How stupid was the neck of Camarasaurus?
February 19, 2021
What if I told you that when Matt was in BYU collections a while ago, he stumbled across a cervical vertebra — one labelled DM/90 CVR 3+4, say — that looked like this in anterior view?
I think you would say something like “That looks like a Camarasaurus cervical, resembling as it does those illustrated in the beautiful plates of Osborn and Mook (1921)”. And then you might show me, for example, the left half of Plate LXII:
And then you might think to yourself that, within its fleshy envelope, this vertebra might have looked a bit like this, in a roughly circular neck:
Reasonable enough, right?
But when what if I then told you that in fact the vertebra was twice this wide relative to its height, and looked like this?
I’m guessing you might say “I don’t believe this is real. You must have produced it by stretching the real photo”. To which I would reply “No no, hypothetical interlocutor, the opposite is the case! I squashed the real photo — this one — to produce the more credible-seeming one at the top of the post”.
You would then demand to see proper photographic evidence, and I would respond by posting these three images (which Matt supplied from his 2019 BYU visit):

BYU specimen DM/90 CVR 3+4, cervical vertebra of ?Camarasaurus in anterior view. This is the photo from which the illustration above was extracted.
So what’s going on here? My first thought was that this speicmen has to have been dorsoventrally crushed — that this can’t be the true shape.
And yet … counterpoint: the processes don’t look crushed: check out the really nice 3d preservation of the neural spine metapophyses, the prezygs, the transverse processes, the nice, rounded parapophyseal rami, and even the ventral aspect of the centrum. This vertebra is actually in pretty good condition.
So is this real? Is this the vertebra more or less as it was in life? And if so, does that mean that the flesh envelope looked like this?
Look, I’m not saying it isn’t ridiculous; I’m just saying this seems to be more or less where the evidence is pointing. We’ve made a big deal about how the necks of apatosaurines were more or less triangular in cross-section, rather than round as has often been assumed; perhaps we need to start thinking about whether some camarasaur necks were squashed ovals in cross section?
Part of what’s crazy here is that this makes no mechanical sense. A cantilevered structure, such as a sauropod neck, needs to be tall rather than wide in order to attain good mechanical advantage that can take the stress imposed by the neck’s weight. A broad neck is silly: it adds mass that needs to be carried without providing high anchors for the tension members. Yet this is what we see. Evolution doesn’t always do what we would expect it to do — and it goes off the rails when sexual selection comes into play. Maybe female camarasaurus were just really into wide-necked males?
Final note: I have been playing fast and loose with the genus name Camarasaurus and the broader, vaguer term camarasaur. Matt and I have long felt (without having made any real attempt to justify this feeling) that Camarasaurus is way over-lumped, and probably contains multiple rather different animals. Maybe there is a flat-necked species in among them?
(Or maybe it’s just crushing.)
Xinjiangtitan has the longest preserved neck of any lifeform to date
January 28, 2021
We’re way late to this party, but better late than never I guess. Wu et al. (2013) described Xinjiangtitan shanshanesis as a new mamenchisaurid from the Middle Jurassic of China. At the time of the initial description, all of the dorsal and sacral vertebrae had been uncovered, as well as a handful of the most posterior cervicals and most anterior caudals.
Jump a few years forward 2018, when Zhang et al. described the complete cervical series of Xinjiangtitan, based on further excavation of the holotype (they also changed some of the element identifications in the original description). It’s pretty insane:
- 18 cervical vertebrae, same as Mamenchisaurus youngi, and one less than M. hochuanensis, all discovered in articulation;
- 10 of those vertebrae have centrum lengths of 1 meter or more;
- the longest centrum, that of C12, is 123cm long;
- the total lengths of the separate cervical vertebrae (not articulated) add up to about 15 meters;
- even assuming that the condyles of the vertebrae were fully buried in the cotyles, the total length of articulated neck would still be 13.36 meters.
