Daniel Vidal et al.’s new paper in Scientific Reports (Vidal et al. 2020) has been out for a couple of days now. Dealing as it does with sauropod neck posture, it’s obviously of interest to me, and to Matt. (See our earlier relevant papers Taylor et al. 2009, Taylor and Wedel 2013 and Taylor 2014.)

Overview

To brutally over-summarise Vidal et al.’s paper, it comes down to this: they digitized the beautifully preserved and nearly complete skeleton of Spinophorosaurus, and digitally articulated the scans of the bones to make a virtual skeletal mount. In doing this, they were careful to consider the neutral pose of consecutive vertebrae in isolation, looking at only one pair at a time, so as to avoid any unconscious biases as to how the articulated column “should” look.

Then they took the resulting pose, objectively arrived at — shown above in their figure 1 — and looked to see what it told them. And as you can well see, it showed a dramatically different pose from that of the original reconstruction.

Original skeletal reconstruction of Spinophorosaurus nigerensis (Remes et al. 2009:figure 5, reversed for ease of comparison). Dimensions are based on GCP-CV-4229/NMB-1699-R, elements that are not represented are shaded. Scale bar = 1 m.

In particular, they found that as the sacrum is distinctly “wedged” (i.e. its anteroposterior length is greater ventrally than it is dorsally, giving it a functionally trapezoidal shape, shown in their figure 1A), so that the column of the torso is inclined 20 degrees dorsally relative to that of the tail. They also found lesser but still significant wedging in the last two dorsal vertebrae (figure 1B) and apparently some slight wedging in the first dorsal (figure 1C) and last cervical (figure 1D).

The upshot of all this is that their new reconstruction of Spinophorosaurus has a strongly inclined dorsal column, and consequently an strongly inclined cervical column in neutral pose.

Vidal et al. also note that all eusauropods have wedged sacra to a greater or lesser extent, and conclude that to varying degrees all eusauropods had a more inclined torso and neck than we have been used to reconstructing them with.

Response

I have to be careful about this paper, because its results flatter my preconceptions. I have always been a raised-neck advocate, and there is a temptation to leap onto any paper that reaches the same conclusion and see it as corroboration of my position.

The first thing to say is that the core observation is absolutely right, — and it’s one of those things that once it’s pointed out it’s so obvious that you wonder why you never made anything of it yourself. Yes, it’s true that sauropod sacra are wedged. It’s often difficult to see in lateral view because the ilia are usually fused to the sacral ribs, but when you see them in three dimensions it’s obvious. Occasionally you find a sacrum without its ilium, and then the wedging can hardly be missed … yet somehow, we’ve all been missing its implications for a century and a half.

Sacrum of Diplodocus AMNH 516 in left lateral and (for our purposes irrelevant) ventral views. (Osborn 1904 figure 3)

Of course this means that, other thing being equal, the tail and torso will not be parallel with each other, but will project in such a way that the angle between them, measured dorsally, is less than 180 degrees. And to be fair, Greg Paul has long been illustrating diplodocids with an upward kink to the tail, and some other palaeoartists have picked up on this — notably Scott Hartman with his very uncomfortable-looking Mamenchisaurus.

But I do have three important caveats that mean I can’t just take the conclusions of the Vidal et al. paper at face value.

1. Intervertebral cartilage

I know that we have rather banged on about this (Taylor and Wedel 2013, Taylor 2014) but it remains true that bones alone can tell us almost nothing about how vertebrae articulated. Unless we incorporate intervertebral cartilage into our models, they can only mislead us. To their credit, Vidal et al. are aware of this — though you wouldn’t know it from the actual paper, whose single mention of cartilage is in respect of a hypothesised cartilaginous suprascapula. But buried away the supplementary information is this rather despairing paragraph:

Cartilaginous Neutral Pose (CNP): the term was coined by Taylor for “the pose found when intervertebral cartilage [that separates the centra of adjacent vertebrae] is included”. Since the amount of inter-vertebral space cannot be certainly known for most fossil vertebrate taxa, true CNP will likely remain unknown for most taxa or always based on estimates.

Now this is true, so far as it goes: it’s usually impossible to know how much cartilage there was, and what shape it took, as only very unusual preservational conditions give us this information. But I don’t think that lets us out from the duty of recognising how crucial that cartilage is. It’s not enough just to say “It’s too hard to measure” and assume it didn’t exist. We need to be saying “Here are the results if we assume zero-thickness cartilage, here’s what we get if we assume cartilage thickness equal to 5% centrum length, and here’s what we get if we assume 10%”.

I really don’t think it’s good enough in 2020 to say “We know there was some intervertebral cartilage, but since we don’t know exactly how much we’re going to assume there was none at all”.

The thing about incorporating cartilage into articulating models is that we would, quite possibly, get crazy results. I refer you to the disturbing figure 4 in my 2014 paper:

Figure 4. Effect of adding cartilage to the neutral pose of the neck of Diplodocus carnegii CM 84. Images of vertebra from Hatcher (1901:plate III). At the bottom, the vertebrae are composed in a horizontal posture. Superimposed, the same vertebrae are shown inclined by the additional extension angles indicated in Table 2.

I imagine that taking cartilage into account for the Spinophorosaurus reconstruction might have given rise to equally crazy “neutral” postures. I can see why Vidal et al. might have been reluctant to open that can of worms; but the thing is, it’s a can that really needs opening.

