Birds have little blobs of tissue sticking out on either side of the spinal cord in the lumbosacral region (solid black arrow in the image above). These are the accessory lobes of Lachi, and they are made up of mechanosensory neurons and glycogen-rich glial cells (but they are not part of the glycogen body, that’s a different thing that lies elsewhere — see this post).

These accessory lobes have been known since at least 1889, when they were first described by Lachi. But the function was mysterious until recently.

Starting in the late 1990s, German anatomist and physiologist Reinhold Necker investigated the development, morphology, and function of the lumbosacral canals of birds. These are not pneumatic spaces, they’re fluid-filled tubes that arch above (dorsal to) the spinal cord in the lumbosacral regions of birds. In a sacral neural canal endocast they look like sets of ears, or perhaps caterpillar legs (below image in the above slide).

Here’s the same slide with the top image labeled, by me.

In our own bodies, the meningeal sac that surrounds the spinal cord is topologically simple, basically a single long bag like a sock with the spinal cord running through the middle. In the lumbosacral regions of birds, the meningeal sac is more like a basket in cross-section, with dorsally-arching loops — the lumbosacral canals — forming the basket handles (lower image in the above slide). Evidently cerebrospinal fluid can slosh through these meningeal loops and push on the accessory lobes of Lachi, whose mechanosensory neurons pick up the displacement. This is essentially the same system that we (and all other vertebrates) have in the semicircular canals in our inner ears, which give us our sense of equilibrium.

Evidence that the lumbosacral canals function as organs of equilibrium comes not only from anatomy but also from the behavior of experimentally-modified birds. If the lumbosacral canals are surgically severed, creating the ‘lesion’ mentioned in the above figure, the affected birds have a much harder time controlling themselves. They can do okay if they are allowed to see, as shown on the left side of the above figure, but if they are blindfolded, they don’t know how to orient themselves and flop around clumsily. Meanwhile, blindfolded birds with their lumbosacral canals intact can balance just fine.

All of this is documented in a series of papers by Necker and colleagues — particularly useful are Necker (1999, 2002, 2005, 2006) and Necker et al. (2000). Necker (2006) seems to be the summation of all of this research. It’s very well-documented, well-reasoned, compelling stuff, and it’s been in the literature for over a decade.

So why is no-one talking about this? When I discovered Necker’s work last spring, I was stunned. This is HUGE. In general, the central nervous systems of vertebrates are pretty conserved, and animals don’t just go around evolving new basic sensory systems willy-nilly. Minimally I would expect congressional hearings about this, broadcast live on C-SPAN, but ideally there would be a talk show and a movie franchise.

I was equally blown away by the fact that I’d never heard about this from inside the world of science and sci-comm. Necker’s discovery seemed to have been almost entirely overlooked in the broader comparative anatomy community. I searched for weaknesses in the evidence or reasoning, and I also searched for people debunking the idea that birds have balance organs in their butts, and in both cases I came up empty-handed (if you know of counter-evidence, please let me know!). It’s relevant to paleontology, too: because the lumbosacral canals occupy transverse recesses in the roof of the sacral neural canal, they should be discoverable in fossil taxa. I’ve never heard of them being identified in a non-avian dinosaur, but then, I’ve never heard of anyone looking. You can also see the lumbosacral canals for yourself, or at least the spaces they occupy, for about three bucks, as I will show in an upcoming post.

Incidentally, I’m pretty sure this system underlies the axiomatic ability of birds to run around with their heads cut off. I grew up on a farm and raised and slaughtered chickens, so I’ve observed this firsthand. A decapitated chicken can get up on its hind legs and run around. It won’t go very far or in a straight line, hence the jokey expression, but it can actually run on flat ground. It hadn’t occurred to me until recently how weird that is. All vertebrates have central pattern generators in their spinal cords that can produce the basic locomotor movements of the trunk and limbs, but if you decapitate most vertebrates the body will just lie there and twitch. The limbs may even make rudimentary running motions, but the decapitated body can’t stand up and successfully walk or run. Central pattern generators aren’t enough, to run you need an organ of balance. A decapitated bird can successfully stand and run around because it still has a balance organ, in its lumbosacral spinal cord.

