Like Stephen Curry, we at SV-POW! are sick of impact factors. That’s not news. Everyone now knows what a total disaster they are: how they are signficantly correlated with retraction rate but not with citation count; how they are higher for journals whose studies are less statistically powerful; how they incentivise bad behaviour including p-hacking and over-hyping. (Anyone who didn’t know all that is invited to read Brembs et al.’s 2013 paper Deep impact: unintended consequences of journal rank, and weep.)

Its 2016. Everyone who’s been paying attention knows that impact factor is a terrible, terrible metric for the quality of a journal, a worse one for the quality of a paper, and not even in the park as a metric for the quality of a researcher.

Unfortunately, “everyone who’s been paying attention” doesn’t seem to include such figures as search committees picking people for jobs, department heads overseeing promotion, tenure committees deciding on researchers’ job security, and I guess granting bodies. In the comments on this blog, we’ve been told time and time and time again — by people who we like and respect — that, however much we wish it weren’t so, scientists do need to publish in high-IF journals for their careers.

What to do?

It’s a complex problem, not well suited to discussion on Twitter. Here’s what I wrote about it recently:

The most striking aspect of the recent series of Royal Society meetings on the Future of Scholarly Scientific Communication was that almost every discussion returned to the same core issue: how researchers are evaluated for the purposes of recruitment, promotion, tenure and grants. Every problem that was discussed – the disproportionate influence of brand-name journals, failure to move to more efficient models of peer-review, sensationalism of reporting, lack of replicability, under-population of data repositories, prevalence of fraud – was traced back to the issue of how we assess works and their authors.

It is no exaggeration to say that improving assessment is literally the most important challenge facing academia.

This is from the introduction to a new paper which came out today: Taylor (2016), Better ways to evaluate research and researchers. In eight short pages — six, really, if you ignore the appendix — I try to get to grips with the historical background that got us to where we are, I discuss some of the many dimensions we should be using to evaluate research and researchers, and I propose a family of what I call Less Wrong Metrics — LWMs — that administrators could use if they really absolutely have to put a single number of things.

(I was solicited to write this by SPARC Europe, I think in large part because of things I have written around this subject here on SV-POW! My thanks to them: this paper becomes part of their Briefing Papers series.)

Next time I’ll talk about the LWM and how to calculate it. Those of you who are impatient might want to read the actual paper first!

References

I’d hoped that we’d see a flood of BRONTOSMASH-themed artwork, but that’s not quite happened. We’ve seen a trickle, though, and that’s still exciting. Here are the ones I know about. If anyone knows of more, please let me know and I will update this post.

First, in a comment on the post with my own awful attempts, Darius posted this sketch of a BROTOSMASH-themed intimidation display:

apatosaurinae_sp_scene

And in close-up:

apatosaurinae_sp_scene-closeup

Very elegant, and it’s nice to see an extension of our original hypothesis into other behaviours.

The next thing I saw was Mark Witton’s beautiful piece, described on his own site (in a post which coined the term BRONTOSMASH):

BRONTOSMASH Witton low res

And in close-up:

BRONTOSMASH Witton low res-closeup

I love the sense of bulk here — something of the elephant-seal extant analogue comes through — and the subdued colour scheme. Also, the Knight-style inclusion in the background of the individual in the swamp. (No, sauropods were not swamp-bound; but no doubt, like elephants, they spent at least some time in water.)

And finally (for now, at least) we have Matthew Inabinett’s piece, simply titled BRONTOSMASH:

brontosmash_by_cmipalaeo-d9dy1kg

I love the use of traditional materials here — yes, it still happens! — and I like the addition of the dorsal midline spike row to give us a full on TOBLERONE OF DOOM. (Also: the heads just look right. I wish I could do that. Maybe one day.)

Update (Monday 26 October)

Here is Oliver Demuth’s sketch, as pointed out by him in a comment.

uqske

Thanks, Oliver! Nice to see the ventral-on-dorsal combat style getting some love.

So that’s where we are, folks. Did I miss any? Is anyone working on new pieces on this theme? Post ’em in the comments!

 

In my recent preprint on the incompleteness and distortion of sauropod neck specimens, I discuss three well-known sauropod specimens in detail, and show that they are not as well known as we think they are. One of them is the Giraffatitan brancai lectotype MB.R.2181 (more widely known by its older designation HMN SII), the specimen that provides the bulk of the mighty mounted skeleton in Berlin.

Giraffatitan c8 epipophyses

That photo is from this post, which is why it’s disfigured by red arrows pointing at its epipophyses. But the vertebra in question — the eighth cervical of MB.R.2181 — is a very old friend: in fact, it was the subject of the first ever SV-POW! post, back in 2007.

