Here are the humerus and ulna of a pelican, bisected:

What we’re seeing here is the top third of each bone: humerus halves on the left, ulna halves on the right, in a photo taken at the 2012 SVPCA in one of our favourite museums.

The hot news here is of course the extreme pneumaticity: the very thin bone walls, reinforced only at the proximal extremely by thin struts. Here’s the middle third, where as you can see there is essentially no reinforcement: just a hollow tube, that’s all:

And then at the distal ends, we see the struts return:

Here’s the whole thing in a single photo, though unfortunately marred by a reflection (and obviously at much lower resolution):

We’ve mentioned before that pelicans are crazy pneumatic, even by the standards of other birds: as Matt said about a pelican vertebra (skip to 58 seconds in the linked video), “the neural spine is sort of a fiction, almost like a tent of bone propped up”.

Honestly. Pelican skeletons hardly even exist.

Notocolossus is a beast

January 20, 2016

Notocolossus skeletal recon - Gonzalez Riga et al 2016 fig 1

(a) Type locality of Notocolossus (indicated by star) in southern-most Mendoza Province, Argentina. (b) Reconstructed skeleton and body silhouette in right lateral view, with preserved elements of the holotype (UNCUYO-LD 301) in light green and those of the referred specimen (UNCUYO-LD 302) in orange. Scale bar, 1 m. (González Riga et al. 2016: figure 1)

This will be all too short, but I can’t let the publication of a new giant sauropod pass unremarked. Yesterday Bernardo González Riga and colleagues published a nice, detailed paper describing Notocolossus gonzalezparejasi, “Dr. Jorge González Parejas’s southern giant”, a new titanosaur from the Late Cretaceous of Mendoza Province, Argentina (González Riga et al. 2016). The paper is open access and freely available to the world.

As you can see from the skeletal recon, there’s not a ton of material known from Notocolossus, but among giant sauropods it’s actually not bad, being better represented than Argentinosaurus, Puertasaurus, Argyrosaurus, and Paralititan. In particular, one hindfoot is complete and articulated, and a good chunk of the paper and supplementary info are devoted to describing how weird it is.

But let’s not kid ourselves – you’re not here for feet, unless it’s to ask how many feet long this monster was. So how big was Notocolossus, really?

Well, it wasn’t the world’s largest sauropod. And to their credit, no-one on the team that described it has made any such superlative claims for the animal. Instead they describe it as, “one of the largest terrestrial vertebrates ever discovered”, and that’s perfectly accurate.

Notocolossus limb bones - Gonzalez Riga et al 2016 fig 4

(a) Right humerus of the holotype (UNCUYO-LD 301) in anterior view. Proximal end of the left pubis of the holotype (UNCUYO-LD 301) in lateral (b) and proximal (c) views. Right tarsus and pes of the referred specimen (UNCUYO-LD 302) in (d) proximal (articulated, metatarsus only, dorsal [=anterior] to top), (e) dorsomedial (articulated), and (f) dorsal (disarticulated) views. Abbreviations: I–V, metatarsal/digit number; 1–2, phalanx number; ast, astragalus; cbf, coracobrachialis fossa; dpc, deltopectoral crest; hh, humeral head; ilped, iliac peduncle; of, obturator foramen; plp, proximolateral process; pmp, proximomedial process; rac, radial condyle; ulc, ulnar condyle. Scale bars, 20 cm (a–c), 10 cm (d–f). (Gonzalez Riga et al 2016: figure 4)

Any discussions of the size of Notocolossus will be driven by one of two elements: the humerus and the anterior dorsal vertebra. The humerus is 176 cm long, which is shorter than those of Giraffatitan (213 cm), Brachiosaurus (204 cm), and Turiasaurus (179 cm), but longer than those of Paralititan (169 cm), Dreadnoughtus (160 cm), and Futalognkosaurus (156 cm). Of course we don’t have a humerus for Argentinosaurus or Puertasaurus, but based on the 250-cm femur of Argentinosaurus, the humerus was probably somewhere around 200 cm. Hold that thought.

Notocolossus and Puertasaurus dorsals compared

Top row: my attempt at a symmetrical Notocolossus dorsal, made by mirroring the left half of the fossil from the next row down. Second row: photos of the Notocolossus dorsal with missing bits outlined, from Gonzalez Riga et al (2016: fig. 2). Scale bar is 20 cm (in original). Third row: the only known dorsal vertebra of Puertasaurus, scaled to about the same size as the Notocolossus vertebra, from Novas et al. (2005: fig. 2).

