Amazing things are out there waiting to be noticed
March 22, 2021
It is said that, some time around 1590 AD, Galileo Galilei dropped two spheres of different masses from the Leaning Tower of Pisa[1], thereby demonstrating that they fell at the same rate. This was a big deal because it contradicted Aristotle’s theory of gravity, in which objects are supposed to fall at a speed proportional to their mass.
Aristotle lived from 384–322 BC, which means his observably incorrect theory had been scientific orthodoxy for more than 1,900 years before being overturned[2].
How did this happen? For nearly two millennia, every scientist had it in his power to hold a little stone in one hand and a rock in the other, drop them both, and see with his own eyes that they fell at the same speed. Aristotle’s theory was obviously wrong, yet that obviously wrong theory remained orthodox for eighty generations.
My take is that it happened because people — even scientists — have a strong tendency to trust respected predecessors, and not even to look to see whether their observations and theories are correct. I am guessing that in that 1,900 years, plenty of scientists did indeed do the stone-and-rock experiment, but discounted their own observations because they had too much respect for Aristotle.
But even truly great scientists can be wrong.
Now, here is the same story, told on a much much smaller scale.
Well into the 2010s, it was well known that in sauropods, caudal vertebrae past the first handful are pneumatized only in diplodocines and in saltasaurine titanosaurs. As a bright young sauropod researcher, for example, I knew this from the codings in important and respected phylogenetic analysis such as those of Wilson (2002) and Upchurch et al. (2004).
Until the day I visited the Museum für Naturkunde Berlin and actually, you know, looked at the big mounted Giraffatitan skeleton in the atrium. And this is what I saw:
That’s caudal vertebrae 24–26 in left lateral view, and you could not wish to see a nicer, clearer pneumatic feature than the double foramen in caudal 25.
That observation led directly to Matt’s and my 2013 paper on caudal pneumaticity in Giraffatitan and Apatosaurus (Wedel and Taylor 2013) and clued us into how much more common pneumatic hiatuses are then we’d realised. It also birthed the notion of “cryptic diverticula” — those whose traces are not directly recorded in the fossils, but whose presence can be inferred by traces on other vertebrae. And that led to our most recent paper on pneumatic variation in sauropods (Taylor and Wedel 2021) — from which you might recognise the photo above, since a cleaned-up version of it appears there as Figure 5.
The moral
Just because “everyone knows” something is true, it doesn’t necessarily mean that it actually is true. Verify. Use your own eyes. Even Aristotle can be wrong about gravity. Even Jeff Wilson and Paul Upchurch can be wrong about caudal pneumaticity in non-diplodocines. That shouldn’t in any way undermine the rightly excellent reputations they have built. But we sometimes need to look past reputations, however well earned, to see what’s right in front of us.
Go and look at fossils. Does what you see contradict what “everyone knows”? Good! You’ve discovered something!
References
- Taylor, Michael P., and Mathew J. Wedel. 2021. Why is vertebral pneumaticity in sauropod dinosaurs so variable? (version 5) Qeios 1G6J3Q.5. doi:10.32388/1G6J3Q.5
- Upchurch, Paul, Paul M. Barrett and Peter Dodson. 2004. Sauropoda. pp. 259–322 in D. B. Weishampel, P. Dodson and H. Osmólska (eds.), The Dinosauria, 2nd edition. University of California Press, Berkeley and Los Angeles. 861 pp.
- Wedel, Mathew J., and Michael P. Taylor 2013. Caudal pneumaticity and pneumatic hiatuses in the sauropod dinosaurs Giraffatitan and Apatosaurus. PLOS ONE 8(10):e78213. 14 pages. doi: 10.1371/journal.pone.0078213
- Wilson, Jeffrey A. 2002. Sauropod dinosaur phylogeny: critique and cladistic analysis. Zoological Journal of the Linnean Society 136:217–276.
