I’ll have more to say about both of these in the near future, but for now suffice it to say that this (link):

and this (link):

are available for your perusal. Not just the abstracts, but the slide decks as well, just as Mike did for his talk on Jensen’s Big Three sauropods (link).

Jessie is also posting her talk a few slides at a time on her Instagram, with some helpful unpacking, so that’s worth a look even if you have the slides already. That stream of posts starts here.

The image I put together explaining the new discovery. Modified from Staples et al. (2019: fig. 6).

Today sees the publication of a new paper, “Cutaneous branch of the obturator nerve extending to the medial ankle and foot: a report of two cadaveric cases,” by Brittany Staples, Edward Ennedy, Tae Kim, Steven Nguyen, Andrew Shore, Thomas Vu, Jonathan Labovitz, and yours truly. I’m excited for two reasons: first, the paper reports some genuinely new human gross anatomy, which happens surprisingly often but still isn’t an everyday occurrence, and second, the first six authors are my former students. This isn’t my discovery, it’s theirs. But I’m still going to yap about it.

When the obturator nerve won’t stay in its lane

Your skin is innervated by cutaneous nerves, which relay sensations of touch, pressure, vibration, temperature, and pain to your central nervous system, and carry autonomic (involuntary) fibers to your sweat and sebaceous glands and the arrector pili muscles that raise and lower your hairs (as when we get goosebumps). Every inch of your skin lies in the domain of one cutaneous nerve or another. Known boundaries between cutaneous branches of different nerves are approximate, both because they vary from person to person, and because the territories of the nerves themselves interdigitate and overlap at very fine scales. That said, aside from complex areas where the domains of multiple nerves intersect (like the groin), most body regions get their cutaneous innervation from just one nerve.

The obturator nerve arises from the spinal levels of the 2nd-4th lumbar vertebrae (L2-L4), exits the pelvis through the obturator canal behind the superior ramus of the pubis, and innervates the adductor muscles of the medial compartment of the thigh. The cutaneous branch of the obturator nerve typically innervates a variable but limited patch of skin on the inner thigh. Here’s a diagram from Gray’s Anatomy, 40th edition, showing the common cutaneous distribution of the obturator nerve (Standring et al. 2008 fig. 79.17, modified):

In rare cases, however, the obturator nerve doesn’t stay in the thigh. I was teaching in the gross anatomy lab in the fall of 2013 when one of our podiatry students, Brittany Staples, called me over to her table. We were skinning the thigh and leg that day, and in her assigned cadaver, Brittany had found a nerve from the medial thigh running all the way down to the inner side of the ankle and foot.

I didn’t immediately freak out, because everyone has a nerve from the thigh running down to the inner side of the ankle and foot: the saphenous branch of the femoral nerve, which comes out of the anterior thigh (also highlighted in the above image). But when we traced back Brittany’s nerve, it wasn’t coming from the femoral nerve. Instead, it was coming from the anterior division of the obturator nerve, right behind the adductor longus muscle (when people do the splits, this is the muscle that makes a visible ridge from the inner thigh to the groin). We carefully cleaned and photographed the nerve, and then we hit the books. Our first question: was this a known variation, or had Brittany discovered something new in the annals of human anatomy?

Standing on the shoulders of giants

Virtually all introductory anatomy textbooks show the obturator nerve only going to the thigh. But a little digging turned up Bouaziz et al. (2002), which in turn reproduced a figure from Rouvière and Delmas (1973), a French textbook, which showed the obturator nerve passing the knee and innervating part of the calf. That was at least an advance on what we knew starting out. We found a similar written description in Sunderland (1968).

Bouaziz et al. (2002: fig. 1)

Then we discovered Bardeen (1906), a magnificent and magisterial work 130 pages in length. Titled, “Development and variation of the nerves and the musculature of the inferior extremity and of the neighboring regions of the trunk in man”, the paper delivers on its impressive title. Bardeen (1906: 285 and 317) reported than in 22 out of 80 cadavers, the cutaneous branch of the obturator nerve (CBO) reached the knee; in 10 of those cases it could be traced at least to the middle third of the calf; and in one case it reached “nearly to ankle”. Bardeen also commented on the difficulty of tracing out the limits of this tiny nerve (p. 285):

“How constant the cutaneous branch of the obturator may be I have been unable satisfactorily to determine. Students dissecting frequently fail to find it. Owing to the fact that this may often be due to its small size the negative records cannot safely be used in making up statistics.”