The anterior dorsal tells a similar story, and this is where I have to give González Riga et al. some props for publishing such detailed sets of measurements in the their supplementary information. They Measured Their Damned Dinosaur. The dorsal has a preserved height of 75 cm – it’s missing the tip of the neural spine and would have been a few cm taller in life – and by measuring the one complete transverse process and doubling it, the authors estimate that when complete it would have been 150 cm wide. That is 59 inches, almost 5 feet. The only wider vertebra I know of is the anterior dorsal of Puertasaurus, at a staggering 168 cm wide (Novas et al. 2005). The Puertasaurus dorsal is also quite a bit taller dorsoventrally, at 106 cm, and it has a considerably larger centrum: 43 x 60 cm, compared to 34 x 43.5 cm for Notocolossus (anterior centrum diameters, height x width).

Centrum size is an interesting parameter. Because centra are so rarely circular, arguably the best way to compare across taxa would be to measure the max area (or, since centrum ends are also rarely flat, the max cross-sectional area). It’s late and this post is already too long, so I’m not going to do that now. But I have been keeping an informal list of the largest centrum diameters among sauropods – and, therefore, among all Terran life – and here they are (please let me know if I missed anyone):

  • 60 cm – Argentinosaurus dorsal, MCF-PVPH-1, Bonaparte and Coria (1993)
  • 60 cm – Puertasaurus dorsal, MPM 10002, Novas et al. (2005)
  • 51 cm – Ruyangosaurus cervical and dorsal, 41HIII-0002, Lu et al. (2009)
  • 50 cm – Alamosaurus cervical, SMP VP−1850, Fowler and Sullivan (2011)
  • 49 cm – Apatosaurus ?caudal, OMNH 1331 (pers. obs.)
  • 49 cm – Supersaurus dorsal, BYU uncatalogued (pers. obs.)
  • 46 cm – Dreadnoughtus dorsal, MPM-PV 1156, Lacovara et al. (2014: Supplmentary Table 1) – thanks to Shahen for catching this one in the comments!
  • 45.6 cm – Giraffatitan presacral, Fund no 8, Janensch (1950: p. 39)
  • 45 cm – Futalognkosaurus sacral, MUCPv-323, Calvo et al. (2007)
  • 43.5 cm – Notocolossus dorsal, UNCUYO-LD 301, González Riga et al. (2016)

(Fine print: I’m only logging each taxon once, by its largest vertebra, and I’m not counting the dorsoventrally squashed Giraffatitan cervicals which get up to 47 cm wide, and the “uncatalogued” Supersaurus dorsal is one I saw back in 2005 – it almost certainly has been catalogued in the interim.) Two things impress me about this list: first, it’s not all ‘exotic’ weirdos – look at the giant Oklahoma Apatosaurus hanging out halfway down the list. Second, Argentinosaurus and Puertasaurus pretty much destroy everyone else by a wide margin. Notocolossus doesn’t seem so impressive in this list, but it’s worth remembering that the “max” centrum diameter here is from one vertebra, which was likely not the largest in the series – then again, the same is true for Puertasaurus, Alamosaurus, and many others.

Notocolossus phylogeny - Gonzalez Riga et al 2016 fig 5

(a) Time-calibrated hypothesis of phylogenetic relationships of Notocolossus with relevant clades labelled. Depicted topology is that of the single most parsimonious tree of 720 steps in length (Consistency Index = 0.52; Retention Index = 0.65). Stratigraphic ranges (indicated by coloured bars) for most taxa follow Lacovara et al.4: fig. 3 and references therein. Additional age sources are as follows: Apatosaurus[55], Cedarosaurus[58], Diamantinasaurus[59], Diplodocus[35], Europasaurus[35], Ligabuesaurus[35], Neuquensaurus[60], Omeisaurus[55], Saltasaurus[60], Shunosaurus[55], Trigonosaurus[35], Venenosaurus[58], Wintonotitan[59]. Stratigraphic ranges are colour-coded to also indicate geographic provenance of each taxon: Africa (excluding Madagascar), light blue; Asia (excluding India), red; Australia, purple; Europe, light green; India, dark green; Madagascar, dark blue; North America, yellow; South America, orange. (b–h) Drawings of articulated or closely associated sauropod right pedes in dorsal (=anterior) view, with respective pedal phalangeal formulae and total number of phalanges per pes provided (the latter in parentheses). (b) Shunosaurus (ZDM T5402, reversed and redrawn from Zhang[45]); (c) Apatosaurus (CM 89); (d) Camarasaurus (USNM 13786); (e) Cedarosaurus (FMNH PR 977, reversed from D’Emic[32]); (f) Epachthosaurus (UNPSJB-PV 920, redrawn and modified from Martínez et al.[22]); (g) Notocolossus; (h) Opisthocoelicaudia (ZPAL MgD-I-48). Note near-progressive decrease in total number of pedal phalanges and trend toward phalangeal reduction on pedal digits II–V throughout sauropod evolutionary history (culminating in phalangeal formula of 2-2-2-1-0 [seven total phalanges per pes] in the latest Cretaceous derived titanosaur Opisthocoelicaudia). Abbreviation: Mya, million years ago. Institutional abbreviations see Supplementary Information. (González Riga et al. 2016: figure 5)

