composite) skeleton of Brachiosaurus altithorax and one Mike Taylor for scale

And of course, lurking out there in crazy neck-space is BYU 9024, the immense cervical originally referred to Supersaurus, but which more likely belongs to Barosaurus, and an ungodly huge one. That critter might–might–have had a 17-meter neck.

And I gotta say, in light of Xinjiangtitan, that no longer seems so unreasonable. Because Xinjiangtitan was a big sauropod but not a monster. The dorsal length of 3.3 meters and the femur length of 1.65 meters put it in roughly the same size category as the bigger individual of Jobaria (DL 3.2m, FL 1.8m) or the AMNH 5761 Camarasaurus supremus (DL 2.5m, FL 1.8m). Let’s imagine a Xinjiangtitan with a 2.4-meter femur, the size of Patagotitan or Argentinosaurus. Assuming isometric scaling, that individual would have a 2.4/1.65 = 1.45 x 13.36 = 19.4-meter neck. 

Do we really think such animals never existed?

Food for thought: the holotype individual of Xinjiangtitan was small enough to be buried as a complete skeleton. What about the individuals that were too big to bury in one shot?

Utterly unsurprising, but still nice to see: the highly pneumatic internal structure of the vertebrae of Xinjiangtitan, from Wu et al. (2013)


Early in my 2015 preprint on the incompleteness of sauropod necks, I wrote “Unambiguously complete necks are known from published account of only six species of sauropod, two of which are species of the same genus”, and listed them.

Taylor 2015: Figure 3. W. H. Reed’s diagram of Quarry C near Camp Carnegie on Sheep Creek, in Albany County, Wyoming. The coloured bones belong to CM 84, the holotype of Diplodocus carnegii; other bones belong to other individuals, chiefly of Brontosaurus, Camarasaurus and Stegosaurus. Modified (cropped and coloured) from Hatcher (1901: plate I). Cervical vertebrae are purple (and greatly simplified in outline), dorsals are red, the sacrum is orange, caudals are yellow, limb girdle elements are blue, and limb bones are green.

Haha, stupid me! I had hugely under-counted. With thanks to the three peer-reviewers of the submitted manuscript and to SV-POW! commenters, I have revised this list, in preparation for forthcoming resubmission. The table as it stands currently consists of 24 candidates, not all of them very solid. Of these, 15 were found in articulation, the others mostly not — though we don’t know for sure in all cases. Not all of the necks have been properly described, and not all of the ones that have been described have been named. And other questions hang over some of them, very briefly summarised in notes.

Here is the list, sorted by date of description. If I got the Google-docs permissions right, you should be able to see it but not edit it. (If you can edit, please don’t! And let me know.)

Please let me know if you find any mistakes, or if you think I have missed anything. Everyone who contributes will get a mention in the acknowledgements.


This beautiful image is bird 52659 from Florida Museum, a green heron Butorides virescens, CT scanned and published on Twitter.

(The scan is apparently from MorphoSource, but I can’t find it there.)

There is lots to love here: for example, you can see that the long bones of the arm are pneumatic, because the margins of the bones show up more strongly than the cores. But you won’t be surprised that I am interested mostly in the neck.

As you can see, while the vertebrae of the neck are pulled back into a strong curve, the trachea doesn’t bother, and just sort of hangs there from the base of the head to the top of the lungs, cheerfully crossing over (i.e. passing to the side of) the vertebral sequence. So the trachea here is not much more than half the length of the vertebral sequence.

Now this is the opposite of what we see in some birds. Here, for example, is a trumpet manucode Phonygammus keraudrenii (a bird-of-paradise) as illustrated in Katrina van Grouw’s book The Unfeathered Bird:

Yes, all those coils visible in the torso are the trachea, which is many times longer than it needs to be to connect the head to the lungs. Birds-of-paradise do this sort of thing a lot (Clench 1978).

And they are not alone: cranes and others also have elongated and contorted tracheal trajectories. So it’s odd that herons seem to do the opposite.

But the heron is even odder than that. As we have noted before, herons can stretch their necks out to the point where you would scarcely believe the unstretched and stretched animals are the same thing. But they are:

The CT-scanned heron at the top of this post is in a pose intermediate between the two shown here. But since it can adopt the long-necked pose on the right, it’s apparent that the trachea can become long enough to connect the head and lungs in that pose. Which means it must be able to stretch to nearly twice the length we see in the CT scan.

Don’t try this at home, kids!


  • Clench, Mary H. 1978. Tracheal elongation in birds-of-paradise. The Condor 80(4):423–430. doi:10.2307/1367193

On 22nd December 2020, I gave this talk (via Zoom) to Martin Sander’s palaeontology research group at the University of Bonn, Germany. And now I am giving it to you, dear reader, the greatest Christmas present anyone could ever wish for:

It’s based on a 2013 paper written with Matt Wedel, which itself goes back through many years slow gestation, originating in a discussion on a car journey in 2008. I must tell the full story some time; but not this time.

In this talk, I start by showing in a hopefully vivid way how very much longer sauropods’ necks were than those of any other animal. Then I explain six of the features that made those very long necks possible: no constraint on vertebral count; small, light heads that did not process food; absolutely large bodies with a quadrepedal bauplan; an avian-style respiratory system; air-filled cervical vertebrae; and elongated neck ribs.

If you want to know more, see that Wedel and Taylor (2013) paper!

Finally, my thanks to René Dederichs, a Student of Paleontology in Martin Sander’s work group at the University of Bonn. He organized this event, and recorded the talk for me.



As John himsef admits in the tweet that announced this picture, it’s five years late … but I am prepared to forgive that because IT’S NEVER TOO LATE TO BRONTOSMASH!

As always, John’s art is not just scientifically accurate, but evocative. Here’s a close-up of the main action area:

As you see, he has incorporated the keratinous neck spikes that we hypothesized, based on the distinct knobs that are found at the ventrolateral ends of apatosaurine cervical rib loops.

John has also incorporated a lot of blood — which is exactly what you get when elephant seals collide:

By the way, if John’s BRONTOSMASH! art can be said to be five years late — so can the actual paper. It was of course at SVPCA 2015 that we first presented our apatosaur-neck-combat hypothesis (Taylor et al. 2015), and it’s not at all to our credit that nearly five years later, we have not even got a manuscript written. We really need to get our act together on this project, so consider this post my apology on behalf of myself, Matt, Darren and Brian.


  • Taylor, Michael P., Mathew J. Wedel, Darren Naish and Brian Engh. 2015. Were the necks of Apatosaurus and Brontosaurus adapted for combat?. p. 71 in Mark Young (ed.), Abstracts, 63rd Symposium for Vertebrate Palaeontology and Comparative Anatomy, Southampton. 115 pp. doi:10.7287/peerj.preprints.1347v1

Herons lie, part 2

July 28, 2020

I just stumbled across this tweet from bird photographer Gloria (@Lucent508). Four photos of the same individual, apparently a Green Heron. In this image, I am juxtaposing the third image (left-right flipped and scaled up) with the first image (filled out on the left with a stretched reflection of part of the background).

Where has it put that long neck in the lower image? We know it’s in there somewhere, but one thing is for sure: herons lie!

See also: Herons lie (and so do shoebills), and the whole ongoing Necks Lie sequence.

My thanks to Gloria for having taken the excellent photographs that made this post possible.

Credit: anonymous tattoo, Grant Harding for the caption.

Update. Here is the Instagram post that Grant got this from. Unfortunately it seems to be from an account that specialises in reposting others’ work without attribution, so we don’t know where the tattoo photo originated.