Notes
1. There is some skepticism about whether Galileo’s experiment really took place, or was merely a thought experiment. But since the experiment was described by Galileo’s pupil Vincenzo Viviani in a biography written in 1654, I am inclined to trust the contemporary account ahead of the unfounded scepticism of moderns. Also, Viviani’s wording, translated as “Galileo showed this by repeated experiments made from the height of the Leaning Tower of Pisa in the presence of other professors and all the students” reads like a documentary account rather than a romanticization. And a thought experiment, with no observable result, would not have demonstrated anything.
2. Earlier experiments had similarly shown that Aristotle’s gravitational theory was wrong, including in the works of John Philoponus in the sixth century — but Aristotle’s orthodoxy nevertheless survived until Galileo.
Timely: come see Matt talk, or come talk to Matt
October 18, 2018
This is going to set new records for “almost too late to be worth posting”, but here goes.
First up, this Wednesday evening, Oct. 18, at 6:00 PM (in about 18 hours), while most of the paleontologists in the West are at SVP in Albuquerque, I will giving a public lecture at the Canyonlands Natural History Assocation’s Moab Information Center, at the corner of Main St. and Center in Moab (link). The talk is titled, “Lost worlds of the Jurassic: Diverse dinosaurs and plants in the lower Morrison Formation of south-central Utah”, and it is free to the public. It’s a report on the fieldwork I’ve been doing in the Morrison Formation of southern Utah for the past few summers with John Foster, Brian Engh, and Jessie Atterholt. I promise lots of pretty pictures and probably more yapping about sauropods than anyone really needs. Did I mention it’s free? I hope to see you there.
Second, I will be at SVP myself, for a bit. Basically Friday night and Saturday. Gotta catch up with collaborators and go see Brian Engh pick up his Lanzendorf Paleoart Prize Saturday night. Why do you care? Western University of Health Sciences has an open position for an anatomist, and a lot of paleo folks have anatomy training, so…if you are interested in this position specifically, or if you have general questions about what it’s like to be a paleontologist teaching gross anatomy at a med school (spoiler: mostly awesome), come find me sometime Friday evening or Saturday and chat me up. I’ll probably be roaming the hallways and talking with folks instead of attending talks (sorry, talk-givers–you all rock, I’m just too slammed this year). And if you are on the job market, have some anatomy experience, and aren’t allergic to sun, palm trees, and amazing colleagues, please consider applying for the position. We’re taking applications through October 26, so don’t tarry. Here’s that link again.
A database of all dinosaur specimens in the world
June 8, 2017
Wouldn’t it be great if there was a database of all dinosaur specimens?
Well, there is — or at least, it’s on its way. Gunnar Bivens, who we know from SV-POW! comments as bricksmashtv, in creaing a vast Google-Docs Spreadsheet which at the time of writing has the following entries in various tabs:
- 1446 sauropods (Yay!)
- 50 theropods
- 2 thyreophorans (Hey, you gotta start somewhere.)
- 3 ornithopods
- 25 marginocephalians
Other tabs yet to be populated: basal dinosaurs, basal sauropodomorphs, basal ornithoscelidans, basal ornithischians.
(I think it’s a mistake to leap at the Baron et al. 2017 Ornithoscelida hypothesis, abandoning so precipitately the well-established Saurischia/Ornithischia division, but that’s how things stand.)
You can help
The spreadsheet is set up so that anyone can leave comments. Gunnar has done lots of work to get it going, essentially just by reading a ton of papers and entering all the details of dinosaur specimens — but no one person can possibly cover the whole literature.
Here’s what I think is the most efficient way to contribute: if you set up a Google Docs spreadsheet of your own, with the columns in the same order as Gunnar’s, then you can enter a bunch of specimens. When you’re ready, leave a comment on the relevant tab of the master spreadsheet pointing to your additions, and Gunnar can copy-paste them in.
Here is the link to the spreadsheet again. Get building!