Now, some caveating. Zhang et al. (2018) report two different lengths for most the cervicals: a maximum centrum length, which includes the anterior condyle, and a “minimum centrum length” without the anterior condyle. Reporting cervical lengths minus the condyle is fairly common–Janensch did it for what is now Giraffatitan (“ohne condylus”), McIntosh (2005) did it for the AMNH Barosaurus, Tschopp and Mateus (2017) did it for Galeamopus pabsti, and so on. In the freely available but as-yet-not-formally-published 4th chapter of my dissertation (Wedel 2007), I referred to the length without the condyle as the “functional length”, and I explicitly assumed that it was “the length that each vertebra contributes to the total neck length”. At the time I assumed that condyles were always fully buried in cotyles in life, because I didn’t know about camel necks (see Taylor and Wedel 2013b: fig. 21 and this post).
Why am I bringing up all these minutiae? Because I’m really interested in the actual length of the neck of Xinjiangtitan in life, and that’s not so very straightforward to figure out. I’ll start with what Zhang et al. wrote, then proceed to their measurements, and then discuss their map.
At the start of the Description section, Zhang et al. (2018: p. 3) wrote:
In SSV12001, the cervical series is almost completely articulated and is exposed laterally (Figure 2). The long neck (at least 14.9 m) is well-preserved with a total of 18 cervical vertebrae. This measurement was estimated based on the maximum centrum length including the anterior condyles with the space for the cartilage assumed.
How much space is assumed for the cartilage? They don’t say, and it’s not clear, but one reading is that they just added up the total lengths of all the cervical centra and assumed that the cotyles were completely full of cartilage. Which is not so crazy as it might sound, since that’s exactly what happens in camels. But let’s see what their tables of measurements say.
Table 1 gives the measurements of the atlas and axis, and Table 2 gives the measurements of all the remaining cervicals. Only “minimum centrum length”–without the condyle–is reported for cervicals 4 and 5, because C3-C5 were articulated as a unit, they haven’t been separated, and without CT scanning or further prep it’s going to be impossible to determine how long they were with the condyles. However, we can infer that the condyles of C4 and C5 are buried in the cotyles of C3 and C4 because (a) only the without-condyle lengths are reported, and (b) the condyles aren’t visible in the figures. File that away, it’s going to be important.
Adding up all of the max centrum lengths, including 165mm for the axis and 30mm for the atlas, per Table 1, I get a total of 14985mm, or 14.985 meters. Because Zhang et al. were so assiduous about their reporting–they really did Measure Their Damn Dinosaur–we can estimate pretty closely how much longer that total would be if it included the condyles of C4 and C5. Subtracting the min length from the max length, we find that the condyle is 70mm long in both C3 and C6, so it’s reasonable to assume the same for the vertebrae in the middle. Adding 140mm to the earlier total gets us up to 15125mm, or 15.125 meters. That’s assuming condyles end even with the rims of the cotyles, and cotyles are completely full of cartilage.
Adding up the all of the minimum centrum lengths, again including the axis and atlas, yields a total of 13360mm, or 13.36 meters. I think this smaller total is much more likely to be the actual length of the neck in life, for three reasons:
- As mentioned above, the condyles of C4 and C5 of this very specimen are actually buried in the cotyles of the preceding vertebrae. So we don’t need to add any space for cartilage to the summed minimum (without condyle) lengths–there certainly was cartilage between the surfaces of the condyles and cotyles, because that’s how intervertebral joints work, but there was not enough to push the condyles back outside the cotyles, unless we want to engage in some special pleading that C3-C5 were unnaturally smooshed together.
- Camels notwithstanding, having the condyles buried in the cotyles is pretty standard for articulated necks of big, long-necked sauropods. In the holotype specimens of Mamenchisaurus hochuanensis and Sauroposeidon, the condyles are not visible in lateral view, because they are completely buried in the cotyles of the preceding vertebrae–see the photos in this post and on this page to confirm that for yourself. In Giraffatitan, just the edges of the condyles are visible sticking out the backs of the cotyles in some of the posterior cervicals–see this post.
- The 13.36-meter neck is more consistent with the map of the specimen in the ground than either the 14.9-meter or 15.1-meter totals.