All of us on the paper can back up Bardeen’s comments here: by the time they reach the skin, cutaneous nerves might be as big around as a pencil lead, or a strand of dental floss, or a human hair, but they won’t be much bigger. Sometimes they run just under the skin, sometimes down in the subcutaneous fat and fascia (with vanishingly small extensions spidering out to the underside of the skin), always variable in their courses and often devilishly hard to find, preserve, and trace.

If there is a prior report in the literature of a CBO passing the ankle, we haven’t found it, and neither have the numerous podiatric physicians who commented on the manuscript before we submitted, nor the reviewers and editors of the Journal of Foot & Ankle Surgery. I feel pretty safe saying that this is truly new (and if you know otherwise, please let me know in the comments!).

The second case, and the long silence

Every year since 2013, I’ve warned our medical and podiatric students to be on the lookout for anomalously long branches of the obturator nerve. The very next year, a group of summer anatomy students found a second example (they’re authors 2-6 on the paper). Since then, nada, in over 200 more bodies as of this summer. Either we got crazy lucky to find two examples in back to back years, or long CBOs are more common than we think, just really hard to find and identify. More on that in a minute.

A quick aside: we didn’t deliberately hold up the paper while we were looking for more examples, we’ve all just been busy. Brittany and the other student authors were occupied with passing med school and their board exams, surviving clinical rotations, and applying to residency programs. I’m happy to say “were occupied” with all those things because they’re all graduated now, and in residency training. Anyway, that’s why the paper had a 5-year gestation: med school doesn’t leave a lot of time for research and writing. Kudos to Brittany for giving all of us regular kicks to keep things moving along. In every sense, the paper would not exist without her skill and dedication.

So what’s going on here?

There are two sides to this: what happened to produce the variants we found in 2013 and 2014, and why variants like that escaped detection for so long, and I’ll tackle them in that order.

We found both of the long CBOs in the territory normally occupied by the saphenous branch of the femoral nerve. The saphenous nerve is so named because it runs along the great saphenous vein, the major superficial vein of the medial leg and thigh. Sometimes the saphenous nerve has only a single main trunk, but more commonly it splits into two parallel branches, one on either side of the saphenous vein, as illustrated here by Wilmot and Evans (2013: fig. 3):

In both of our cases, the saphenous branch of the femoral nerve was present, but it only had one branch, in front of the big vein, and the long CBO ran behind the vein, in the place usually occupied by the posterior branch of the saphenous nerve. In effect, the posterior part of the saphenous branch of the femoral nerve had been replaced by a sort of saphenous branch of the obturator nerve. This has interesting implications.

Suppose you were a surgeon, harvesting the distal portion of the saphenous vein for a coronary artery bypass graft, and you saw two nerves accompanying the vein, one in front and one behind. You would probably assume that both branches arose from the femoral nerve, because that is what happens most commonly. But if the posterior branch actually came from the obturator nerve, you’d have no way of knowing that, without tracing the nerve back to its origin in the inner thigh. The watchwords in surgery these days are “minimally invasive” and “patient outcomes” — smaller openings in the body mean less pain, fewer complications, faster recoveries, and happier patients. So surgeons aren’t going to flay patients open from ankle to groin just to chase down a nerve that might be coming from the normal place after all.

If you only get to look inside the box, these two things look the same.

We suspect that long CBOs may be fairly common, just hard to recognize, because who is going to find them? Medical students dissecting human cadavers have the opportunity to trace long cutaneous nerves back to their origins, but since it’s the students’ first time cutting, they usually haven’t yet developed the experience to recognize weird versions of tiny nerves, nor the skill to preserve them. Surgeons have the experience and the skill, but not the opportunity, because they can’t go around filleting their patients to see where all the nerves come from. So long CBOs probably fall into a perceptual blind spot, in which almost no-one who cuts on human bodies has both the opportunity to find them, and the skill to preserve them — my former students excepted (he said with no small helping of pride).