References
- Baron, Matthew G., David B. Norman and Paul M. Barrett. 2017. A new hypothesis of dinosaur relationships and early dinosaur evolution. Nature 543:501–506. doi:10.1038/nature21700
I’m trying to free some space in my office, and I’m going to let my run of the Journal of Vertebrate Paleontology go:
It covers everything from 25(4) to volume 29(2) — a run from December 2005 to March 2009) — and also includes the lone issue 29(4) for December 2009 and the SVP meeting abstract volumes for 2006 and 2008 (i.e. issues 26(3s) and 28(3s)). (I don’t know what happened to the 2007 and 2009 SVP abstract volumes, sorry.)
All in all, they make a stack about 25 cm tall, and weigh just a little short of 17 kg.
Does anyone want them? Let me know within a week if you do. You either come and pick them up yourself from our home in the Forest of Dean, or pay for me to send them to you by your preferred method.
If no-one wants them within a week, they’re going in the bin.
(Note to self: size of package: 33x25x27)
The European Commission is putting together a Commission Expert Group to provide advice about the development and implementation of open science policy in Europe. It will be known as the Open Science Policy Platform (OSPP).
This is potentially excellent news. The OSPP’s primary goal is to “advise the Commission on how to further develop and practically implement open science policy”.
But there’s potentially a downside here. We can be sure that the legacy publishers will attempt to stuff the committee with their own people, just as they did with the Finch committee — and that, if they succeed, they will do everything they can to retard all forms of progress that hurt their bottom line, just as they did with the Finch committee.
Unfortunately, multinational corporations with £2 billion annual revenue and £762 million annual profit (see page 17 of Elsevier’s 2014 annual report) are very well positioned to dedicate resources to getting their people onto influential committees. Those of us without a spare £762 million to spend on marketing are at a huge operational disadvantage when it comes to influencing policy. Happily, though, we do have one important thing on our side: we’re right.
So we should do what we can to get genuinely progressive pro-open candidates onto the OSPP. I know of several people who have put themselves forward, and I am briefly describing them below (in the order I hear about their candidacy). I have publicly endorsed the first few, and will go on to endorse the others just as soon as I have a moment. If you know and admire these people, please consider leaving your own endorsement — it will help their case to be taken on to the OSPP.
Björn Brembs is a neuroscientist who has been a tireless advocate for open access, and open science more generally, for many years. He has particularly acute insights into the wastefulness of our present scholarly communication mechanisms. His candidacy is announced on his blog, and I left my endorsement as a comment.
Cameron Neylon falls into the needs-no-introduction category. Every time I’ve talked to him, I’ve come away better informed and wiser, thanks to his exhaustive knowledge and understanding of the issues surrounding openness: both the opportunities is presents, and the difficulties that slow our progress. His candidacy is announced on his blog, and I left my endorsement as a comment.
Chris Hartgerink is an active researcher in text and data mining, whose work has repeatedly been disrupted by impediments deliberately imposed by barrier-based publishers. He knows what it’s like on the ground in the content-mining wars. His candidacy is announced on his blog, and I left my endorsement as a comment.
Daniel Mietchen both practices and advocates openness at every stage in the scientific process, with a special focus on the use of Wikipedia and the ways its free content can be enhanced. Fittingly, his candidacy bid is itself a wiki page, and endorsements are invited on the corresponding discussion page.
Konrad Förstner develops open source software for reasearch, works on how to make analyses reproducible, promotes the use pf pre-print servers and creates generate open educational resources. His candidacy is announced on his blog, and I left my endorsement as a comment. [H/T Daniel Mietchen]
Finally (for now), Jenny Molloy, is the manager of Content Mine and co-ordinator of OKFN, the Open Knowledge Foundation. She has announced her candidacy on a mailing list, but doesn’t yet have a web-page about it, to my knowledge. I’ll update this page as soon as I hear that this has changed.
That’s it for now: get out there and endorse the candidates that you like!
Have I missed anyone? Let me know, and I’ll update this post.
It was ten years ago today: my first published paper
September 15, 2015
Ten years ago today — on 15 September 2005 — my first palaeo paper was published: Taylor and Naish (2005) on the phylogenetic nomenclature of diplodocoids. It’s strange to think how fast the time has gone, but I hope you’ll forgive me if I get a bit self-indulgent and nostalgic.