A little unpacking on that last point. Using the dorsal lengths from Wu et al. (2013: table 1)–and assuming that Zhang et al. are correct, and the D1 of Wu et al. is actually cervical 18, but D11 of Wu et al. is actually D10 and D11 together, so there are still 12 dorsals–I get a total length for the articulated dorsal column of 3355mm. Dividing 13360 by 3355 yields a cervical/dorsal ratio of 3.98. Using the screenshot of the map from Zhang et al. (2018: fig. 2), I measured 1505 pixels for the summed cervicals, 380 pixels for the summed dorsals, and 112 pixels for the scale bar. Assuming the scale bar is supposed to be 1 meter (and not 20 meters or 2.0 meters as it is labeled) yields a summed cervical length of 13.4 meters, a summed dorsal length of 3.39 meters, and a cervical/dorsal ratio of 3.96–all admirably close, off by no more than 4cm across 16+ meters, if the neck in the ground was articulated condyle-inside-cotyle. If we assume the map shows a 14.9-meter neck, then both the dorsal series and the scale bar are off by about 12%, which is unreasonable given the high precision of the map if the articulated neck corresponds to the summed minimum lengths.
Bonus observation #1: the holotype of Mamenchisaurus hochuanensis has a cervical/dorsal ratio of 3.52, but in Omeisaurus tianfuensis the same ratio is 4.09. So Xinjiangtitan is actually a little shorter-necked than Omeisaurus, at least compared to the length of the dorsal series.
Bonus observation #2: the 123-cm cervical of Xinjiangtitan is only the fifth-longest vertebra of anything to date:
- BYU 9024, possibly referable to Supersaurus or Barosaurus: 137cm
- Price River 2 titanosauriform: 129cm
- OMNH 53062, Sauroposeidon holotype: 125cm
- KLR1508-77-2, Ruyangosaurus giganteus referred specimen: 124cm
- SSV12001, Xinjiangtitan shanshanesis holotype: 123cm
- MPEF-PV 3400/3, Patagotitan holotype: 120cm (+?)
- MPM 10002, Puertasaurus holotype: 118cm
Getting pretty crowded there in the 120s, but then a big jump to BYU 9024. I’ll have more to say on that in a second.
Just to put a bow on this section, I’m pretty confident, based on all available measurements, taphonomic evidence, and the consilience between the measurements and the map, that the holotype individual of Xinjiantitan had a neck 13.36 meters (43 feet, 10 inches) long in life.
That’s stunning.
By comparison, the second- and third-longest complete cervical series (of anything, ever, to date) belong to Mamenchisaurus hochuanensis, at 9.5 meters (Young and Zhao 1972, and confirmed by Mike in a basement in Slovenia), and Giraffatitan at 8.5 meters for MB.R.2181 (the larger XV2 specimen would have had a 9.6-meter neck).
There were things with longer necks, for sure, but none of those necks are complete (yet). Mamenchisaurus sinocanadorum is estimated to have had a neck about 12 meters long, based on the partial cervical series of the holotype. I know there are skeletal reconstructions out there with longer necks, and I will believe them as soon as the specimens they are based on are published. In the aforementioned dissertation chapter, I estimated 11.5 meters for the neck of Sauroposeidon, assuming a brachiosaurid-like cervical count of 13. Note that Mannion et al. (2013) recovered Sauroposeidon as a somphospondyl, and a cervical count of 15 or more as a synapomorphy of Somphospondyli. Adding a couple more 1.2-meter mid-cervicals would bring Sauroposeidon up to perhaps 14 meters. The longest cervicals of Patagotitan are in about the same size class, and we don’t know the cervical count in that monster, either.

BYU 9024, with the mounted (cast, composite) skeleton of Brachiosaurus altithorax and one Mike Taylor for scale
And of course, lurking out there in crazy neck-space is BYU 9024, the immense cervical originally referred to Supersaurus, but which more likely belongs to Barosaurus, and an ungodly huge one. That critter might–might–have had a 17-meter neck.
And I gotta say, in light of Xinjiangtitan, that no longer seems so unreasonable. Because Xinjiangtitan was a big sauropod but not a monster. The dorsal length of 3.3 meters and the femur length of 1.65 meters put it in roughly the same size category as the bigger individual of Jobaria (DL 3.2m, FL 1.8m) or the AMNH 5761 Camarasaurus supremus (DL 2.5m, FL 1.8m). Let’s imagine a Xinjiangtitan with a 2.4-meter femur, the size of Patagotitan or Argentinosaurus. Assuming isometric scaling, that individual would have a 2.4/1.65 = 1.45 x 13.36 = 19.4-meter neck.