You may recognize some of the slides that illustrate this post from the Wedel et al. (2018) slide deck on the Snowmass Haplocanthosaurus for the 1st Palaeontological Virtual Congress. Those were stolen in turn from a much longer talk I’ve given on weird nervous system anatomy in dinosaurs, which I am using piecemeal as blog fuel. Stay tuned!

So, birds have balance organs in their butts. We should be talking about this. The comment thread is open.

References

  • Lachi, P. 1889. Alcune particolarita anatomiche del rigonfiamento sacrale nel midollo degli uccelli. Lobi accessori. Att Soc Tosc Sci Nat 10:268–295.
  • Necker, R. 1999. Specializations in the lumbosacral spinal cord of birds: morphological and behavioural evidence for a sense of equilibrium. European Journal of Morphology 37:211–214.
  • Necker, R. 2002. Mechanosensitivity of spinal accessory lobe neurons in the pigeon. Neuroscience Letters 320:53–56.
  • Necker, R. 2005. The structure and development of avian lumbosacral specializations of the vertebral canal and the spinal cord with special reference to a possible function as a sense organ of equilibrium. Anatomy and Embryology 210:59–74.
  • Necker, R. 2006. Specializations in the lumbosacral vertebral canal and spinal cord of birds: evidence of a function as a sense organ which is involved in the control of walking. Journal of Comparative Physiology A, 192(5):439-448.
  • Necker, R, Janßen A, Beissenhirtz, T. 2000. Behavioral evidence of the role of lumbosacral anatomical specializations in pigeons in maintaining balance during terrestrial locomotion. Journal of Comparative Physiology A 186:409–412.
  • Wedel, M.J., Atterholt, J., Macalino, J., Nalley, T., Wisser, G., and Yasmer, J. 2018. Reconstructing an unusual specimen of Haplocanthosaurus using a blend of physical and digital techniques. Abstract book, 1st Palaeontological Virtual Congress, http://palaeovc.uv.es/, p. 158 /  PeerJ Preprints 6:e27431v1
Advertisements

In short, no. I discussed this a bit in the first post of the Clash of the Dinosaurs saga, but it deserves a more thorough unpacking, so we can put this dumb idea to bed once and for all.

As Marco brought up in the comments on the previous post, glycogen bodies are probably to blame for the idea that some dinosaurs had a second brain to run their back ends. The glycogen body is broadly speaking an expansion of the spinal cord, even though it is made up of glial cells rather than neurons — simply put, help-and-support cells, not sensory, motor, or integration cells. When the spinal cord is expanded, the neural canal is expanded to accommodate it; as usual, the nervous system comes first and the skeleton forms around it. This creates a cavity in the sacrum that is detectable in fossils.

avian lumbosacral specializations - glycogen body

Giffin (1991) reviewed all of the evidence surrounding endosacral enlargements in dinosaurs (primarily sauropods and stegosaurs) and concluded that the explanation that best fit the observations was a glycogen body like that of birds. I agree 100%. The endosacral cavities of sauropods and stegosaurs (1) expand dorsally, instead of in some other direction, and (2) expand and contract over just a handful of vertebrae, instead of being more spread out. Of the many weird specializations of the spinal cord in birds, the glycogen body is the only one that produces that specific signal.

If any part of the nervous system of birds and other dinosaurs might be described as a ‘second brain’, it wouldn’t be the glycogen body, it would be the lumbosacral expansion of the spinal cord, which really is made up of neurons that help run the hindlimbs and tail (more on that in this previous post). But there’s nothing special about that, it’s present in all four-limbed vertebrates, including ourselves. Interestingly, that bulk of extra neural tissue in the sacral region of birds was referred to as a sort of ‘second brain’ by Streeter way back in 1904, in reference to the ostrich, but it’s clear that he meant that as an analogy, not that’s it’s literally a second brain.