I’d applied to join Portsmouth University on a Masters course back in April 2004 — not because I had any great desire to earn a Masters but because back in the bad old days, being affiliated to a university was about the only way to get hold of copies of academic papers. My research proposal, hilariously, was all about the ways the DinoMorph results are misleading — something that I am still working on eleven years later.
In May of that year, I started a Dinosaur Mailing List thread on the names and definitions of the various diplodocoid clades. As that discussion progressed, it became clear that there was a lot of ambiguity, and for my own reference I started to make notes. I got into an off-list email discussion about this with Darren Naish (who was then finishing up his Ph.D at Portsmouth). By June we thought it might be worth making this into a little paper, so that others wouldn’t need to do the same literature trawl we’d done.
In September of 2004, I committed to the Portsmouth course, sending my tuition fees in a letter that ended:
On the way to SVPCA that year, in Leicester, I met Darren on the train, and together we worked through a printed copy of the in-progress manuscript that I’d brought with me. He was pretty happy with it, which meant a lot to me. It was the first time I’d had a legitimate palaeontologist critique my work.
At one of the evening events of that SVPCA, I fell into conversation with micro-vertebrate screening wizard Steve Sweetman, then on the Portsmouth Ph.D course, and he persuaded me to switch to the Ph.D. (It was my second SVPCA, and the first one where I gave a talk.) Hilariously, the heart of the Ph.D project was to be a description of the Archbishop, something that I have still not got done a decade later, but definitely will this year. Definitely.
On 7th October 2004, we submitted the manuscript to the Journal of Paleontology, and got an acknowledge of receipt<sarcasm>after just 18 short days</sarcasm>. But three months later (21st January 2005) it was rejected on the advice of two reviewers. As I summarised the verdict to Darren at the time:
It’s a rejection. Both reviewers (an anonymous one and [redacted]) say that the science is pretty much fine, but that there just isn’t that much to say to make the paper worthwhile. [The handling editor] concurs in quite a nice covering letter […] Although I think the bit about “I respect both of you a great deal” is another case of Wrong Mike Taylor Syndrome :-)
This was my first encounter with “not significant enough for our journal” — a game that I no longer play. It was to be very far from my last experience of Wrong Mike Taylor Syndrome.
At this point, Darren and I spent a while discussing what to do: revise and resubmit (though one of the reviewers said not to)? Try to subsume the paper into another more substantial one (as one reviewer suggested)? Invite the reviewers to collaborate with us on an improved version (as the editor suggested)? Or just revise according to the reviewers’ more helpful recommendations and send it elsewhere? I discussed this with Matt as well. The upshot was that on 20th February Darren and I decided to send the revised version to PaleoBios, the journal of the University of California Museum of Paleontology (UCMP) — partly because Matt had had good experiences there with two of his earlier papers.
[Side-note: I am delighted to see that, since I last checked, PaleoBios has now made the leap to open access, though as of yet it says nothing about the licence it uses.]
Anyway, we submitted the revised manuscript on 26th May; and we got back an Accept With Minor Revisions six weeks later, having received genuinely useful reviews from Jerry Harris and Matt. (This of course was long before I’d co-authored anything with Matt. No handling editor would assign him to review one of my papers now.) It took us two days to turn the manuscript around with the necessary minor changes made, and another nine days of back and forth with the editor before we reached acceptance. A week later I got the proof PDF to check.
Back in 2005, publication was a very different process, because it involved paper. I remember the thrill of several distinct phases in the publication process — particularly sharp the first time:
- Seeing the page proof — evidence that I really had written a legitimate scholarly paper. It looked real.
- The moment of being told that the paper was published: “The issue just went to the printer, so I will send the new reprints […] when I get them, probably sometime next week.”
- Getting my copy of the final PDF.
- The day that the physical reprints arrived — funny to think that they used to be a thing. (They’re so Ten Years Ago now that even the SVPCA auction didn’t have many available for bid.)
- The tedious but somehow exhilarating process of sending out physical reprints to 30 or 40 people.