Do we really think such animals never existed?
Food for thought: the holotype individual of Xinjiangtitan was small enough to be buried as a complete skeleton. What about the individuals that were too big to bury in one shot?

Utterly unsurprising, but still nice to see: the highly pneumatic internal structure of the vertebrae of Xinjiangtitan, from Wu et al. (2013)
References
- Mannion, P.D., Upchurch, P., Barnes, R.N. and Mateus, O., 2013. Osteology of the Late Jurassic Portuguese sauropod dinosaur Lusotitan atalaiensis (Macronaria) and the evolutionary history of basal titanosauriforms. Zoological Journal of the Linnean Society, 168(1), pp.98-206.
- Taylor, Michael P., and Mathew J. Wedel. 2013. Why sauropods had long necks; and why giraffes have short necks. PeerJ 1:e36. 41 pages, 11 figures, 3 tables. doi:10.7717/peerj.36
- Taylor, Michael P., and Mathew J. Wedel. 2013b. The effect of intervertebral cartilage on neutral posture and range of motion in the necks of sauropod dinosaurs. PLOS ONE 8(10): e78214. 17 pages. doi:10.1371/journal.pone.0078214
- Wedel, M.J. 2007. Postcranial pneumaticity in dinosaurs and the origin of the avian lung. PhD thesis, Department of Integrative Biology, University of California, Berkeley.
- Wu WH, Zhou CF, Wings O, Sekiya T, Dong ZM. 2013. A new gigantic sauropod dinosaur from the Middle Jurassic of Shanshan, Xinjiang. Global Geology 32:437–446. [in Chinese]
- Zhang, Xiao-Qin, Li Da-Qing, Xied Yan and You Hai-Lu. 2018. Redescription of the cervical vertebrae of the Mamenchisaurid Sauropod Xinjiangtitan shanshanesis Wu et al. 2013. Historical Biology 32(6):803–822. doi:10.1080/08912963.2018.1539970
Towards a catalogue of complete sauropods necks
January 27, 2021
Early in my 2015 preprint on the incompleteness of sauropod necks, I wrote “Unambiguously complete necks are known from published account of only six species of sauropod, two of which are species of the same genus”, and listed them.

Taylor 2015: Figure 3. W. H. Reed’s diagram of Quarry C near Camp Carnegie on Sheep Creek, in Albany County, Wyoming. The coloured bones belong to CM 84, the holotype of Diplodocus carnegii; other bones belong to other individuals, chiefly of Brontosaurus, Camarasaurus and Stegosaurus. Modified (cropped and coloured) from Hatcher (1901: plate I). Cervical vertebrae are purple (and greatly simplified in outline), dorsals are red, the sacrum is orange, caudals are yellow, limb girdle elements are blue, and limb bones are green.
Haha, stupid me! I had hugely under-counted. With thanks to the three peer-reviewers of the submitted manuscript and to SV-POW! commenters, I have revised this list, in preparation for forthcoming resubmission. The table as it stands currently consists of 24 candidates, not all of them very solid. Of these, 15 were found in articulation, the others mostly not — though we don’t know for sure in all cases. Not all of the necks have been properly described, and not all of the ones that have been described have been named. And other questions hang over some of them, very briefly summarised in notes.
Here is the list, sorted by date of description. If I got the Google-docs permissions right, you should be able to see it but not edit it. (If you can edit, please don’t! And let me know.)
Please let me know if you find any mistakes, or if you think I have missed anything. Everyone who contributes will get a mention in the acknowledgements.
This beautiful image is bird 52659 from Florida Museum, a green heron Butorides virescens, CT scanned and published on Twitter.
(The scan is apparently from MorphoSource, but I can’t find it there.)
There is lots to love here: for example, you can see that the long bones of the arm are pneumatic, because the margins of the bones show up more strongly than the cores. But you won’t be surprised that I am interested mostly in the neck.
As you can see, while the vertebrae of the neck are pulled back into a strong curve, the trachea doesn’t bother, and just sort of hangs there from the base of the head to the top of the lungs, cheerfully crossing over (i.e. passing to the side of) the vertebral sequence. So the trachea here is not much more than half the length of the vertebral sequence.