So to sum up, a gradual expansion of the spinal cord to help run the hindlimbs and tail IS present in dinosaurs — and birds, and cows, and frogs, and us. But if that qualifies as a ‘second brain’, then we also have a ‘third brain’ farther up the spinal cord to run our forelimbs: the cervical enlargement, as shown in the above figure. These spinal expansions aren’t actual brains by any stretch and referring to them as such is confusing and counterproductive.

The sharp expansion of the neural canal over just a few vertebrae in birds does not house a ‘second brain’ or even an expansion of the neural tissue of the spinal cord. It contains the glycogen body, which is not made of neurons and has no brain-like activity. The sacral cavities of non-avian dinosaurs replicate precisely the qualities associated with the glycogen bodies of birds, and there’s no reason to expect that they contained anything else. That we don’t know yet what glycogen bodies do, even in commercially important species like chickens, may make that an unsatisfying answer, but it’s what we have for now.

The next installment will be way weirder. Stay tuned!

References

  • Giffin, E.B.,1991. Endosacral enlargements in dinosaurs. Modern Geology 16: 101-112.
  • Streeter, G.L. 1904. The structure of the spinal cord of the ostrich. American J. Anatomy 3(1): 1-27.

I planned to post this last spring but I never got around to it. I think I have a mental block about discussing the glycogen body. Partly because I’ve been burned by it before, partly because no-one knows what it does and that’s unsatsifying, partly because I didn’t want to plow through all the new literature on it (despite which, the function remains unknown).

Then I decided, screw it, I’ll let the slides speak for themselves, and the actual text of the post can just be navel-gazing and whingeing. Which you are “enjoying” right now.

So, there’s the glycogen body. It balloons out between the dorsal halves of the spinal cord, it’s made of glial cells (neuron support cells) that are packed with glycogen, and nobody knows why it’s there. On the graph of easy-to-find and frustrating-to-study it is really pushing the envelope.

Update: the role of the glycogen body in the ‘second brain’ myth is covered in the next post.

Previous entries in the “Bird neural canals are weird” series:

Here are some stubbornly-not-updated references for the images I used in the slides:

  • Huber, J.F. 1936. Nerve roots and nuclear groups in the spinal cord of the pigeon. Journal of Comparative Neurology 65(1): 43-91.
  • Streeter, G.L. 1904. The structure of the spinal cord of the ostrich. American Journal of Anatomy 3(1):1-27.
  • Watterson, R.L. 1949. Development of the glycogen body of the chick spinal cord. I. Normal morphogenesis, vasculogenesis and anatomical relationships. Journal of Morphology 85(2): 337-389.

Imposter syndrome revisited

September 13, 2018

My wife Fiona is a musician and composer, and she’s giving a talk at this year’s TetZooCon on “Music for Wildlife Documentaries – A Composer’s Perspective”. (By the way, it looks like some tickets are still available: if you live near or in striking distance of London, you should definitely go! Get your tickets here.)

With less than four weeks to go, she’s starting to get nervous — to feel that she doesn’t know enough about wildlife to talk to the famously knowledgeable and attractive TetZooCon audience. In other words, it’s a classic case of our old friend imposter syndrome.

Wanting to reassure her about how common this is, I posted a Twitter poll:

Question for academics, including grad-students.
(Please RT for better coverage.)

Have you ever experienced Imposter Syndrome?
(And feel free to leave comments with more detail.)

Here are the results at the end of the 24-hour voting period:

Based on a sample of nearly 200 academics, just one in 25 claims not have experienced imposter syndrome; nearly two thirds feel it all the time.