2. Sacrum orientation

As Vidal et al.’s figure 1A clearly shows, the sacrum of Spinophorosaurus is indeed wedge-shaped, with the anterior articular surface of the first sacral forming an angle of 20 degrees relative to the posterior articular surface of the last:

But I don’t see why it follows that “the coalesced sacrum is situated so that the posterior face of the last sacral centrum is sub-vertical. This makes the presacral series to slope dorsally and the tail to be subhorizontal (Figs. 1 and 4S)”. Vidal et al. justify this with the claim by saying:

Since a subhorizontal tail has been known to be present in the majority of known sauropods[27, 28, 29], the [osteologically induced curvature] of the tail of Spinophorosaurus is therefore compatible with this condition.

But those three numbered references are to Gilmore 1932, Coombs 1975 and Bakker 1968 — three venerable papers, all over fifty years old, dating from a period long before the current understanding of sauropod posture. What’s more, each of those three was about disproving the previously widespread assumption of tail-dragging in sauropods, but the wedged sacrum of Spinophorosaurus if anything suggests the opposite posture.

So my question is, given that the dorsal and caudal portions of the vertebral column are at some specific angle to each other, how do we decide which (if either) is horizontal, and which is inclined?

Three interpretations of the wedged sacrum of Spinophorosaurus, in right lateral view. In all three, the green line represents the trajectory of the dorsal column in the torso, and the red line that of the caudal column. At the top, the tail is horizontal (as favoured by Vidal et al. 2020) resulting in an inclined torso; at the bottom, the torso is horizontal, resulting in a dorsally inclined tail; in the middle, an intermediate posture shows both the torso and the tail slightly inclined.

I am not convinced that the evidence presented by Vidal et al. persuasively favours any of these possibilities over the others. (They restore the forequarters of Spinophorosaurus with a very vertical and ventrally positioned scapula in order to enable the forefeet to reach the ground; this may be correct or it may not, but it’s by no means certain — especially as the humeri are cross-scaled from a referred specimen and the radius, ulna and manus completely unknown.)

3. Distortion

Finally, we should mention the problem of distortion. This is not really a criticism of the paper, just a warning that sacra as preserved should not be taken as gospel. I have no statistics or even systematic observations to back up this assertion, but the impression I have, from having looked closely at quite a lot of sauropod vertebra, is the sacra are perhaps more prone to distortion than most vertebrae. So, for example, the very extreme almost 30-degree wedging that Vidal et al. observed in the sacrum of the Brachiosaurus altithorax holotype FMNH PR 25107 should perhaps not be taken at face value.

Now what?

Vidal el al. are obviously onto something. Sauropod sacra are screwy, and I’m glad they have drawn attention in a systematic way to something that had only been alluded to in passing previously, and often in a way that made it seems as though the wedging they describe was unique to a few special specimens. So it’s good that this paper is out there.

But we really do need to see it as only a beginning. Some of the things I want to see:

  • Taking cartilage into account. If this results in silly postures, we need to understand why that is the case, not just pretend the problem doesn’t exist.
  • Comparison of sauropod sacra with those of other animals — most important, extant animals whose actual posture we can observe. This might be able to tell us whether wedging really has the implications for posture that we’re assuming.
  • Better justification of the claim that the torso rather than the tail was inclined.
  • An emerging consensus on sauropod shoulder articulation, since this also bears on torso orientation. (I don’t really have a position on this, but I think Matt does.)
  • The digital Spinophorosaurus model used in this study. (The paper says “The digital fossils used to build the virtual skeleton are deposited and accessioned at the Museo Paleontológico de Elche” but there is no link, I can’t easily find them on the website and they really should be published alongside the paper.)

Anyway, this is a good beginning. Onward and upward!

References

  • Bakker, Robert T. 1968. The Superiority of Dinosaurs. Discovery 3:11–22.
  • Coombs, Walter P. 1975. Sauropod habits and habitats. Palaeogeography, Palaeoclimatology, Palaeoecology 17:1-33.
  • Gilmore, Charles W. 1932. On a newly mounted skeleton of Diplodocus in the United States National Museum. Proceedings of the United States National Museum 81:1-21.
  • Hatcher, John Bell. 1901. Diplodocus (Marsh): its osteology, taxonomy, and probable habits, with a restoration of the skeleton. Memoirs of the Carnegie Museum 1:1-63.
  • Osborn, Henry F. 1904. Manus, sacrum and caudals of Sauropoda. Bulletin of the American Museum of Natural History 20:181-190.
  • Taylor, Michael P. 2014. Quantifying the effect of intervertebral cartilage on neutral posture in the necks of sauropod dinosaurs. PeerJ 2:e712. doi:10.7717/peerj.712
  • Taylor, Michael P., and Mathew J. Wedel. 2013c. The effect of intervertebral cartilage on neutral posture and range of motion in the necks of sauropod dinosaurs. PLOS ONE 8(10):e78214. 17 pages. doi:10.1371/journal.pone.0078214
  • Taylor, Michael P., Mathew J. Wedel and Darren Naish. 2009. Head and neck posture in sauropod dinosaurs inferred from extant animals. Acta Palaeontologica Polonica 54(2):213-230.
  • Vidal, Daniel, P Mocho, A. Aberasturi, J. L. Sanz and F. Ortega. 2020. High browsing skeletal adaptations in Spinophorosaurus reveal an evolutionary innovation in sauropod dinosaurs. Scientific Reports 10(6638). Indispensible supplementary information at https://static-content.springer.com/esm/art%3A10.1038%2Fs41598-020-63439-0/MediaObjects/41598_2020_63439_MOESM1_ESM.pdf
    doi:10.1038/s41598-020-63439-0

 

No, not his new Brachiosaurus humerus — his photograph of the Chicago Brachiosaurus mount, which he cut out and cleaned up seven years ago:

This image has been on quite a journey. Since Matt published this cleaned-up photo, and furnished it under the Creative Commons Attribution (CC By) licence, it has been adopted as the lead image of Wikipedia’s Brachiosaurus page [archvied]:

Consequently (I assume) it has now become Google’s top hit for brachiosaurus skeleton:

Last Saturday, Fiona and I went to Birdland, a birds-only zoo in the Cotswolds, about an hour away from where we live. The admission price also includes “Jurassic Journey”, a walking tour of a dozen or so not-very-good dinosaur models. In an interpretive centre in this area, I found this Brachiosaurus skeletal reconstruction stencilled on the wall:

I immediately knew it was the Chicago mount due to the combination of Giraffatitan anterior dorsals and Brachiosaurus posterior dorsals; but I found it more hauntingly familiar than that. A quick hunt turned up Matt’s seven-year-old post, and when I told Matt about my discovery he filled me in on its use in Wikipedia.