In the reprint, to help make the point that this specimen was found extremely disarticulated, I reproduce Heinrich (1999:figure 16), which is Wolf-Dieter Heinrich’s redrawing of Janensch’s original sketch map of Quarry S, made in 1909 or 1910. Here it is again:

Taylor 2015: Figure 5. Quarry map of Tendaguru Site S, Tanzania, showing incomplete and jumbled skeletons of Giraffatitan brancai specimens MB.R.2180 (the lectotype, formerly HMN SI) and MB.R.2181 (the paralectotype, formerly HMN SII). Anatomical identifications of SII are underlined. Elements of SI could not be identified with certainty. From Heinrich (1999: figure 16), redrawn from an original field sketch by Werner Janensch.

Taylor 2015: Figure 5. Quarry map of Tendaguru Site S, Tanzania, showing incomplete and jumbled skeletons of Giraffatitan brancai specimens MB.R.2180 (the lectotype, formerly HMN SI) and MB.R.2181 (the paralectotype, formerly HMN SII). Anatomical identifications of SII are underlined. Elements of SI could not be identified with certainty. From Heinrich (1999: figure 16), redrawn from an original field sketch by Werner Janensch.

For the preprint, as for this blog-post (and indeed the previous one), I just went right ahead and included it. But the formal version of the paper (assuming it passes peer-review) will by very explicitly under a CC By licence, so the right thing to do is get formal permission to include it under those terms. So I’ve been trying to get that permission.

What a stupid, stupid waste of time.

Heinrich’s paper appeared in the somewhat cumbersomely titled Mitteilungen aus dem Museum fur Naturkunde in Berlin, Geowissenschaftliche Reihe, published as a subscription journal by Wiley. Happily, that journal is now open access, published by Pensoft as The Fossil Record. So I wrote to the Fossil Record editors to request permission. They wrote back, saying:

We are not the right persons for your question. The Wiley Company holds the copyright and should therefore be asked. Unfortunately, I do not know who is the correct person.

I didn’t know who to ask, either, so I tweeted a question, and copyright guru Charles Oppenheim suggested that I email permissions@wiley.com. I did, only to get the following automated reply:

Dear Customer,

Thank you for your enquiry.

We are currently experiencing a large volume of email traffic and will deal with your request within the next 15 working days.

We are pleased to advise that permission for the majority of our journal content, and for an increasing number of book publications, may be cleared more quickly by using the RightsLink service via Wiley’s websites http://onlinelibrary.wiley.com and www.wiley.com.

Within the next fifteen working days? That is, in the next three weeks? How can it possibly take that long? Are they engraving their response on a corundum block?

So, OK, let’s follow the automated suggestion and try RightsLink. I went to the Wiley Online Library, and searched for journals whose names contain “naturkunde”. Only one comes up, and it’s not the right one. So Wiley doesn’t admit the existence of the journal.

Despite this, Google finds the article easily enough with a simple title search. From the article’s page, I can just click on the “Request Permissions”  link on the right, and …

rightslink-fail

Well, there’s lots to enjoy here, isn’t there? First, and most important, it doesn’t actually work: “Permission to reproduce this content cannot be granted via the RightsLink service.” Then there’s that cute little registered-trademark symbol “®” on the name RightsLink, because it’s important to remind me not to accidentally set up my own rights-management service with the same name. In the same vein, there’s the “Copyright © 2015 Copyright Clearance Center, Inc. All Rights Reserved” notice at the bottom — copyright not on the content that I want to reuse, but on the RightsLink popup itself. (Which I guess means I am in violation for including the screenshot above.) Oh, and there’s the misrendering of “Museum für Naturkunde” as “Museum für Naturkunde”.

All of this gets me precisely nowhere. As far as I can tell, my only recourse now is to wait three weeks for Wiley to get in touch with me, and hope that they turn out to be in favour of science.

sadness_____by_aoao2-d430zrm

It’s Sunday afternoon. I could be watching Ireland play France in the Rugby World Cup. I could be out at Staverton, seeing (and hearing) the world’s last flying Avro Vulcan overfly Gloucester Airport for the last time. I could be watching Return of the Jedi with the boys, in preparation for the forthcoming Episode VII. Instead, here I am, wrestling with copyright.

How absolutely pointless. What a terrible waste of my life.

Is this what we want researchers to be spending their time on?

Promoting the Progress of Science and useful Arts, indeed.

Update (13 October 2015): a happy outcome (this time)

I was delighted, on logging in this morning, to find I had email from RIGHTS-and-LICENCES@wiley-vch.de with the subject “Permission to reproduce Heinrich (1999:fig. 16) under CC By licence” — a full thirteen working days earlier than expected. They were apologetic and helpful. Here is key part of what they said:

We are of course happy to handle your request directly from our office – please find the requested permission here:
We hereby grant permission for the requested use expected that due credit is given to the original source.
If material appears within our work with credit to another source, authorisation from that source must be obtained.
Credit must include the following components:
– Journals: Author(s) Name(s): Title of the Article. Name of the Journal. Publication  year. Volume. Page(s). Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission.