That’s pretty darned interesting, and it makes me wonder what other perceptual blind spots are out there, in both anatomy and paleontology. I know of at least one: the true nature and extent of the fluid-filled interstitial tissues that pervade our bodies (and those of all other vertebrates at least) were not fully appreciated until just last year, because the first step in the production of most histological slides is to dehydrate the tissues, which collapses the fluid-filled spaces and makes the interstitium look like regular connective tissue (Benias et al. 2018). That is a spooky kind of observer effect, and it makes me wonder what else we’re missing because of the ways we choose — or are constrained — to look.

What next?

What’s the fallout from this study? For me, two things. First — obviously — we’re going to keep looking for more examples of long CBOs, and for other similar cases in which one nerve may have been replaced by its neighbor. This is more than trivia. Knowing which nerves to expect and where to find them is important, not only for surgeons but also for anaesthetists and pain management physicians doing nerve blocks. The decks may be stacked against med students for some of these discoveries, but clearly “difficult” does not mean “impossible” or I’d have nothing to write about. Lightning has already struck twice, so I’ll keep flying this particular kite.

Second, this case, a few other odd things we’ve found in the lab over the years, and other recently-reported discoveries in human anatomy have caused me to wonder: could we formulate predictive maxims to help guide future discoveries in human anatomy, or in anatomy full stop? I think so, and provided my abstract is accepted, I’ll be presenting on that topic at SVPCA in a couple of months. More on that in due time.

Finally — and this cannot be overstated — without the keen eyes, skilled hands, sharp minds, and hard work of the student authors, there would be no discovery and no paper. So congratulations to Brittany, Edward, Tae, Steven, Andrew, and Thomas. Or as I’m happy to address them now, Drs. Staples, Ennedy, Kim, Nguyen, Shore, and Vu. Y’all done good. Keep it up.


  • Bardeen, C.R. 1906. Development and variation of the nerves and the musculature of the inferior extremity and of the neighboring regions of the trunk in man. Developmental Dynamics 6(1):259-390.
  • Benias, P.C., Wells, R.G., Sackey-Aboagye, B., Klavan, H., Reidy, J., Buonocore, D., Miranda, M., Kornacki, S., Wayne, M., Carr-Locke, D.L. and Theise, N.D. 2018. Structure and distribution of an unrecognized interstitium in human tissues. Scientific Reports, 8:4947.
  • Bouaziz, H., Vial, F., Jochum, D., Macalou, D., Heck, M., Meuret, P., Braun, M., and Laxenaire, M.C. 2002. An evaluation of the cutaneous distribution after obturator nerve block. Anesthesia & Analgesia 94(2):445-449.
  • Rouvière, H., and Delmas, A. 1973. Anatomie humaine, descriptive, topographique et fonctionnelle: tome 3—membres-système nerveux central, ed 11, Masson, Paris.
  • Standring, S. (ed.) 2008. Gray’s Anatomy: The Anatomical Basis of Clinical Practice, 41st ed, Elsevier Health Sciences, London.
  • Staples, B., Ennedy, E., Kim, T., Nguyen, S., Shore, A., Vu, T., Labovitz, J., and Wedel, M. 2019. Cutaneous branch of the obturator nerve extending to the medial ankle and foot: a report of two cadaveric cases. Journal of Foot & Ankle Surgery, advance online publication.
  • Sunderland, S. 1968. Nerves and Nerve Injuries. Churchill Livingstone, Edinburgh.
  • Wilmot, V.V., and Evans, D.J.R. 2013. Categorizing the distribution of the saphenous nerve in relation to the great saphenous vein. Clinical Anatomy 26(4):531-536.

Birds have little blobs of tissue sticking out on either side of the spinal cord in the lumbosacral region (solid black arrow in the image above). These are the accessory lobes of Lachi, and they are made up of mechanosensory neurons and glycogen-rich glial cells (but they are not part of the glycogen body, that’s a different thing that lies elsewhere — see this post).

These accessory lobes have been known since at least 1889, when they were first described by Lachi. But the function was mysterious until recently.

Starting in the late 1990s, German anatomist and physiologist Reinhold Necker investigated the development, morphology, and function of the lumbosacral canals of birds. These are not pneumatic spaces, they’re fluid-filled tubes that arch above (dorsal to) the spinal cord in the lumbosacral regions of birds. In a sacral neural canal endocast they look like sets of ears, or perhaps caterpillar legs (below image in the above slide).