So this is 99% of a good story: we’re delighted that this work is out there, and has resulted in a much better Brachiosaurus image at Birdland than the rather sad-looking Stegosaurus next to it. The only slight disappointment is that I couldn’t find any sign of credit, which they really should have included given that Matt put the image out under CC By rather than in the public domain.

But as Matt said: “Even though I didn’t get credited, I’m always chuffed to see my stuff out in the world.” So true.

 

Thanks to everyone who’s engaged with yesterday’s apparently trivial question: what does it mean for a vertebra to be “horizontal”? I know Matt has plenty of thoughts to share on this, but before he does I want to clear up a couple of things.

This is not about life posture

First, and I really should have led with this: the present question has nothing to do with life posture. For example, Anna Krahl wrote on Twitter:

I personally find it more comprehensible if the measurements relate to something like eg. the body posture. This is due to my momentary biomech./functional work, where bone orientation somet is difficult to define.

I’m sympathetic to that, but we really need to avoid conflating two quite different issues here.

Taylor, Wedel and Naish (2009), Figure 1. Cape hare Lepus capensis RAM R2 in right lateral view, illustrating maximally extended pose and ONP: skull, cervical vertebrae 1-7 and dorsal vertebrae 1-2. Note the very weak dorsal deflection of the base of the neck in ONP, contrasting with the much stronger deflection illustrated in a live rabbit by Vidal et al. (1986: fig. 4). Scalebar 5 cm.

If there’s one thing we’ve learned in the last couple of decades, it’s that life posture for extinct animals is controversial — and that goes double for sauropod necks. Heck, even the neck posture of extant animals is terribly easy to misunderstand. We really can’t go changing what we mean by “horizontal” for a vertebra based on the currently prevalent hypothesis of habitual posture.

Also, note that the neck posture on the left of the image above is close to (but actually less extreme than) the habitual posture of rabbits and hares: and we certainly wouldn’t want to illustrate vertebrae as “horizontal” when they’re oriented directly upwards, or even slightly backwards!

Instead, we need to imagine the animal’s skeleton laid out with the whole vertebral column in a straight line — sort of like Ryder’s 1877 Camarasaurus, but with the tail also elevated to the same straight line.

Ryder’s 1877 reconstruction of Camarasaurus, the first ever made of any sauropod, modified from Osborn & Mook (1921, plate LXXXII).

Of course, life posture is more important, and more interesting, question than that of what constitutes “horizontal” for an individual vertebra — but it’s not the one we’re discussing right now.

In method C, both instances are identically oriented

I’m not sure how obvious this was, but I didn’t state it explicitly. In definition C (“same points at same height in consecutive vertebrae”), I wrote:

We use two identical instances of the vertebrae, articulate them together as well as we can, then so orient them that the two vertebrae are level

What I didn’t say is that the two identical instances of the vertebrae have to be identically oriented. Here’s why this is important. Consider that giraffe C7 that we looked at last time, with its keystoned centrum. if you just “articulate them together as well as we can” without that restriction, you end up with something like this:

Which is clearly no good: there’s no way to orient that such that for any given point on one instance, the corresponding point on the other is level with it. What you need instead is something like this:

In this version, I’ve done the best job I can of articulating the two instances in the same attitude, and arranged them such that they are level with each other — so that the attitude shown here is “horizontal” in sense C.

As it happens, this is also just about horizontal in sense B — the floor of the neural canal is presumably at the same height as the top of the centrum as it meets the neural arch.

But “horizontal” in sense A (posterior articular surface vertical) fails horribly for this vertebra:

To me, this image alone is solid evidence that Method A is just not good enough. Whatever we mean by “horizontal”, it’s not what this image shows.

References

Click to titanosaurize. Trust me.

I was in Philadelphia a couple of weeks ago to work with Liguo Li, of Yongjinglong fame, and I took a day to run up to New York for a quick day’s work at the American Museum of Natural History. It was my first time visiting since the cast skeleton of Patagotitan went up, so it was my first chance to see that beast in the flesh (so to speak). The pano up top is mine, but the other two photos here are by Liguo. I’m writing with my thoughts on the mount.

Pros:

  • It’s big.
  • You can walk all the way around it, with no glass in the way.
  • It’s very convincing. The casting job on the real elements is superb, with all of the cracks and so on faithfully recorded. And the vertebrae they had to sculpt look pretty good.
  • The spotlights aimed at the neck cast these immense shadows of the cervical vertebrae on the far wall, which is cool (see below).
  • Now the AMNH has mounted skeletons of Brontosaurus (or some apatosaurine at any rate), Barosaurus, Kaatedocus (masquerading as a juvenile Barosaurus in the rotunda), and Patagotitan – that’s pretty not bad. I’m hard pressed to think of another museum in the Western Hemisphere with so many mounted sauropod skeletons. Carnegie, maybe? Someone help me out, here.