- Getting a physical copy of the relevant issue of the journal — in this case, PaleoBios 25(2).
I suppose it’s one of the sadder side-effect of ubiquitous open access that many of these stages don’t happen any more. Now you get your proof, then the paper appears online, and that’s it. Bam, done.
I’m kind of glad to have lived through the tail end of the old days, even though the new days are better.
To finish, there’s a nice little happy ending for this paper. Despite being in a relatively unregarded journal, it’s turned out to be among my most cited works. According to Google Scholar, this humble little taxonomic note has racked up 28 citations: only two fewer than the Xenoposeidon description. It’s handily outperforming other papers that I’d have considered much more substantial, and which appeared in more recognised journals. It just goes to show, you can never tell what papers will do well in the citation game, and which will sink without trace.
References
Sauropods’ neutral neck postures were really weird
November 5, 2014
Last night, I submitted a paper for publication — for the first time since April 2013. I’d almost forgotten what it felt like. But, because we’re living in the Shiny Digital Future, you don’t have to wait till it’s been through review and formal publication to read it. I submitted to PeerJ, and at the same time, made it available as a preprint (Taylor 2014).
It’s called “Quantifying the effect of intervertebral cartilage on neutral posture in the necks of sauropod dinosaurs”, and frankly the results are weird. Here’s a taste:

Taylor (2014:figure 3). Effect of adding cartilage to the neutral pose of the neck of Apatosaurus louisae CM 3018. Images of vertebra from Gilmore (1936:plate XXIV). At the bottom, the vertebrae are composed in a horizontal posture. Superimposed, the same vertebrae are shown inclined by the additional extension angles indicated in Table 1. If the slightly sub-horizontal osteological neutral pose of Stevens and Parrish (1999) is correct, then the cartilaginous neutral pose would be correspondingly slightly lower than depicted here, but still much closer to the elevated posture than to horizontal. (Note that the posture shown here would not have been the habitual posture in life: see discussion.)
A year back, as I was composing a blog-post about our neck-cartilage paper in PLOS ONE (Taylor and Wedel 2013c), I found myself writing down the rather trivial formula for the additional angle of extension at an intervertebral joint once the cartilage is taken into account. In that post, I finished with the promise “I guess that will have to go in a followup now”. Amazingly it’s taken me a year to get that one-pager written and submitted. (Although in the usual way of things, the manuscript ended up being 13 pages long.)
To summarise the main point of the paper: when you insert cartilage of thickness t between two vertebrae whose zygapophyses articulate at height h above the centra, the more anterior vertebra is forced upwards by t/h radians. Our best guess for how much cartilage is between the adjacent vertebrae in an Apatosaurus neck is about 10% of centrum length: the image above shows the effect of inserting that much cartilage at each joint.
And yes, it’s weird. But it’s where the data leads me, so I think it would be dishonest not to publish it.
I’ll be interested to see what the reviewers make of this. You are all of course welcome to leave comments on the preprint itself; but because this is going through conventional peer-review straight away (unlike our Barosaurus preprint), there’s no need to offer the kind of detailed and comprehensive comment that several people did with the previous one. Of course feel free if you wish, but I’m not depending on it.
References
Gilmore Charles W. 1936. Osteology of Apatosaurus, with special reference to specimens in the Carnegie Museum. Memoirs of the Carnegie Museum 11:175–300 and plates XXI–XXXIV.
Stevens, Kent A., and J. Michael Parrish. 1999. Neck posture and feeding habits of two Jurassic sauropod dinosaurs. Science 284(5415):798–800. doi:10.1126/science.284.5415.798
Does anyone want a project? How can we understand sauropod neck cartilage better?
September 27, 2014
A couple of times now, I’ve pitched in an abstract for a Masters project looking at neck cartilage, hoping someone at Bristol will work on it with me co-supervising, but so far no-one’s bitten. Here’s how I’ve been describing it:
Understanding posture and motion in the necks of sauropods: the crucial role of cartilage in intervertebral joints
The sauropod dinosaurs were an order of magnitude bigger than any other terrestrial animal. Much sauropod research has concentrated on their long necks, which were crucial to their success (e.g. Sander et al. 2010). One approach to understanding neck function tries to determine neutral posture and range of motion by modelling the cervical vertebrae as a mechanical system (e.g. Stevens and Parrish 1999).