Here’s the same slide with the top image labeled, by me.

In our own bodies, the meningeal sac that surrounds the spinal cord is topologically simple, basically a single long bag like a sock with the spinal cord running through the middle. In the lumbosacral regions of birds, the meningeal sac is more like a basket in cross-section, with dorsally-arching loops — the lumbosacral canals — forming the basket handles (lower image in the above slide). Evidently cerebrospinal fluid can slosh through these meningeal loops and push on the accessory lobes of Lachi, whose mechanosensory neurons pick up the displacement. This is essentially the same system that we (and all other vertebrates) have in the semicircular canals in our inner ears, which give us our sense of equilibrium.

Evidence that the lumbosacral canals function as organs of equilibrium comes not only from anatomy but also from the behavior of experimentally-modified birds. If the lumbosacral canals are surgically severed, creating the ‘lesion’ mentioned in the above figure, the affected birds have a much harder time controlling themselves. They can do okay if they are allowed to see, as shown on the left side of the above figure, but if they are blindfolded, they don’t know how to orient themselves and flop around clumsily. Meanwhile, blindfolded birds with their lumbosacral canals intact can balance just fine.

All of this is documented in a series of papers by Necker and colleagues — particularly useful are Necker (1999, 2002, 2005, 2006) and Necker et al. (2000). Necker (2006) seems to be the summation of all of this research. It’s very well-documented, well-reasoned, compelling stuff, and it’s been in the literature for over a decade.

So why is no-one talking about this? When I discovered Necker’s work last spring, I was stunned. This is HUGE. In general, the central nervous systems of vertebrates are pretty conserved, and animals don’t just go around evolving new basic sensory systems willy-nilly. Minimally I would expect congressional hearings about this, broadcast live on C-SPAN, but ideally there would be a talk show and a movie franchise.

I was equally blown away by the fact that I’d never heard about this from inside the world of science and sci-comm. Necker’s discovery seemed to have been almost entirely overlooked in the broader comparative anatomy community. I searched for weaknesses in the evidence or reasoning, and I also searched for people debunking the idea that birds have balance organs in their butts, and in both cases I came up empty-handed (if you know of counter-evidence, please let me know!). It’s relevant to paleontology, too: because the lumbosacral canals occupy transverse recesses in the roof of the sacral neural canal, they should be discoverable in fossil taxa. I’ve never heard of them being identified in a non-avian dinosaur, but then, I’ve never heard of anyone looking. You can also see the lumbosacral canals for yourself, or at least the spaces they occupy, for about three bucks, as I will show in an upcoming post.

Incidentally, I’m pretty sure this system underlies the axiomatic ability of birds to run around with their heads cut off. I grew up on a farm and raised and slaughtered chickens, so I’ve observed this firsthand. A decapitated chicken can get up on its hind legs and run around. It won’t go very far or in a straight line, hence the jokey expression, but it can actually run on flat ground. It hadn’t occurred to me until recently how weird that is. All vertebrates have central pattern generators in their spinal cords that can produce the basic locomotor movements of the trunk and limbs, but if you decapitate most vertebrates the body will just lie there and twitch. The limbs may even make rudimentary running motions, but the decapitated body can’t stand up and successfully walk or run. Central pattern generators aren’t enough, to run you need an organ of balance. A decapitated bird can successfully stand and run around because it still has a balance organ, in its lumbosacral spinal cord.

You may recognize some of the slides that illustrate this post from the Wedel et al. (2018) slide deck on the Snowmass Haplocanthosaurus for the 1st Palaeontological Virtual Congress. Those were stolen in turn from a much longer talk I’ve given on weird nervous system anatomy in dinosaurs, which I am using piecemeal as blog fuel. Stay tuned!

So, birds have balance organs in their butts. We should be talking about this. The comment thread is open.