Now this is the opposite of what we see in some birds. Here, for example, is a trumpet manucode Phonygammus keraudrenii (a bird-of-paradise) as illustrated in Katrina van Grouw’s book The Unfeathered Bird:
Yes, all those coils visible in the torso are the trachea, which is many times longer than it needs to be to connect the head to the lungs. Birds-of-paradise do this sort of thing a lot (Clench 1978).
And they are not alone: cranes and others also have elongated and contorted tracheal trajectories. So it’s odd that herons seem to do the opposite.
But the heron is even odder than that. As we have noted before, herons can stretch their necks out to the point where you would scarcely believe the unstretched and stretched animals are the same thing. But they are:
The CT-scanned heron at the top of this post is in a pose intermediate between the two shown here. But since it can adopt the long-necked pose on the right, it’s apparent that the trachea can become long enough to connect the head and lungs in that pose. Which means it must be able to stretch to nearly twice the length we see in the CT scan.
Don’t try this at home, kids!
References
- Clench, Mary H. 1978. Tracheal elongation in birds-of-paradise. The Condor 80(4):423–430. doi:10.2307/1367193
Happy Christmas! Here’s why giraffes have short necks!
December 24, 2020
On 22nd December 2020, I gave this talk (via Zoom) to Martin Sander’s palaeontology research group at the University of Bonn, Germany. And now I am giving it to you, dear reader, the greatest Christmas present anyone could ever wish for:
It’s based on a 2013 paper written with Matt Wedel, which itself goes back through many years slow gestation, originating in a discussion on a car journey in 2008. I must tell the full story some time; but not this time.
In this talk, I start by showing in a hopefully vivid way how very much longer sauropods’ necks were than those of any other animal. Then I explain six of the features that made those very long necks possible: no constraint on vertebral count; small, light heads that did not process food; absolutely large bodies with a quadrepedal bauplan; an avian-style respiratory system; air-filled cervical vertebrae; and elongated neck ribs.
If you want to know more, see that Wedel and Taylor (2013) paper!
Finally, my thanks to René Dederichs, a Student of Paleontology in Martin Sander’s work group at the University of Bonn. He organized this event, and recorded the talk for me.
References
John Conway’s BRONTOSMASH!
August 4, 2020
As John himsef admits in the tweet that announced this picture, it’s five years late … but I am prepared to forgive that because IT’S NEVER TOO LATE TO BRONTOSMASH!
As always, John’s art is not just scientifically accurate, but evocative. Here’s a close-up of the main action area:
As you see, he has incorporated the keratinous neck spikes that we hypothesized, based on the distinct knobs that are found at the ventrolateral ends of apatosaurine cervical rib loops.
John has also incorporated a lot of blood — which is exactly what you get when elephant seals collide:
By the way, if John’s BRONTOSMASH! art can be said to be five years late — so can the actual paper. It was of course at SVPCA 2015 that we first presented our apatosaur-neck-combat hypothesis (Taylor et al. 2015), and it’s not at all to our credit that nearly five years later, we have not even got a manuscript written. We really need to get our act together on this project, so consider this post my apology on behalf of myself, Matt, Darren and Brian.
Reference
- Taylor, Michael P., Mathew J. Wedel, Darren Naish and Brian Engh. 2015. Were the necks of Apatosaurus and Brontosaurus adapted for combat?. p. 71 in Mark Young (ed.), Abstracts, 63rd Symposium for Vertebrate Palaeontology and Comparative Anatomy, Southampton. 115 pp. doi:10.7287/peerj.preprints.1347v1
Herons lie, part 2
July 28, 2020
I just stumbled across this tweet from bird photographer Gloria (@Lucent508). Four photos of the same individual, apparently a Green Heron. In this image, I am juxtaposing the third image (left-right flipped and scaled up) with the first image (filled out on the left with a stretched reflection of part of the background).
Where has it put that long neck in the lower image? We know it’s in there somewhere, but one thing is for sure: herons lie!
See also: Herons lie (and so do shoebills), and the whole ongoing Necks Lie sequence.
My thanks to Gloria for having taken the excellent photographs that made this post possible.