The comments are worth reading, too. For example, Konrad Förstner responded:

Constantly. I would not be astonished if at some point a person from the administration knocks at my door and tells me that my work was just occupational therapy to keep me busy but that my healthcare insurance will not pay this any longer.

What does this mean? Only this: you are not alone. Outside of a tiny proportion of people, everyone else you know and work with sometimes feels that way. Most of them always feel that way. And yet, think about the work they do. It’s pretty good, isn’t it? Despite how they feel? From the outside, you can see that they’re not imposters.

Guess what? They can see that you‘re not an imposter, either.

I’ve known who Peter Doson was since I was nine years old. A copy of The Dinosaurs by William Stout and William Service, with scientific content by Peter, showed up at my local Waldenbooks around the same time as the New Dinosaur Dictionary – much more on The Dinosaurs another time. Then when I started doing research as an undergrad at the University of Oklahoma, Peter’s chapter on sauropod paleobiology in The Dinosauria (Dodson 1990) was one of the first things I read. At the SVP banquet in 2000, I ran into Peter and he shook my hand and said, “Sauroposeidon rocks!” I managed not to swoon – barely.

When I was in Philadelphia this March, Peter invited me to the UPenn vet school for an afternoon. He gave me a tour of the building with its beautiful lecture halls and veterinary dissection lab, and then we spent a couple of hours rummaging around in his office. That was one of the highlights of the trip, because it turns out that Peter and I are both comparative anatomy junkies. He’s been at it for longer, and he has more regular access to dead critters and more space to display them, so his collection puts mine to shame. But he kindly let me play with study whatever I wanted.

 

In fact, he went farther than that: he quizzed me. A lot. I take it that it’s a right of passage for people coming through Peter’s office. It was an enjoyable challenge, and I got photos of a few quiz items so you can play, too. This transversely-sectioned skull was one of the first mystery specimens. I figured it out pretty quickly, for reasons I’ll reveal in a future post. Can you? Post your IDs in the comments.

I don’t remember all of the quiz items. One of them was the dark skull lying upside down behind the ratite skeleton in the photo up top. I had to figure that one out without picking it up, so you have about as much information as I did. We’ll call that one quiz item #2. Embiggenate for all the clues you’ll need.

This wasn’t a quiz item, just something cool: the skull of a large dog with the top of the cranium removed. In the paired cavities at the top, we’re looking down through the frontal sinuses to see the respiratory turbinates in the nasal cavities. The single large space behind is the braincase. At the very front, in the shadowed recess, you can see the cribriform plate of the ethmoid bone, perforated with dozens of holes to let the olfactory nerve endings through from the back of the nasal cavities. We have the same thing on a smaller scale a centimeter or two behind our brows, and oriented horizontally. But what really drew my attention were the linear arrays of paired foramina arcing across the floor of the braincase – holes to let cranial nerves and the internal jugular veins out of the skull, and the internal carotid arteries in. We have the same structures in our heads, of course, but the layout isn’t as neat – our big brains, bent forward at such a sharp angle from the spinal cord, have squished things around a bit.

Here are more skulls, garnished with a human femur and a ratite pelvis and synsacrum. Peter quizzed me on the Archaeoceratops (front) and Auroraceratops (back) skulls on the far right. I IDed them correctly, but only because I spent some quality time with the Alf Museum’s casts when I was reconstructing the skull of Aquilops. On the far left is an alligator skull with injected arteries, which is definitely worth a closer look.

Here’s a dorsal view of the injected alligator skull. The arteries have been injected with red resin, and then all of the soft tissue has been macerated away, leaving just the bone and the internal cast of the arterial tree. Some of the midline bone has been removed here to reveal the courses of the cerebral, ethmoid, and nasal arteries. Also note the artery looping around in the left supratemporal fenestra.