Cons:

  • In striking contrast to the well-lit, mostly-white aesthetic of the rest of the fossil halls, the orientation gallery holding Patagotitan is mostly in near-Stygian darkness. Shoot in HDR mode if you can.
  • The head poking out into the hallway is a nice trick (see also: Sauroposeidon at the Oklahoma Museum of Natural History), but it means that one of the focal bits of the animal is in a different lighting regime, which makes photography even trickier than it might otherwise have been.
  • The mount feels a bit…cramped by the geometry of the room. Of the AMNH mounted sauropods, it’s easily in the worst space. If you ask me, they should have dethroned Barosaurus from the rotunda (religious commitments notwithstanding) and put Patagotitan there. The Patagotitan mount that is going in Stanley Field Hall at the Field Museum is going to look much more impressive just because of the setting.

In all, not bad, could be better. It was fun for me because the longest cervicals of Sauroposeidon are veeerrry slightly longer than the longest of Patagotitan, and now that Sauroposeidon is coming out as a titanosaur in most analyses…it might have been friggin’ immense.

So, yeah, go see Patagotitan, and all the other good stuff on display at the AMNH.

For more posts on Patagotitan, see:

Turns out that if Mike and I don’t post about sauropods for a while, people start doing it for us! This very interesting project by Tom Johnson of Loveland, Colorado, first came to my attention when Tom emailed Mark Hallett about it and Mark kindly passed it on to me. I got in touch with Tom and asked if he’d be interested in writing it up for SV-POW!, and here it is. Many thanks to Tom for his willingness to share his work with us. Enjoy! – Matt Wedel

– – – – – – – – – – – – – – – – – – – –

The sauropod formerly known as Apatosaurus in the American Museum of Natural History was the first permanently mounted sauropod dinosaur in the world, and for many years, the most famous (Brinkman 2010). The greater part of the skeleton consists of the specimen AMNH 460 from the Nine Mile Crossing Quarry north of Como Bluff, Wyoming, supplemented with bones from other AMNH specimens from Como Bluff, Bone Cabin Quarry, and with plaster casts of the forelimbs of the holotype specimen of Brontosaurus excelsus (YPM 1980) at the Yale Peabody Museum.

A herd of Brontosaurus skeleton models parading before four box covers issued between the 1950s and 1990s.

Like many aging boomer dinophiles, my dinosaur epiphany was the result of books, movies, and toys available in the 1950s, but especially a series of plastic model dinosaur skeletons that appeared around 1958. The Brontosaurus was my personal favorite, and, like the Tyrannosaurus and Stegosaurus models in the series, was very obviously based on the AMNH mount. The models were reissued at least three times over the years and can still be found either “mint in box” or more often in various stages of completion.

Apatosaurus lousiae 1/12 scale skeleton, modelled by Phil Platt, assembled and photographed by Brant Bassam. Image courtesy of BrantWorks.com.

The crème de la crème today, of course, is the 1:12 scale Apatosaurus skeleton model by Phil Platt, available from Gaston Design in Fruita, Colorado. A particularly nice example is the one completed and mounted by Brant Bassam of BrantWorks. The Platt skeleton is a replica in the true sense of the word. The plastic models are pretty crude in comparison, as cool as they appeared to us as kids.

I was interested in skeletal illustrations I have seen of Tyrannosaurus rex, which compare the completeness of various specimens by showing the actual bones included by coloring them red. A 2005 study of Apatosaurus by Upchurch et. al. examined eleven of the most complete Apatosaurus individuals, and I was interested to see the actual bones known for each specimen. Using published descriptions, red markers, and copies of a skeletal silhouette of Apatosaurus (permission obtained from the artist), I prepared a comparison of the most completely known Apatosaurus specimens. It was clear, of course, that Apatosaurus louisae (CM 3018) is the most complete specimen of the Apatosaurus/Brontosaurus group. But it also was apparent that old AMNH 460 included a substantial portion of the skeleton, even if it is a composite.

I grabbed some additional markers and, using the illustration of the mount in William Diller Matthew’s popular book Dinosaurs (Matthew 1915, fig. 20, which I trust is in the public domain by now), I color-coded the bones according to the composition as listed in Matthew’s (1905) article:

  • AMNH 460, Nine-Mile Crossing Quarry: 5th, 6th, 8th to 13th cervical vertebrae; 1st to 9th dorsal; 3rd to 19th caudal; all ribs; both coracoids; “parts of” sacrum and ilia; both ischia and pubes; left femur and astragalus; and “part of” the left fibula. RED
  • AMNH 222, Como Bluff: right scapula, 10th dorsal vertebra, right femur and tibia. GREEN
    (Visitors to AMNH: you can see the rest of AMNH 222 under the feet of the hunched-over Allosaurus)
  • AMNH 339, Bone Cabin Quarry: 20th to 40th caudal vertebrae. LIGHT BLUE
  • AMNH 592, Bone Cabin Quarry: metatarsals of the right hind foot. VIOLET
  • YPM 1980, Como Bluff: left scapula, forelimb long bones (casts). YELLOW
  • The remaining parts of the skeleton are either modeled in plaster or are unspecified (“a few toe bones”). BLACK

It occurred to me that I might have sufficient spare parts of old ITC and Glencoe Brontosaurus models to create a three-dimensional version. I did, and painting prior to assembly definitely made the job easier.

There are obviously limitations to using Matthew’s (1915) reconstruction (e.g., only 13 cervicals) and the model (12 cervicals). It is also not clear from Matthew’s description how much of the sacrum and ilia were restored. Nevertheless, the painted model does provide a colorful, if crude, visualization of the composition of the composite.