Stevens & Parrish 1999 vs. Taylor et al. 2009
May 23, 2020
Credit: anonymous tattoo, Grant Harding for the caption.
Update. Here is the Instagram post that Grant got this from. Unfortunately it seems to be from an account that specialises in reposting others’ work without attribution, so we don’t know where the tattoo photo originated.
What can sauropod sacra tell us about neck posture?
April 22, 2020
Daniel Vidal et al.’s new paper in Scientific Reports (Vidal et al. 2020) has been out for a couple of days now. Dealing as it does with sauropod neck posture, it’s obviously of interest to me, and to Matt. (See our earlier relevant papers Taylor et al. 2009, Taylor and Wedel 2013 and Taylor 2014.)
Overview
To brutally over-summarise Vidal et al.’s paper, it comes down to this: they digitized the beautifully preserved and nearly complete skeleton of Spinophorosaurus, and digitally articulated the scans of the bones to make a virtual skeletal mount. In doing this, they were careful to consider the neutral pose of consecutive vertebrae in isolation, looking at only one pair at a time, so as to avoid any unconscious biases as to how the articulated column “should” look.
Then they took the resulting pose, objectively arrived at — shown above in their figure 1 — and looked to see what it told them. And as you can well see, it showed a dramatically different pose from that of the original reconstruction.

Original skeletal reconstruction of Spinophorosaurus nigerensis (Remes et al. 2009:figure 5, reversed for ease of comparison). Dimensions are based on GCP-CV-4229/NMB-1699-R, elements that are not represented are shaded. Scale bar = 1 m.
In particular, they found that as the sacrum is distinctly “wedged” (i.e. its anteroposterior length is greater ventrally than it is dorsally, giving it a functionally trapezoidal shape, shown in their figure 1A), so that the column of the torso is inclined 20 degrees dorsally relative to that of the tail. They also found lesser but still significant wedging in the last two dorsal vertebrae (figure 1B) and apparently some slight wedging in the first dorsal (figure 1C) and last cervical (figure 1D).
The upshot of all this is that their new reconstruction of Spinophorosaurus has a strongly inclined dorsal column, and consequently a strongly inclined cervical column in neutral pose.
Vidal et al. also note that all eusauropods have wedged sacra to a greater or lesser extent, and conclude that to varying degrees all eusauropods had a more inclined torso and neck than we have been used to reconstructing them with.
Response
I have to be careful about this paper, because its results flatter my preconceptions. I have always been a raised-neck advocate, and there is a temptation to leap onto any paper that reaches the same conclusion and see it as corroboration of my position.
The first thing to say is that the core observation is absolutely right, — and it’s one of those things that once it’s pointed out it’s so obvious that you wonder why you never made anything of it yourself. Yes, it’s true that sauropod sacra are wedged. It’s often difficult to see in lateral view because the ilia are usually fused to the sacral ribs, but when you see them in three dimensions it’s obvious. Occasionally you find a sacrum without its ilium, and then the wedging can hardly be missed … yet somehow, we’ve all been missing its implications for a century and a half.

Sacrum of Diplodocus AMNH 516 in left lateral and (for our purposes irrelevant) ventral views. (Osborn 1904 figure 3)
Of course this means that, other thing being equal, the tail and torso will not be parallel with each other, but will project in such a way that the angle between them, measured dorsally, is less than 180 degrees. And to be fair, Greg Paul has long been illustrating diplodocids with an upward kink to the tail, and some other palaeoartists have picked up on this — notably Scott Hartman with his very uncomfortable-looking Mamenchisaurus.
But I do have three important caveats that mean I can’t just take the conclusions of the Vidal et al. paper at face value.
1. Intervertebral cartilage
I know that we have rather banged on about this (Taylor and Wedel 2013, Taylor 2014) but it remains true that bones alone can tell us almost nothing about how vertebrae articulated. Unless we incorporate intervertebral cartilage into our models, they can only mislead us. To their credit, Vidal et al. are aware of this — though you wouldn’t know it from the actual paper, whose single mention of cartilage is in respect of a hypothesised cartilaginous suprascapula. But buried away the supplementary information is this rather despairing paragraph:
Cartilaginous Neutral Pose (CNP): the term was coined by Taylor for “the pose found when intervertebral cartilage [that separates the centra of adjacent vertebrae] is included”. Since the amount of inter-vertebral space cannot be certainly known for most fossil vertebrate taxa, true CNP will likely remain unknown for most taxa or always based on estimates.