The raw material of such studies is fossilised vertebrae, but these are problematic for several reasons. The invariable incompleteness and distortion of sauropod neck fossils causes fundamental difficulties; but even given perfect fossils, the lack of preserved cartilage means that the bones are not shaped or sized as they were in life.
Ignoring cartilage has dramatic consequences for neutral posture, range of motion and even length of necks: pilot studies (Cobley 2011, Taylor 2011) found that intact bird necks are 8–12% longer than articulated sequences of their dry bones, and that figure is as high as 24% for a juvenile giraffe neck. A turkey neck postzygapophysis was 26% longer when cartilage was included than after being stripped down to naked bone.
We do not yet know how much articular cartilage sauropods had in their necks, nor even what kind of intervertebral joints they had: crocodilians have fibrocartilaginous discs like those of mammals, while birds have synovial joints, so the extant phylogenetic bracket is uninformative.
The project will involve dissection and measurement of bird and crocodilian necks, documenting the extent and shape of articular cartilage, identifying osteological correlates of fibrocartilaginous and synovial joints, and applying this data to sauropods to determine the nature of their neck joints and length of their necks, to reconstruct the lost cartilage, and to determine its effect on neutral pose and range of motion.
Following completion, we anticipate publication of the project.
References
Cobley, Matthew J. 2011. The flexibility and musculature of the ostrich neck: implications for the feeding ecology and reconstruction of the Sauropoda (Dinosauria: Saurischia). MSc Thesis, Department of Earth Sciences, University of Bristol. vi+64 pages.
Sander, P. Martin, Andreas Christian, Marcus Clauss, Regina Fechner, Carole T. Gee, Eva-Maria Griebeler, Hanns-Christian Gunga, Jürgen Hummel, Heinrich Mallison, Steven F. Perry, Holger Preuschoft, Oliver W. M. Rauhut, Kristian Remes, Thomas Tütken, Oliver Wings and Ulrich Witzel. 2010. Biology of the sauropod dinosaurs: the evolution of gigantism. Biological Reviews 86:117–155. doi:10.1111/j.1469-185X.2010.00137.x
Stevens, Kent A., and J. Michael Parrish. 1999. Neck Posture and Feeding Habits of Two Jurassic Sauropod Dinosaurs. Science 284:798–800. doi:10.1126/science.284.5415.798
Taylor, Michael P., and Mathew J. Wedel. 2011. Sauropod necks: how much do we really know?. p. 20 in Richard Forrest (ed.), Abstracts of Presentations, 59th Annual Symposium of Vertebrae Palaeontology and Comparative Anatomy, Lyme Regis, Dorset, UK, September 12th–17th 2011. 37 pp. http://www.miketaylor.org.uk/dino/pubs/svpca2011/TaylorWedel2011-what-do-we-really-know.ppt
(Obviously some part of this have since been covered by my and Matt’s first cartilage paper, but plenty has not.)
I now think there are two reasons no-one’s taken up this project: first, because I wrote it as very focussed only on the question of what type of joint was present, whereas there are plenty of related issues to be investigated along the way; and second, because I wrote it as a quest to discover a specific treasure (an osteological correlate), with the implication that if there’s no treasure to be found then the project will have been a failure.
But I do think there is still plenty of important work to be done in this area, and that there’s lots of important information to be got out of comparative dissection of extant critters.
If anyone out there fancies working in this area, I’d be delighted. I’d also be happy to offer whatever advice and help I could.
Update (18 October 2014)
Somehow I’d forgotten, when I wrote this post, that I’d previously written a more detailed post about the discs-in-sauropod-necks problem. If you’re interested in the problem, you should read that.