  • Lachi, P. 1889. Alcune particolarita anatomiche del rigonfiamento sacrale nel midollo degli uccelli. Lobi accessori. Att Soc Tosc Sci Nat 10:268–295.
  • Necker, R. 1999. Specializations in the lumbosacral spinal cord of birds: morphological and behavioural evidence for a sense of equilibrium. European Journal of Morphology 37:211–214.
  • Necker, R. 2002. Mechanosensitivity of spinal accessory lobe neurons in the pigeon. Neuroscience Letters 320:53–56.
  • Necker, R. 2005. The structure and development of avian lumbosacral specializations of the vertebral canal and the spinal cord with special reference to a possible function as a sense organ of equilibrium. Anatomy and Embryology 210:59–74.
  • Necker, R. 2006. Specializations in the lumbosacral vertebral canal and spinal cord of birds: evidence of a function as a sense organ which is involved in the control of walking. Journal of Comparative Physiology A, 192(5):439-448.
  • Necker, R, Janßen A, Beissenhirtz, T. 2000. Behavioral evidence of the role of lumbosacral anatomical specializations in pigeons in maintaining balance during terrestrial locomotion. Journal of Comparative Physiology A 186:409–412.
  • Wedel, M.J., Atterholt, J., Macalino, J., Nalley, T., Wisser, G., and Yasmer, J. 2018. Reconstructing an unusual specimen of Haplocanthosaurus using a blend of physical and digital techniques. Abstract book, 1st Palaeontological Virtual Congress, http://palaeovc.uv.es/, p. 158 /  PeerJ Preprints 6:e27431v1

In short, no. I discussed this a bit in the first post of the Clash of the Dinosaurs saga, but it deserves a more thorough unpacking, so we can put this dumb idea to bed once and for all.

As Marco brought up in the comments on the previous post, glycogen bodies are probably to blame for the idea that some dinosaurs had a second brain to run their back ends. The glycogen body is broadly speaking an expansion of the spinal cord, even though it is made up of glial cells rather than neurons — simply put, help-and-support cells, not sensory, motor, or integration cells. When the spinal cord is expanded, the neural canal is expanded to accommodate it; as usual, the nervous system comes first and the skeleton forms around it. This creates a cavity in the sacrum that is detectable in fossils.

avian lumbosacral specializations - glycogen body

Giffin (1991) reviewed all of the evidence surrounding endosacral enlargements in dinosaurs (primarily sauropods and stegosaurs) and concluded that the explanation that best fit the observations was a glycogen body like that of birds. I agree 100%. The endosacral cavities of sauropods and stegosaurs (1) expand dorsally, instead of in some other direction, and (2) expand and contract over just a handful of vertebrae, instead of being more spread out. Of the many weird specializations of the spinal cord in birds, the glycogen body is the only one that produces that specific signal.

If any part of the nervous system of birds and other dinosaurs might be described as a ‘second brain’, it wouldn’t be the glycogen body, it would be the lumbosacral expansion of the spinal cord, which really is made up of neurons that help run the hindlimbs and tail (more on that in this previous post). But there’s nothing special about that, it’s present in all four-limbed vertebrates, including ourselves. Interestingly, that bulk of extra neural tissue in the sacral region of birds was referred to as a sort of ‘second brain’ by Streeter way back in 1904, in reference to the ostrich, but it’s clear that he meant that as an analogy, not that’s it’s literally a second brain.

So to sum up, a gradual expansion of the spinal cord to help run the hindlimbs and tail IS present in dinosaurs — and birds, and cows, and frogs, and us. But if that qualifies as a ‘second brain’, then we also have a ‘third brain’ farther up the spinal cord to run our forelimbs: the cervical enlargement, as shown in the above figure. These spinal expansions aren’t actual brains by any stretch and referring to them as such is confusing and counterproductive.

The sharp expansion of the neural canal over just a few vertebrae in birds does not house a ‘second brain’ or even an expansion of the neural tissue of the spinal cord. It contains the glycogen body, which is not made of neurons and has no brain-like activity. The sacral cavities of non-avian dinosaurs replicate precisely the qualities associated with the glycogen bodies of birds, and there’s no reason to expect that they contained anything else. That we don’t know yet what glycogen bodies do, even in commercially important species like chickens, may make that an unsatisfying answer, but it’s what we have for now.

The next installment will be way weirder. Stay tuned!


  • Giffin, E.B.,1991. Endosacral enlargements in dinosaurs. Modern Geology 16: 101-112.
  • Streeter, G.L. 1904. The structure of the spinal cord of the ostrich. American J. Anatomy 3(1): 1-27.