Here are some more photos of the finished product:

A view from the front of the model, compared with a historical AMNH photo of the forelimbs and pelvic girdle.

Long considered a specimen of Brontosaurus excelsus or Apatosaurus excelsus, AMNH 460 was referred to Apatosaurus ajax by Upchurch et. al. in 2005. In the most comprehensive analysis of diplodocid phylogeny to date, Tschopp et. al. (2015) found AMNH 460 to be an “indeterminate apatosaurine” pending a “detailed analysis of the specimen.” What to call it? Oh, yeah, that’s been covered in another post!

This is a nostalgia shot for the old brontophiles. Notice that the Triceratops is entering the lake for a swim!

Tom Johnson with the mounted skeleton of Amphicyon, a Miocene “bear-dog”,
in the Raymond Alf Museum of Paleontology in Claremont, California.

References

  • Brinkman , Paul D. (2010). The Second Jurassic Dinosaur Rush, University of Chicago Press, 2010.
  • Matthew, William Diller, (1905). “The Mounted Skeleton of Brontosaurus,” The American Museum Journal, Vol. V, No. 2, April.
  • Matthew, W.D. (1915). Dinosaurs, With Special Reference to the American Museum Collections, American Museum of Natural History, New York.
  • Tschopp, Emanuel, Octávio Mateus, and Roger Benson. (2015). “A Specimen-Level Phylogenetic Analysis and Taxonomic Revision of Diplodocidae (Dinosauria, Sauropoda).” Ed. Andrew Farke. PeerJ 3 (2015): e857.
  • Upchurch, P., Tomida, Y., Barrett, P.M. (2005). “A new specimen of Apatosaurus ajax (Sauropoda: Diplodocidae) from the Morrison Formation (Upper Jurassic) of Wyoming, USA”. National Science Museum Monographs (Tokyo) 26 (118): 1–156.

As I mentioned in my first post on Aquilops, I drew the skull reconstructions that appear in figure 6 of the paper (Farke et al. 2014). I’m writing this post to explain that process.

We’ve blogged here before about the back-and-forth between paleontologists and artists when it comes to reconstructing and restoring extinct animals (example 1, example 2). Until now, I’ve always been the guy making suggestions about the art, and asking for changes. But for the Aquilops project, the shoe was on the other foot: Andy Farke was my ‘client’, and he had to coach me through drawing a basal ceratopsian skull – a subject that I was definitely not familiar with.

Aquilops skull - Farke et al 2014 figure 3

I started from the specimen, OMNH 34557, which is more complete than you might think at first glance. The skull is folded over about 2/3 of the way up the right orbit, so in lateral view it looks like the top of the orbit and the skull roof are missing. They’re actually present, just bent at such a sharp angle that they’re hard to see at the same time as the lateral side of the skull.

Archaeoceratops lateral

I also used a cast skull of Archaeoceratops as a reference – it’s clear from what we have of Aquilops that the two animals were pretty similar.

Aquilops skull lateral 1 - outline

I started with this pencil outline on a piece of tracing paper.

Aquilops skull lateral 2 - rough stipple

And then I went right ahead and stippled the whole thing, without showing it to Andy until I was done. Yes, that was dumb. Noe the lack of sutures in this version.

Aquilops skull lateral 3 - rough stipple marked up

I added sutures and sent it off to Andy, who sent it back with these suggested changes. At this point I realized my error: I had already spent about a day and a half putting ink on the page, and I’d have to either start all over, or do a lot of editing in GIMP. I picked the latter course, since there were plenty of areas that were salvageable.

Aquilops skull lateral 4 - redrawn bits

Next I did something that I’d never done before, which is to redraw parts of the image and then composite them with the original in GIMP. Here’s are the redrawn bits.

Aquilops skull lateral 5 - penultimate version

With those bits composited in, and a few more tweaks to sutures, we got to this version, which was included in the submitted manuscript.

Aquilops skull lateral 6 - beak curvature issue

Then we brought Brian Engh in to do the life restorations. When Brian takes on a project, he does his homework. If you’ve seen his post on painting Aquilops, you know that all of the ferns in the Cloverly scene are based on actual fossils from the Cloverly Formation. Brian came to Claremont this summer and he and Andy and I spent most of a day at the Alf Museum looking at the specimen and talking about possible layouts for the full-body life restorations. He took a bunch of photos of the specimen while he was there, and a day or two later he sent us this diagram. He’d chopped up his photos of the skull to produce his own undistorted version to guide his painting, and in doing so he’d noticed that I had the line of the upper jaw a bit off.

Aquilops skull lateral 7 - partly revised

That required another round of digital revisions to fix. It ended up being a lot more work than the earlier round of edits in GIMP, because so many features of the skull had to be adjusted. I ended up cutting my own skull recon into about 8 pieces and then stitching them back together one by one. Here’s what the image looked like about halfway through that process. The back of the skull, orbit, and beak are all fixed here, but the snout, cheek, and maxilla don’t yet fit together.

Aquilops skull lateral 8 - final published version

After a little more work, I got the whole thing back together, and this is the final version that appears in the paper. It is not perfect – the area in front of the orbit where the frontal, nasal, maxilla, and premaxilla come together is a bit dodgy, and I’m not totally happy with the postorbital. But eventually you have to stop revising and ship something, and this is what I shipped.

Aquilops dorsal recon lineup for SV-POW

I did the dorsal view after the submitted version of the lateral view was finished. It went a lot faster, for several reasons:

  • Most of the gross proportional issues were already sorted out from doing the lateral view first.
  • The bilateral symmetry didn’t cut down on the number of dots but it did cut the conceptual workload in half.
  • I did all my roughs in pencil and didn’t start inking until after we had almost all of the details hashed out.