Now this is true, so far as it goes: it’s usually impossible to know how much cartilage there was, and what shape it took, as only very unusual preservational conditions give us this information. But I don’t think that lets us out from the duty of recognising how crucial that cartilage is. It’s not enough just to say “It’s too hard to measure” and assume it didn’t exist. We need to be saying “Here are the results if we assume zero-thickness cartilage, here’s what we get if we assume cartilage thickness equal to 5% centrum length, and here’s what we get if we assume 10%”.
I really don’t think it’s good enough in 2020 to say “We know there was some intervertebral cartilage, but since we don’t know exactly how much we’re going to assume there was none at all”.
The thing about incorporating cartilage into articulating models is that we would, quite possibly, get crazy results. I refer you to the disturbing figure 4 in my 2014 paper:

Figure 4. Effect of adding cartilage to the neutral pose of the neck of Diplodocus carnegii CM 84. Images of vertebra from Hatcher (1901:plate III). At the bottom, the vertebrae are composed in a horizontal posture. Superimposed, the same vertebrae are shown inclined by the additional extension angles indicated in Table 2.
I imagine that taking cartilage into account for the Spinophorosaurus reconstruction might have given rise to equally crazy “neutral” postures. I can see why Vidal et al. might have been reluctant to open that can of worms; but the thing is, it’s a can that really needs opening.
2. Sacrum orientation
As Vidal et al.’s figure 1A clearly shows, the sacrum of Spinophorosaurus is indeed wedge-shaped, with the anterior articular surface of the first sacral forming an angle of 20 degrees relative to the posterior articular surface of the last:
But I don’t see why it follows that “the coalesced sacrum is situated so that the posterior face of the last sacral centrum is sub-vertical. This makes the presacral series slope dorsally and allows the tail to be subhorizontal (Figs. 1 and 4S)”. Vidal et al. justify this by saying:
Since a subhorizontal tail has been known to be present in the majority of known sauropods[27, 28, 29], the [osteologically induced curvature] of the tail of Spinophorosaurus is therefore compatible with this condition.
But those three numbered references are to Gilmore 1932, Coombs 1975 and Bakker 1968 — three venerable papers, all over fifty years old, dating from a period long before the current understanding of sauropod posture. What’s more, each of those three was about disproving the previously widespread assumption of tail-dragging in sauropods, but the wedged sacrum of Spinophorosaurus if anything suggests the opposite posture.
So my question is, given that the dorsal and caudal portions of the vertebral column are at some specific angle to each other, how do we decide which (if either) is horizontal, and which is inclined?

Three interpretations of the wedged sacrum of Spinophorosaurus, in right lateral view. In all three, the green line represents the trajectory of the dorsal column in the torso, and the red line that of the caudal column. At the top, the tail is horizontal (as favoured by Vidal et al. 2020) resulting in an inclined torso; at the bottom, the torso is horizontal, resulting in a dorsally inclined tail; in the middle, an intermediate posture shows both the torso and the tail slightly inclined.
I am not convinced that the evidence presented by Vidal et al. persuasively favours any of these possibilities over the others. (They restore the forequarters of Spinophorosaurus with a very vertical and ventrally positioned scapula in order to enable the forefeet to reach the ground; this may be correct or it may not, but it’s by no means certain — especially as the humeri are cross-scaled from a referred specimen and the radius, ulna and manus completely unknown.)
3. Distortion
Finally, we should mention the problem of distortion. This is not really a criticism of the paper, just a warning that sacra as preserved should not be taken as gospel. I have no statistics or even systematic observations to back up this assertion, but the impression I have, from having looked closely at quite a lot of sauropod vertebra, is the sacra are perhaps more prone to distortion than most vertebrae. So, for example, the very extreme almost 30-degree wedging that Vidal et al. observed in the sacrum of the Brachiosaurus altithorax holotype FMNH PR 25107 should perhaps not be taken at face value.
Now what?