So this is excellent. I would of course have included all those elements in the attribution anyway, with the exception that it might not have occurred to me to state who the copyright holder is. But there is no reason to object to that.

So, two cheers for Wiley on this occasion. I had to waste some time, but at least none of it was due to deliberate obstructiveness, and most importantly they are happy for their figure to be reproduced under CC By.

References

  • Heinrich, Wolf-Dieter. 1999. The taphonomy of dinosaurs from the Upper Jurassic of Tendaguru, Tanzania (East Africa), based on field sketches of the German Tendaguru expedition (1909-1913). Mitteilungen aus dem Museum fur Naturkunde in Berlin, Geowissenschaftliche Reihe 2:25-61.

Since I posted my preprint “Almost all known sauropod necks are incomplete and distorted” and asked in the comments for people to let me know if I missed any good necks, the candidates have been absolutely rolling in:

I will be investigating the completeness of all of these and mentioning them as appropriate when I submit the revision of this paper. (In retrospect, I should have waited a week after posting the preprint before submitting for formal review; but I was so scared of letting it brew for years, as we’re still doing with the Barosaurus preprint to our shame, that I submitted it immediately.)

So we probably have a larger number of complete or near-complete sauropod necks than the current draft of this paper suggests. But still very few in the scheme of things, and essentially none that aren’t distorted.

So I want to consider why we have such a poor fossil record of sauropod necks. All of the problems with sauropod neck preservation arise from the nature of the animals.

First, sauropods are big. This is a recipe for incompleteness of preservation. (It’s no accident that the most completely preserved specimens are of small individuals such as CM 11338, the cow-sized juvenile Camarasaurus lentus described by Gilmore, 1925). For an organism to be fossilised, the carcass has to be swiftly buried in mud, ash or some other substrate. This can happen relatively easily to small animals, such as the many finely preserved stinkin’ theropods from the Yixian Formation in China, but it’s virtually impossible with a large animal. Except in truly exceptional circumstances, sediments simply don’t get deposited quickly enough to cover a 25 meter, 20 tonne animal before it is broken apart by scavenging, decay and water transport.

Taylor 2015: Figure 5. Quarry map of Tendaguru Site S, Tanzania, showing incomplete and jumbled skeletons of Giraffatitan brancai specimens MB.R.2180 (the lectotype, formerly HMN SI) and MB.R.2181 (the paralectotype, formerly HMN SII). Anatomical identifications of SII are underlined. Elements of SI could not be identified with certainty. From Heinrich (1999: figure 16), redrawn from an original field sketch by Werner Janensch.

Taylor 2015: Figure 5. Quarry map of Tendaguru Site S, Tanzania, showing incomplete and jumbled skeletons of Giraffatitan brancai specimens MB.R.2180 (the lectotype, formerly HMN SI) and MB.R.2181 (the paralectotype, formerly HMN SII). Anatomical identifications of SII are underlined. Elements of SI could not be identified with certainty. From Heinrich (1999: figure 16), redrawn from an original field sketch by Werner Janensch.

Secondly, even when complete sauropods are preserved, or at least complete necks, distortion of the preserved cervical vertebrae is almost inevitable because of their uniquely fragile construction. As in modern birds, the cervical vertebrae were lightened by extensive pneumatisation, so that they were more air than bone, with the air-space proportion typically in the region of 60–70% and sometimes reaching as high as 89%. While this construction enabled the vertebrae to withstand great stresses for a given mass of bone, it nevertheless left them prone to crushing, shearing and torsion when removed from their protective layer of soft tissue. For large cervicals in particular, the chance of the shape surviving through taphonomy, fossilisation and subsequent deformation would be tiny.

So I think we’re basically doomed never to have a really good sauropod neck skeleton.

My most depressing paper

October 6, 2015

I have a new preprint up at PeerJ (Taylor 2015), and have also submitted it simultaneously for peer review. In a sense, it’s not a paper I am happy about, as its title explains: “Almost all known sauropod necks are incomplete and distorted“.

Taylor 2015: Figure 10. Manipulation of consecutive sauropod vertebrae by hand. Cervicals 2 and 3 of Giraffatitan brancai lectotype MB.R.2181 (formerly HMN SI). I attempted to articulate these two vertebrae, and empirically determine the feasible range of motion. Due to subtle distortion of the zygapophyses of these vertebrae, it was not possible to articulate C2 in a more extended position relative to C3 than shown here. Photograph by Mathew J. Wedel.