Stop what you’re doing and go read Cameron Neylon’s blog
February 9, 2014
Stop what you’re doing and go read Cameron Neylon’s blog. Specifically, read his new post, Improving on “Access to Research”.
Regular readers of SV-POW! might legitimately complain that my so-called advocacy consists mostly of whining about how rubbish things are. If you find that wearying (and I won’t blame you if you do), then read Cameron instead: he goes beyond critiquing what is, and sees what could be. Here is a key quote on this new post:
I did this on a rainy Saturday afternoon because I could, because it helped me learn a few things, and because it was fun. I’m one of tens or hundreds of thousands who could have done this, who might apply those skills to cleaning up the geocoding of species in research articles, or extracting chemical names, or phylogenetic trees, or finding new ways to understand the networks of influence in the research literature. I’m not going to ask for permission, I’m not going to go out of my way to get access, and I’m not going to build something I’m not allowed to share. A few dedicated individuals will tackle the permissions issues and the politics. The rest will just move on to the next interesting, and more accessible, puzzle.
Right! Open access is not about reducing subscription costs to libraries, or about slicing away the absurd profits of the legacy publishers, or about a change to business models. It’s about doing new and exciting things that simply weren’t possible before.
Want to publish for free in PeerJ?
November 22, 2013
As a nice little perk–presumably for being early adopters and users of PeerJ–Mike and I each have been given a small number of referral codes, which will allow other folks to publish in PeerJ for free, as long as the papers are submitted by March 1, 2014. Here’s the scoop, straight from the monkey’s mouth:
If you have colleagues who would like to publish at PeerJ, then we want to give them the opportunity to try us out for free. Therefore, as a Published PeerJ Author, we are providing you with 5 unique ‘Referral Codes’ (which expire on March 1st) to distribute to your colleagues. Each code entitles the recipient to an entirely FREE PeerJ publication. They simply need to quote your referral code in the “Notes to Staff” field, when they submit to PeerJ, and as a result they will be able to publish that article for free (assuming it passes peer-review). Please disseminate these codes to colleagues who you feel will use them, but please make sure that they realize that this code is only valid for submissions made before March 1st, 2014.
Note that this is alongside the current promo wherein, if you post a preprint to PeerJ PrePrints (which is a smashing way of getting fast feedback, or at least it was for us), that manuscript can be published in PeerJ for free, as long as it is formally submitted before January 1, 2014. So if you can get the lead out before the end of the year and don’t have an allergy to fast feedback, you don’t actually need one of these codes.
So. If you’re not a PeerJ member but you have a manuscript that you’d like to send to PeerJ before the first of next March, let us know and we’ll hook you up with a referral code. If you’re fairly sure you will use one but aren’t ready to ship yet, let me know and I’ll set one aside for you, with the proviso that I can give it away if we’re getting close to the deadline and you’re not realistically going to make it.
If we get more takers than codes, we’ll figure out some fair way of choosing who gets a code, probably randomly. I will be strongly biased toward people without big paychecks* or institutional support, like grad students and postdocs. (If you’re an undergrad, you can already publish in PeerJ for free, at least for the duration of the pilot program.) So if you’re a grad student or postdoc with a serious plan to get published, speak up and you’ll go to the head of the line. So if you let us know why getting a code would benefit you, you’re more likely to get one.
* I know in academia none of us think we have big paychecks, but compared to most grad students and postdocs, those of us with steady full-time employment are living the dream. I’m trying to reach the folks for whom the $99 lifetime membership fee would be a genuine impediment.
As is apparently the usual thing now when I’m writing about PeerJ and don’t have any images of my own queued up, I’ve borrowed images from Brant Bassam’s astoundingly cool BrantWorks.com to spice up this post. Explicit permission to reproduce the images with credit can be found on this page, which is coincidentally where these images themselves are from. Get on over there and prepare to lose some time looking at sweet stuff.
Update! Five more Golden Tickets available!
As noted in the comment below, Heinrich Mallison also has five PeerJ vouchers to distribute to deserving causes. So if Matt and I run out, the options are still open. Feel free to contact Heinrich directly or to go through us if you prefer.