Vidal el al. are obviously onto something. Sauropod sacra are screwy, and I’m glad they have drawn attention in a systematic way to something that had only been alluded to in passing previously, and often in a way that made it seems as though the wedging they describe was unique to a few special specimens. So it’s good that this paper is out there.
But we really do need to see it as only a beginning. Some of the things I want to see:
- Taking cartilage into account. If this results in silly postures, we need to understand why that is the case, not just pretend the problem doesn’t exist.
- Comparison of sauropod sacra with those of other animals — most important, extant animals whose actual posture we can observe. This might be able to tell us whether wedging really has the implications for posture that we’re assuming.
- Better justification of the claim that the torso rather than the tail was inclined.
- An emerging consensus on sauropod shoulder articulation, since this also bears on torso orientation. (I don’t really have a position on this, but I think Matt does.)
- The digital Spinophorosaurus model used in this study. (The paper says “The digital fossils used to build the virtual skeleton are deposited and accessioned at the Museo Paleontológico de Elche” but there is no link, I can’t easily find them on the website and they really should be published alongside the paper.)
Anyway, this is a good beginning. Onward and upward!
References
- Bakker, Robert T. 1968. The Superiority of Dinosaurs. Discovery 3:11–22.
- Coombs, Walter P. 1975. Sauropod habits and habitats. Palaeogeography, Palaeoclimatology, Palaeoecology 17:1-33.
- Gilmore, Charles W. 1932. On a newly mounted skeleton of Diplodocus in the United States National Museum. Proceedings of the United States National Museum 81:1-21.
- Hatcher, John Bell. 1901. Diplodocus (Marsh): its osteology, taxonomy, and probable habits, with a restoration of the skeleton. Memoirs of the Carnegie Museum 1:1-63.
- Osborn, Henry F. 1904. Manus, sacrum and caudals of Sauropoda. Bulletin of the American Museum of Natural History 20:181-190.
- Taylor, Michael P. 2014. Quantifying the effect of intervertebral cartilage on neutral posture in the necks of sauropod dinosaurs. PeerJ 2:e712. doi:10.7717/peerj.712
- Taylor, Michael P., and Mathew J. Wedel. 2013c. The effect of intervertebral cartilage on neutral posture and range of motion in the necks of sauropod dinosaurs. PLOS ONE 8(10):e78214. 17 pages. doi:10.1371/journal.pone.0078214
- Taylor, Michael P., Mathew J. Wedel and Darren Naish. 2009. Head and neck posture in sauropod dinosaurs inferred from extant animals. Acta Palaeontologica Polonica 54(2):213-230.
- Vidal, Daniel, P Mocho, A. Aberasturi, J. L. Sanz and F. Ortega. 2020. High browsing skeletal adaptations in Spinophorosaurus reveal an evolutionary innovation in sauropod dinosaurs. Scientific Reports 10(6638). Indispensible supplementary information at https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-020-63439-0/MediaObjects/41598_2020_63439_MOESM1_ESM.pdf
doi:10.1038/s41598-020-63439-0
Shoebills lie tell the truth (and it’s disgusting)
January 27, 2020
Heinrich Mallison sent me this amazing photo, which he found unattributed on Facebook:
Infuriatingly, I’ve not been able to track down an original source for this: searching for the text just finds a bunch of reposts on meme sites, and Google’s reverse image search just reports a bunch of hits on Reddit:
The line-drawing shows some scientific understanding of bird skeletons, so I imagine someone put real thought into this and is unhappy that the image is propagating uncredited. If that person reads this, please leave a comment: I’d love to credit it properly.
Anyway … what’s going on here?
Birds (like all vertebrates) have two tubes running down the ventral aspect of the neck (i.e. below the vertebrae): the trachea, for breathing, and the oesophagus, for swallowing. But these both open into the back of the mouth and are not piped up past it. I’ve not dissected enough bird heads to show this clearly, but when I was taking Veronica apart the trachea was pretty visibly ending in the mouth cavity, not plumbed up past the mouth into the nasal space:
So yes, I think it’s true: shoebills can bulge their spines out of their mouths.
Why? My best guess that there’s just nowhere else for the spine to go when the neck is retracted. There’s a big empty space in the mouth, why let it go to waste?