I did have to revise the dorsal view after getting feedback from Brian about the lateral view, but that revision was pretty minor by comparison. I stretched the postorbital region and tinkered a bit with the face and the frill, and both of those steps required putting in some new dots, but it was still just one afternoon’s worth of work. Here’s the final dorsal recon:

Aquilops dorsal skull reconstruction - final published version

In addition to the Life Lessons already noted in this post, I learned (or rather relearned) this important principle: if you do a big drawing and then shrink it down to column width, fine errors – a shaky line here, an ugly dot there – get pushed down below the threshold of perception. But there’s a cost, too, which is that uneven stippling becomes more apparent. I was skipping back and forth a lot between 25% image scale to see where the problem areas were, and 200% to revise the lines and dots accordingly.

All in all, it was a fun project. It was my most ambitious technical illustration to date, I learned a ton about ceratopsian skulls, and it was nice to get to make at least one substantial contribution to the paper.

Now, here’s the take-away: this is my reconstruction, and both of those words are important. “Reconstruction” because it has a lot of extrapolation, inference, and sheer guesswork included. “My” because you’re getting just one possible take on this. You can download the 3D files for the cranium and play with them yourselves. I hope that other artists and scientists will use those tools to produce their own reconstructions, and I fully expect that those reconstructions will differ from mine. I look forward to seeing them, and learning from them.

For other posts about my stippled technical illustrations, see:

Reference

Farke, A.A., Maxwell, W.D., Cifelli, R.L., and Wedel, M.J. 2014. A ceratopsian dinosaur from the Lower Cretaceous of Western North America, and the biogeography of Neoceratopsia. PLoS ONE 9(12): e112055. doi:10.1371/journal.pone.0112055

Last night, I submitted a paper for publication — for the first time since April 2013. I’d almost forgotten what it felt like. But, because we’re living in the Shiny Digital Future, you don’t have to wait till it’s been through review and formal publication to read it. I submitted to PeerJ, and at the same time, made it available as a preprint (Taylor 2014).

It’s called “Quantifying the effect of intervertebral cartilage on neutral posture in the necks of sauropod dinosaurs”, and frankly the results are weird. Here’s a taste:

Taylor (2014:figure 3). Effect of adding cartilage to the neutral pose of the neck of Apatosaurus louisae CM 3018. Images of vertebra from Gilmore (1936:plate XXIV). At the bottom, the vertebrae are composed in a horizontal posture. Superimposed, the same vertebrae are shown inclined by the additional extension angles indicated in Table 1. If the slightly sub-horizontal osteological neutral pose of Stevens and Parrish (1999) is correct, then the cartilaginous neutral pose would be correspondingly slightly lower than depicted here, but still much closer to the elevated posture than to horizontal. (Note that the posture shown here would not have been the habitual posture in life: see discussion.)

Taylor (2014:figure 3). Effect of adding cartilage to the neutral pose of the neck of Apatosaurus louisae CM 3018. Images of vertebra from Gilmore (1936:plate XXIV). At the bottom, the vertebrae are composed in a horizontal posture. Superimposed, the same vertebrae are shown inclined by the additional extension angles indicated in Table 1. If the slightly sub-horizontal osteological neutral pose of Stevens and Parrish (1999) is correct, then the cartilaginous neutral pose would be correspondingly slightly lower than depicted here, but still much closer to the elevated posture than to horizontal. (Note that the posture shown here would not have been the habitual posture in life: see discussion.)

A year back, as I was composing a blog-post about our neck-cartilage paper in PLOS ONE (Taylor and Wedel 2013c), I found myself writing down the rather trivial formula for the additional angle of extension at an intervertebral joint once the cartilage is taken into account. In that post, I finished with the promise “I guess that will have to go in a followup now”. Amazingly it’s taken me a year to get that one-pager written and submitted. (Although in the usual way of things, the manuscript ended up being 13 pages long.)

To summarise the main point of the paper: when you insert cartilage of thickness t between two vertebrae whose zygapophyses articulate at height h above the centra, the more anterior vertebra is forced upwards by t/h radians. Our best guess for how much cartilage is between the adjacent vertebrae in an Apatosaurus neck is about 10% of centrum length: the image above shows the effect of inserting that much cartilage at each joint.

And yes, it’s weird. But it’s where the data leads me, so I think it would be dishonest not to publish it.

I’ll be interested to see what the reviewers make of this. You are all of course welcome to leave comments on the preprint itself; but because this is going through conventional peer-review straight away (unlike our Barosaurus preprint), there’s no need to offer the kind of detailed and comprehensive comment that several people did with the previous one. Of course feel free if you wish, but I’m not depending on it.

References

Gilmore Charles W. 1936. Osteology of Apatosaurus, with special reference to specimens in the Carnegie Museum. Memoirs of the Carnegie Museum 11:175–300 and plates XXI–XXXIV.