Here’s a look into the right side of the back of the skull, where the lateral wall of the braincase has been Dremeled away to show the course of the internal carotid artery. It’s a very cool demonstration of a bit of anatomy that I had never seen before. For more on cranial blood vessels in crocs, check out the obscenely well-illustrated recent paper by Porter et al. (2016).

To my chagrin, that’s all the good photos I got from Peter’s office – we were too busy passing specimens back and forth and frankly geeking out like a couple of kids. One of my favorite specimens from his office was the mounted foot skeleton of a horse, which Jessie Atterholt had prepared for him when she was his student at UPenn. It’s such a cool preparation that it captured my imagination, and when I got back I warned Jessie that if she didn’t get her own articulated horse foot posted soon, I was going to make something similar for myself and steal her thunder. A couple of months later, her horse foot is up on Instagram – I featured it in this post – and my cow foot is still sitting in pieces, waiting for me to put it together. Here’s a shot of Jessie’s, to hopefully prod me into action:

I didn’t get all of Peter’s quiz questions correct. I knew that the endocast of the pharyngeal pouch in a horse was an endocast, but of what I didn’t know, although I did correctly identify the hyoid apparatus of a horse, mounted separately. And there was a partial cetacean jaw that I misidentified as a shark (in my defense, it was from one of the small, short-faced weirdos). Still, Peter said that I’d done as well as anyone else ever had. That was nice to hear, but I was already happy to have gotten to see and talk about so many cool things with a fellow connoisseur. Thanks, Peter, for a wonderful afternoon, and for permission to post these pictures. I am looking forward to a rematch!

References

  • Dodson, P. 1990. Sauropod paleoecology. In: D.B. Weishampel, P. Dodson, P., & H. Osmolska, (eds), The Dinosauria, 402-407. University of California Press, Berkeley.
  • Porter, W.R., Sedlmayr, J.C. and Witmer, L.M., 2016. Vascular patterns in the heads of crocodilians: blood vessels and sites of thermal exchange. Journal of Anatomy 229(6): 800-824.
  • Stout, W., Service, W., and Preiss, B. 1984. The Dinosaurs: A Fantastic View of a Lost Era. Bantam Dell Publishing Group, 160pp.

This is the second post in the “bird neural canals are weird” series (intro post here), and it covers the first of five expansions of the spinal cord or meninges in the lumbosacral regions of birds.

The lumbosacral expansion of the spinal cord is not unique to birds and doesn’t require any special explanation. As noted in the slide, all limbed tetrapods and some fishes with sensitive fins have adjacent segments of the spinal cord correspondingly expanded. These expansions house the extra afferent neurons needed to collect sensory inputs from the limbs, the extra efferent neurons needed to provide motor control to the limbs, and the extra interneurons needed for sensory and motor integration (including reflex arcs) – ‘extra’ here meaning ‘more than are required for non-limb neck, trunk, and tail segments’.

Humans have these, too, in our lower cervical vertebrae to run our forelimbs, and in our lower thoracic vertebrae to run our hindlimbs. Recall that the segmental anatomy of the adult human spinal cord corresponds increasingly poorly to the vertebrae the farther we are from the head because of our child-sized spinal cords (see this post for more).

So if the lumbosacral expansion is present in all tetrapods with hindlimbs, why bring it up? My goal is to develop a set of criteria to distinguish the various spinal and meningeal specializations in birds, in part because it’s an interesting challenge in its own right, and in part because doing so may help illuminate some unusual features in sauropods and other non-avian dinosaurs. If we want to be able to detect whether, say, a glycogen body is present, we need to know how to tell the impression left by a glycogen body from the more generalized lumbosacral expansion present in all limbed tetrapods. The key characteristics of the lumbosacral expansion are that the cord (and hence the canal) expands and contracts gradually, over many segments, and that the expansion is in all directions, radially, and not biased dorsoventrally or mediolaterally.

Numbering reflects spinal nerve count – 8 cervical, 12 thoracic, 5 lumbar, and 5 sacral spinal spinal nerves. Cervical expansion for the forelimbs is roughly C5-T1, and lumbosacral expansion for hindlimbs is L2-S3. Gray (1918 image 665).