I planned to post this last spring but I never got around to it. I think I have a mental block about discussing the glycogen body. Partly because I’ve been burned by it before, partly because no-one knows what it does and that’s unsatsifying, partly because I didn’t want to plow through all the new literature on it (despite which, the function remains unknown).

Then I decided, screw it, I’ll let the slides speak for themselves, and the actual text of the post can just be navel-gazing and whingeing. Which you are “enjoying” right now.

So, there’s the glycogen body. It balloons out between the dorsal halves of the spinal cord, it’s made of glial cells (neuron support cells) that are packed with glycogen, and nobody knows why it’s there. On the graph of easy-to-find and frustrating-to-study it is really pushing the envelope.

Update: the role of the glycogen body in the ‘second brain’ myth is covered in the next post.

Previous entries in the “Bird neural canals are weird” series:

Here are some stubbornly-not-updated references for the images I used in the slides:

  • Huber, J.F. 1936. Nerve roots and nuclear groups in the spinal cord of the pigeon. Journal of Comparative Neurology 65(1): 43-91.
  • Streeter, G.L. 1904. The structure of the spinal cord of the ostrich. American Journal of Anatomy 3(1):1-27.
  • Watterson, R.L. 1949. Development of the glycogen body of the chick spinal cord. I. Normal morphogenesis, vasculogenesis and anatomical relationships. Journal of Morphology 85(2): 337-389.

Imposter syndrome revisited

September 13, 2018

My wife Fiona is a musician and composer, and she’s giving a talk at this year’s TetZooCon on “Music for Wildlife Documentaries – A Composer’s Perspective”. (By the way, it looks like some tickets are still available: if you live near or in striking distance of London, you should definitely go! Get your tickets here.)

With less than four weeks to go, she’s starting to get nervous — to feel that she doesn’t know enough about wildlife to talk to the famously knowledgeable and attractive TetZooCon audience. In other words, it’s a classic case of our old friend imposter syndrome.

Wanting to reassure her about how common this is, I posted a Twitter poll:

Question for academics, including grad-students.
(Please RT for better coverage.)

Have you ever experienced Imposter Syndrome?
(And feel free to leave comments with more detail.)

Here are the results at the end of the 24-hour voting period:

Based on a sample of nearly 200 academics, just one in 25 claims not have experienced imposter syndrome; nearly two thirds feel it all the time.

The comments are worth reading, too. For example, Konrad Förstner responded:

Constantly. I would not be astonished if at some point a person from the administration knocks at my door and tells me that my work was just occupational therapy to keep me busy but that my healthcare insurance will not pay this any longer.

What does this mean? Only this: you are not alone. Outside of a tiny proportion of people, everyone else you know and work with sometimes feels that way. Most of them always feel that way. And yet, think about the work they do. It’s pretty good, isn’t it? Despite how they feel? From the outside, you can see that they’re not imposters.

Guess what? They can see that you‘re not an imposter, either.

I’ve known who Peter Doson was since I was nine years old. A copy of The Dinosaurs by William Stout and William Service, with scientific content by Peter, showed up at my local Waldenbooks around the same time as the New Dinosaur Dictionary – much more on The Dinosaurs another time. Then when I started doing research as an undergrad at the University of Oklahoma, Peter’s chapter on sauropod paleobiology in The Dinosauria (Dodson 1990) was one of the first things I read. At the SVP banquet in 2000, I ran into Peter and he shook my hand and said, “Sauroposeidon rocks!” I managed not to swoon – barely.

When I was in Philadelphia this March, Peter invited me to the UPenn vet school for an afternoon. He gave me a tour of the building with its beautiful lecture halls and veterinary dissection lab, and then we spent a couple of hours rummaging around in his office. That was one of the highlights of the trip, because it turns out that Peter and I are both comparative anatomy junkies. He’s been at it for longer, and he has more regular access to dead critters and more space to display them, so his collection puts mine to shame. But he kindly let me play with study whatever I wanted.