Taylor 2015: Figure 10. Manipulation of consecutive sauropod vertebrae by hand. Cervicals 2 and 3 of Giraffatitan brancai lectotype MB.R.2181 (formerly HMN SI). I attempted to articulate these two vertebrae, and empirically determine the feasible range of motion. Due to subtle distortion of the zygapophyses of these vertebrae, it was not possible to articulate C2 in a more extended position relative to C3 than shown here. Photograph by Mathew J. Wedel.

This paper has been a while coming, and much of the content will be familiar to long-time readers, as quite a bit of it is derived from three SV-POW! posts: How long was the neck of Diplodocus? (2011), Measuring the elongation of vertebrae (2013) and The Field Museum’s photo-archives tumblr, featuring: airbrushing dorsals (2014). It also uses the first half of my 2011 SVPCA talk, Sauropod necks: how much do we really know? (and the second half became the seed that grew into our 2013 neck-cartilage paper.)

So in one sense, publishing this is a bit of a mopping up exercise. But it’s also more than that, because I think it’s important to get all these observations (and the relevant literature review) down all in one place, to help us recognise just how serious the problem is. There are, to a first approximation, no complete sauropod necks in the published literature.  And the vertebrae of the necks we do have are crushed to the point where trying to articulate them is close to meaningless.

Taylor 2015: Figure 8. Cervical vertebrae 4 (left) and 6 (right) of Giraffatitan brancai lectotype MB.R.2180 (previously HMN SI), in posterior view. Note the dramatically different aspect ratios of their cotyles, indicating that extensive and unpredictable crushing has taken place. Photographs by author.

Taylor 2015: Figure 8. Cervical vertebrae 4 (left) and 6 (right) of Giraffatitan brancai lectotype MB.R.2180 (formerly HMN SI), in posterior view. Note the dramatically different aspect ratios of their cotyles, indicating that extensive and unpredictable crushing has taken place. Photographs by the author.

I’m not happy about this. But I think it’s important to face the reality and be honest with ourselves about how much we can really know about sauropod necks. There’s a lot we can do in a qualitative way, but most quantitative results are going to be swamped in supposition and error.

Reference

Taylor, Michael P. 2015. Almost all known sauropod necks are incomplete and distorted. PeerJ Preprints 3:e1767. doi:10.7287/peerj.preprints.1418v1

Here’s the last post (at least for now) in the Fighting Apatosaur Art series — and we’re back to Brian Engh, who we started with.

Early in the process of putting together artwork to illustrate our apatosaur neck combat hypothesis, Brian tried out a whole bunch of outlandish concepts. Here are two that he showed us, but which were too speculative to push forward with. First, necks as big, floppy display structures:

RearingPinkDiplodicids

As a piece of art, I really like this one: the boldness, the vivid contrasts, the alien quality of the animals. But as a palaeobiological hypothesis, it doesn’t really work: so much of the neck morphology in apatosaurs is to do with absorbing ventral forces that soft-tissue display structures down there don’t make a whole lot of sense.

Here’s the other one — which Brian titles “Apatosaur inflato-porcupine fish neck-bag”.

Porcu-Apato

I particularly like the way the theropod being rolled around on the ground and repeatedly spiked. It’s no more than it deserves.

Does the idea of an inflatable neck make sense? I wouldn’t be at all surprised if there were sauropods that did something like this — plenty of extant animals inflate parts of their body for display purposes, after all — but I don’t think it would have been apatosaurs. Again, the characteristic features of the neck don’t seem well matched to this scenario.

Well, that’s all the apatosaur neck-combat art we have. If there’s to be a part 7 in this series, it will be made of artwork that you, dear readers, have contributed. Fire away!

If we accept that the distinctive ventral projections of the gigantic and ventrally displaced cervical ribs of apatosaurs were likely the base of some form of soft-tissue rugosity — such as keratinous horns like those of rhinos — then does it follow that those necks were used in combat as we suggested?

Maybe, maybe not. As scientists, we are always open to other hypotheses. We’re looking for the simplest, most parsimonious model — the one which best explains the facts.

That’s why we like Mark Witton’s “neck-velcro wall-climbing” hypothesis, as shown in this actual scientific life restoration.

witton-clinging-apatosaurus

As Mark explained to me, apatosaurs may have used their neck-hooks for more than passive clinging. They may also have been used for inching up the rock-face: first one side of the neck advancing and then the next, in the manner of the “pterygoid walking” that snakes use to progressively swallow large prey.

This is why it’s important to present early-stage work at conferences (and as preprints). Otherwise, you may never hear about important alternative hypotheses like this until after the paper is out and it’s too late to include them.