Stevens, Kent A., and J. Michael Parrish. 1999. Neck posture and feeding habits of two Jurassic sauropod dinosaurs. Science 284(5415):798–800. doi:10.1126/science.284.5415.798

Taylor, Michael P. 2014. Quantifying the effect of intervertebral cartilage on neutral posture in the necks of sauropod dinosaurs. PeerJ PrePrints 2:e588v1 doi:10.7287/peerj.preprints.588v1

Taylor, Michael P., and Mathew J. Wedel. 2013c. The effect of intervertebral cartilage on neutral posture and range of motion in the necks of sauropod dinosaurs. PLOS ONE 8(10):e78214. 17 pages. doi:10.1371/journal.pone.0078214

In a comment on the last post, on the mass of Dreadnoughtus, Asier Larramendi wrote:

The body mass should be considerably lower because the reconstructed column don’t match with published vertebrae centra lengths. 3D reconstruction also leaves too much space between vertebrae. The reconstruction body trunk is probably 15-20% longer than it really was. Check the supplementary material: http://www.nature.com/srep/2014/140904/srep06196/extref/srep06196-s1.pdf

So I did. The table of measurements in the supplementary material is admirably complete. For all of the available dorsal vertebrae except D9, which I suppose must have been too poorly preserved to measure the difference, Lacovara et al. list both the total centrum length and the centrum length minus the anterior condyle. Centrum length minus the condyle is what in my disseration I referred to as “functional length”, since it’s the length that the vertebra actually contributes to the articulated series, assuming that the condyle of one vertebra sticks out about as far as the cotyle is recessed on the next vertebra. Here are total lengths/functional lengths/differences for the seven preserved dorsals, in mm:

  • D4 – 400/305/95
  • D5 – 470/320/150
  • D6 – 200/180/20
  • D7 – 300/260/40
  • D8 – 350/270/80
  • D9 – 410/ – / –
  • D10 – 330/225/105

The average difference between functional length and total length is 82 mm. If we apply that to D9 to estimate it’s functional length, we get 330mm. The summed functional lengths of the seven preserved vertebrae are then 1890 mm. What about the missing D1-D3? Since the charge is that Lacovara et al. (2014) restored Dreadnoughtus with a too-long torso, we should be as generous as possible in estimating the lengths of the missing dorsals. In Malawisaurus the centrum lengths of D1-D3 are all less than or equal to that of D4, which is the longest vertebra in the series (Gomani 2005: table 3), so it seems simplest here to assign D1-D3 functional lengths of 320 mm. That brings the total functional length of the dorsal vertebral column to 2850 mm, or 2.85 m.

At this point on my first pass, I was thinking that Lacovara et al. (2014) were in trouble. In the skeletal reconstruction that I used for the GDI work in the last post, I measured the length of the dorsal vertebral column as 149 pixels. Divided by 36 px/m gives a summed dorsal length of 4.1 m. That’s more than 40% longer than the summed functional lengths of the vertebrae calculated above (4.1/2.85 = 1.44). Had Lacovara et al. really blown it that badly?

Before we can rule on that, we have to estimate how much cartilage separated the dorsal vertebrae. This is a subject of more than passing interest here at SV-POW! Towers–the only applicable data I know of are the measurements of intervertebral spacing in two juvenile apatosaurs that Mike and I reported in our cartilage paper last year (Taylor and Wedel 2013: table 3, and see this post). We found that the invertebral cartilage thickness equaled 15-24% of the length of the centra.* For the estimated 2.85-meter dorsal column of Dreadnoughtus, that means 43-68 cm of cartilage (4.3-6.8 cm of cartilage per joint), for an in vivo dorsal column length of 3.28-3.53 meters. That’s still about 15-20% shorter than the 4.1 meters I measured from the skeletal recon–and, I must note, exactly what Asier stated in his comment. All my noodling has accomplished is to verify that his presumably off-the-cuff estimate was spot on. But is that a big deal?

Visually, a 20% shorter torso makes a small but noticeable difference. Check out the original reconstruction (top) with the 20%-shorter-torso version (bottom):

Dreadnoughtus shortened torso comparison - Lacovara et al 2014 fig 2

FWIW, the bottom version looks a lot more plausible to my eye–I hadn’t realized quite how weiner-dog-y the original recon is until I saw it next to the shortened version.

In terms of body mass, the difference is major. You’ll recall that I estimated the torso volume of Dreadnoughtus at 32 cubic meters. Lopping off 20% means losing 6.4 cubic meters–about the same volume as a big bull elephant, or all four of Dreadnoughtus‘s limbs put together. Even assuming a low whole-body density of 0.7 g/cm^3, that’s 4.5 metric tons off the estimated mass. So a ~30-ton Dreadnoughtus is looking more plausible by the minute.

For more on how torso length can affect the visual appearance and estimated mass of an animal, see this post and Taylor (2009).

* I asked Mike to do a review pass on this post before I published, and regarding the intervertebral spacing derived from the juvenile apatosaurs, he wrote:

That 15-24% is for juveniles. For the cervicals of adult Sauroposeidon we got about 5%. Why the differences? Three reasons might be relevant: 1, taxonomic difference between Sauroposeidon and Apatosaurus; 2, serial difference between neck and torso; 3, ontogenetic difference between juvenile and adult. By applying the juvenile Apatosaurus dorsal measurement directly to the adult Dreadnoughtus dorsals, you’re implicitly assuming that the adult/juvenile axis is irrelevant (which seems unlikely to me), that the taxonomic axis is (I guess) unknowable, and that the cervical/dorsal distinction is the only one that matter.

That’s a solid point, and it deserves a post of its own, which I’m already working on. For now, it seems intuitively obvious to me that we got a low percentage on Sauroposeidon simply because the vertebrae are so long. If the length-to-diameter ratio was 2.5 instead of 5, we’d have gotten 10%, unless cartilage thickness scales with centrum length, which seems unlikely. For a dorsal with EI of 1.5, cartilage thickness would then be 20%, which is about what I figured above.