In fact, he went farther than that: he quizzed me. A lot. I take it that it’s a right of passage for people coming through Peter’s office. It was an enjoyable challenge, and I got photos of a few quiz items so you can play, too. This transversely-sectioned skull was one of the first mystery specimens. I figured it out pretty quickly, for reasons I’ll reveal in a future post. Can you? Post your IDs in the comments.

I don’t remember all of the quiz items. One of them was the dark skull lying upside down behind the ratite skeleton in the photo up top. I had to figure that one out without picking it up, so you have about as much information as I did. We’ll call that one quiz item #2. Embiggenate for all the clues you’ll need.

This wasn’t a quiz item, just something cool: the skull of a large dog with the top of the cranium removed. In the paired cavities at the top, we’re looking down through the frontal sinuses to see the respiratory turbinates in the nasal cavities. The single large space behind is the braincase. At the very front, in the shadowed recess, you can see the cribriform plate of the ethmoid bone, perforated with dozens of holes to let the olfactory nerve endings through from the back of the nasal cavities. We have the same thing on a smaller scale a centimeter or two behind our brows, and oriented horizontally. But what really drew my attention were the linear arrays of paired foramina arcing across the floor of the braincase – holes to let cranial nerves and the internal jugular veins out of the skull, and the internal carotid arteries in. We have the same structures in our heads, of course, but the layout isn’t as neat – our big brains, bent forward at such a sharp angle from the spinal cord, have squished things around a bit.

Here are more skulls, garnished with a human femur and a ratite pelvis and synsacrum. Peter quizzed me on the Archaeoceratops (front) and Auroraceratops (back) skulls on the far right. I IDed them correctly, but only because I spent some quality time with the Alf Museum’s casts when I was reconstructing the skull of Aquilops. On the far left is an alligator skull with injected arteries, which is definitely worth a closer look.

Here’s a dorsal view of the injected alligator skull. The arteries have been injected with red resin, and then all of the soft tissue has been macerated away, leaving just the bone and the internal cast of the arterial tree. Some of the midline bone has been removed here to reveal the courses of the cerebral, ethmoid, and nasal arteries. Also note the artery looping around in the left supratemporal fenestra.

Here’s a look into the right side of the back of the skull, where the lateral wall of the braincase has been Dremeled away to show the course of the internal carotid artery. It’s a very cool demonstration of a bit of anatomy that I had never seen before. For more on cranial blood vessels in crocs, check out the obscenely well-illustrated recent paper by Porter et al. (2016).

To my chagrin, that’s all the good photos I got from Peter’s office – we were too busy passing specimens back and forth and frankly geeking out like a couple of kids. One of my favorite specimens from his office was the mounted foot skeleton of a horse, which Jessie Atterholt had prepared for him when she was his student at UPenn. It’s such a cool preparation that it captured my imagination, and when I got back I warned Jessie that if she didn’t get her own articulated horse foot posted soon, I was going to make something similar for myself and steal her thunder. A couple of months later, her horse foot is up on Instagram – I featured it in this post – and my cow foot is still sitting in pieces, waiting for me to put it together. Here’s a shot of Jessie’s, to hopefully prod me into action:

I didn’t get all of Peter’s quiz questions correct. I knew that the endocast of the pharyngeal pouch in a horse was an endocast, but of what I didn’t know, although I did correctly identify the hyoid apparatus of a horse, mounted separately. And there was a partial cetacean jaw that I misidentified as a shark (in my defense, it was from one of the small, short-faced weirdos). Still, Peter said that I’d done as well as anyone else ever had. That was nice to hear, but I was already happy to have gotten to see and talk about so many cool things with a fellow connoisseur. Thanks, Peter, for a wonderful afternoon, and for permission to post these pictures. I am looking forward to a rematch!


  • Dodson, P. 1990. Sauropod paleoecology. In: D.B. Weishampel, P. Dodson, P., & H. Osmolska, (eds), The Dinosauria, 402-407. University of California Press, Berkeley.
  • Porter, W.R., Sedlmayr, J.C. and Witmer, L.M., 2016. Vascular patterns in the heads of crocodilians: blood vessels and sites of thermal exchange. Journal of Anatomy 229(6): 800-824.
  • Stout, W., Service, W., and Preiss, B. 1984. The Dinosaurs: A Fantastic View of a Lost Era. Bantam Dell Publishing Group, 160pp.