The one way in which the lumbosacral expansion of birds is weird, at least compared to mammals, is that the magnitude of the change is so great in hindlimb-dominant flightless birds like the ostrich. Here’s a graph from Gray’s Anatomy showing the cross-sectional area of the human spinal cord in square mm, with the head on the left. Note that the swellings for the limbs bump up the cross-sectional area by a quarter to a third, relative to adjacent non-limb areas.

Streeter (1904: fig. 4)

Here’s the same diagram for an ostrich, again in square mm, again with the head to the left. The lines here are a little different – the “substantia grisea” is the gray matter (mostly neuron cell bodies), and the white matter (axons, mostly myelinated) is divided into the large ventrolateral funiculi (descending motor, ascending pain, temperature, and unconscious proprioception) and the much smaller dorsal funiculi (ascending touch and conscious proprioception). Here the lumbosacral expansion maxes out at more than double the cross-sectional area of the cord in the inter-limb torso segments – and this is just the white and gray matter, and does not include the glycogen body (which is proportionally small in the ostrich, as we’ll see in a future post).

Note that the ostrich does have a much smaller expansion of the spinal cord associated with the forelimbs, but one glance at the graph will tell you that the hindlimbs are a lot more important. This too has implications for fossils. Because the cross-sectional area of the neural canal tends to track the cross-sectional area of the spinal cord (despite the cord not filling the canal), it is possible to make inferences about limb use in fossil taxa based on the relative cross-sectional area of the neural canal along the vertebral column. Emily Giffin published several papers about this in the 1990s (e.g., Giffin 1990, 1995), all of which are worth reading.

Next in this series: the glycogen body.

References

Dorsal vertebra of a rhea from the LACM ornithology collection. Note the pneumatic foramina in the lateral wall of the neural canal.

If you’ve been here for very long you know I have a bit of a neural canal fixation. Some of this is related to pneumaticity, some of it is related to my interest in the nervous systems of animals, and some of it is pure curiosity about an anatomical region that seems to receive very little attention in proportion to its weirdness – especially in birds.

Human thoracic vertebrae in midsagittal section showing vertebral venous plexus. Gray (1918, image 579), available from Bartleby.com.

The neural canals of mammals are pretty boring. The canal is occupied by the spinal cord and its supporting layers of meninges, and the rest of the volume is padded out by adipose tissue and blood vessels, notably an extra-dural venous plexus. Aaand that’s about it, as far as I know. (If there are weird things inside mammalian neural canals that I’ve missed, please let me know in the comments – I’m a collector.)

But not so in birds, which have a whole festival of weird stuff going on inside their neural canals. Let’s start with pneumaticity, just to get it out of the way. Many birds have supramedullary diverticula inside their neural canals, and these can leave osteological traces, such as pneumatic foramina, in the walls of the neural canal. That’s cool but it’s a pretty well-known system – see Muller (1908) on the pigeon, Cover (1953) on the turkey, and these previous posts – and I want to get on to other, even stranger things.

The lumbosacral spinal cord of a 3-week-old chick in dorsal view. The big egg-shaped mass in the middle is the glycogen body. Watterson (1949: plate 1).

The spinal cords of birds have several gross morphological specializations not seen in mammals, as do their meninges, and most of these apomorphic structures can also leave diagnostic traces on the inner walls of the neural canal. In fact, birds have so many weird things going on with their spinal cords – at least five different things in the lumbosacral region alone – that I spent a week back in January just sorting them out. To crystalize that body of knowledge while I had it all loaded in RAM, I made a little slideshow for myself, and I’ll use screenshots of those slides to illustrate the morphologies I want to discuss. We’ll cover the vanilla stuff in the next post, and the really weird stuff in subsequent posts.

Stay tuned!

References