Now, admittedly that is arm-waving, not science (and really just a wordy restatement of his point #2). The obvious thing to do is take all of our data and see if intervertebral spacing is more closely correlated with centrum length or centrum diameter. Now that it’s occurred to me, it seems very silly not to have done that in the actual paper. And I will do that very thing in an upcoming post. For now I’ll just note three things:

  1. As you can see from figure 15 in our cartilage paper, in the opisthocoelous anterior dorsals of CM 3390, the condyle of the posterior vertebra is firmly engaged in the cotyle of the anterior one, and if anything the two vertebrae look jammed together, not drifted apart. But the intervertebral spacing as a fraction of centrum length is still huge (20+4%) because the centra are so short.
  2. Transferring these numbers to Dreadnoughtus only results in 4.3-6.8 cm of cartilage between adjacent vertebrae, which does not seem unreasonable for a 30- or 40-ton animal with dorsal centra averaging 35 cm in diameter. If you asked me off the cuff what I thought a reasonable intervertebral spacing was for such a large animal, I would have said 3 or 4 inches (7.5 to 10 cm), so the numbers I got through cross-scaling are actually lower than what I would have guessed.
  3. Finally, if I’ve overestimated the intervertebral spacing, then the actual torso length of Dreadnoughtus was even shorter than that illustrated above, and the volumetric mass estimate would be smaller still. So in going with relatively thick cartilage, I’m being as generous as possible to the Lacovara et al. (2014) skeletal reconstruction (and indirectly to their super-high allometry-derived mass estimate), which I think is only fair.

References

 

Readers with long memories might recall that, nearly two years ago, we published annotated skeletal reconstructions of Camarasaurus and of Tyrannosaurus, with all the bones labelled. At the time, I said that I’d like to do an ornithischian, too.

Well, here it is at last, based on Marsh’s (1891) classic reconstruction of Triceratops:

Marsh1891--Restoration-of-Triceratops--plate-XV

Click through for the full-sized version (2076 by 864 pixels), which — like the other two — you are welcome to print out and hang on your wall as a handy reference, or to use in teaching. (Marsh’s original is out of copyright; I hereby make my modified version available under the CC By 3.0 licence.)

I recently reread Dubach (1981), “Quantitative analysis of the respiratory system of the house sparrow, budgerigar and violet-eared hummingbird”, and realized that she reported both body masses and volumes in her Table 1. For each of the three species, here are the sample sizes, mean total body masses, and mean total body volumes, along with mean densities I calculated from those values.

  • House sparrow, Passer domesticus, n = 16, mass = 23.56 g, volume = 34.05 mL, density = 0.692 g/mL
  • Budgerigar, Melopsittacus undulatus, n = 19, mass = 38.16 g, volume = 46.08 mL, density = 0.828 g/mL
  • Sparkling violetear,* Colibri coruscans, n = 12, mass = 7.28 g, volume = 9.29 mL, density = 0.784 g/mL

* This is the species examined by Dubach (1981), although not specified in her title; there are four currently-recognized species of violetears. And apparently ‘violetear’ has overtaken ‘violet-eared hummingbird’ as the preferred common name. And as long as we’re technically on a digression,  I’m almost certain those volumes do not include feathers. Every volumetric thing I’ve seen on bird masses assumes plucked birds (read on).

This is pretty darned interesting to me, partly because I’m always interested in how dense animals are, and partly because of how the results compare to other published data on whole-body densities for birds. The other results I am most familiar with are those of Hazlehurst and Rayner (1992) who had this to say:

There are relatively few values for bird density. Welty (1962) cited 0.9 g/mL for a duck, and Alexander (1983) 0.937 g/mL for a domestic goose, but those values may not take account of the air sacs. Paul (1988) noted 0.8 g/mL for unspecified bird(s). To provide more reliable estimates, the density of 25 birds of 12 species was measured by using the volume displacement method. In a dead, plucked bird the air-sac system was reinflated (Saunder and Manton 1979). The average density was 0.73 g/mL, suggesting that the lungs and air sacs occupy some quarter of the body.

That result has cast a long shadow over discussions of sauropod masses, as in this paper and these posts, so it’s nice to see similar results from an independent analysis.  If you’re curious, the weighted mean of the densities calculated from Duchard’s Dubach’s (1981) data is 0.77. I’d love to see the raw data from Hazlehurst and Rayner (1992) to see how much spread they got in their density measurements.  Unfortunately, they did not say which birds they used or give the raw data in the paper (MYDD!), and I have not asked them for it because doing so only just occurred to me as I was writing this post.

There will be more news about hummingbirds here in the hopefully not-too-distant future. Here’s a teaser:

SkeletonFULL

Yes, those are its hyoids wrapped around the back of its head–they go all the way around to just in front of the eyes, as in woodpeckers and other birds that need hyper-long tongue muscles. There are LOADS of other interesting things to talk about here, but it will be faster and more productive if I just go write the paper like I’m supposed to be doing.

Oh, all right, I’ll say a little more. This is a  young adult female Anna’s hummingbird, Calypte anna, who was found by then-fellow-grad-student Chris Clark at a residential address in Berkeley in 2005. She was unable to fly and died of unknown causes just a few minutes after being found. She is now specimen 182041 in the ornithology collection at the Museum of Vertebrate Zoology at Berkeley. Chris Clark and I had her microCTed back in 2005, and that data will finally see the light of day thanks to my current grad student, Chris Michaels, who generated the above model.

This bird’s skull is a hair over an inch long, and she had a body mass of 3.85 grams at the time of her death. For comparison, those little ketchup packets you get at fast-food burger joints each contain 8-9 grams of ketchup, more than twice the mass of this entire bird when it was alive!

References

  • Dubach, M. 1981. Quantitative analysis of the respiratory system of the house sparrow, budgerigar and violet-eared hummingbird. Respiration Physiology 46(1): 43-60.
  • Hazlehurst, G.A., and Rayner, J.M. 1992. Flight characteristics of Triassic and Jurassic Pterosauria: an appraisal based on wing shape. Paleobiology 18(4): 447-463.