As for the estimated mass of Notocolossus, González Riga et al. (2016) did their due diligence. The sections on mass estimation in the main text and supplementary information are very well done – lucid, modest, and fair. Rather than try to summarize the good bit, I’ll just quote it. Here you go, from page 7 of the main text:

The [humeral] diaphysis is elliptical in cross-section, with its long axis oriented mediolaterally, and measures 770 mm in minimum circumference. Based on that figure, the consistent relationship between humeral and femoral shaft circumference in associated titanosaurian skeletons that preserve both of these dimensions permits an estimate of the circumference of the missing femur of UNCUYO-LD 301 at 936 mm (see Supplementary Information). (Note, however, that the dataset that is the source of this estimate does not include many gigantic titanosaurs, such as Argentinosaurus[5], Paralititan[16], and Puertasaurus[11], since no specimens that preserve an associated humerus and femur are known for these taxa.) In turn, using a scaling equation proposed by Campione and Evans[20], the combined circumferences of the Notocolossus stylopodial elements generate a mean estimated body mass of ~60.4 metric tons, which exceeds the ~59.3 and ~38.1 metric ton masses estimated for the giant titanosaurs Dreadnoughtus and Futalognkosaurus, respectively, using the same equation (see Supplementary Information). It is important to note, however, that subtracting the mean percent prediction error of this equation (25.6% of calculated mass[20]) yields a substantially lower estimate of ~44.9 metric tons for UNCUYO-LD 301. Furthermore, Bates et al.[21] recently used a volumetric method to propose a revised maximum mass of ~38.2 metric tons for Dreadnoughtus, which suggests that the Campione and Evans[20] equation may substantially overestimate the masses of large sauropods, particularly giant titanosaurs. Unfortunately, however, the incompleteness of the Notocolossus specimens prohibits the construction of a well-supported volumetric model of this taxon, and therefore precludes the application of the Bates et al.[21] method. The discrepancies in mass estimation produced by the Campione and Evans[20] and Bates et al.[21] methods indicate a need to compare the predictions of these methods across a broad range of terrestrial tetrapod taxa[21]. Nevertheless, even if the body mass of the Notocolossus holotype was closer to 40 than 60 metric tons, this, coupled with the linear dimensions of its skeletal elements, would still suggest that it represents one of the largest land animals yet discovered.

So, nice work all around. As always, I hope we get more of this critter someday, but until then, González Riga et al. (2016) have done a bang-up job describing the specimens they have. Both the paper and the supplementary information will reward a thorough read-through, and they’re free, so go have fun.

References

Well, who knew? There I was posting images of “Pelorosaurusbecklesi‘s humerus, radius and ulna, and skin impression. There I was saying that this beast is due a proper description, and warrants its own generic name. And what should come out today but a new paper by Paul Upchurch, Phil Mannion and, oh yes, me, which does exactly that.

Screen Shot 2015-06-03 at 19.05.12

The headline news is the long-overdue establishment of a new genus name for this species — something that we’ve known was needed at least since Upchurch’s (1993) dissertation. Paul and Phil came up with the name Haestasaurus, from “Haesta”, the name of the putative pre-Roman chieftain whose people apparently settled the area of Hastings and gave the town its name. It’s nice that I can finally stop typing the scare-quotes around the no-longer-relevant old genus name “Pelorosaurus“!

Upchurch et al. 2015: figure 2. Left humerus of Haestasaurus becklesii (NHMUK R1870). A, anterior view; B, posterior view; Abbreviations: af, anconeal fossa; dp, deltopectoral crest; hh, humeral head; ltf, lateral triceps fossa; mtf, medial triceps fossa.

Upchurch et al. (2015: figure 2). Left humerus of Haestasaurus becklesii (NHMUK R1870). A, anterior view; B, posterior view; Abbreviations: af, anconeal fossa; dp, deltopectoral crest; hh, humeral head; ltf, lateral triceps fossa; mtf, medial triceps fossa.

(As you can see, the photography is rather better than in my own illustrations, which I made independently some years ago.)

Of course Paul has had an eye on this work, on and off, since the early 1990s. Then in the late 2000s, when I was working on Xenoposeidon and other Wealden sauropods, I started work independently on a redescription — which of course is why I prepared the figures that have appeared in the last few posts. But that work petered out as I started working more on other specimens and on the problems of the sauropod neck. More recently, Paul and Phil hunkered down and got the nitty-gritty descriptive work done.

Once they had a complete draft manuscript, they very graciously invited me onto the authorship — not something they had to do, but they chose to based on my previous interest in the specimen. My contribution was minor: I provided two of the illustrations, tidied up the early versions of several others, and did an editing pass on the text.

Upchurch et al. (2015: figure 1). Map showing England and Wales, with boundaries for English counties. The magnified inset shows the Isle of Wight and East and West Sussex in more detail, marking the positions of selected major towns/cities and the fossil localities mentioned in the main text. Based on

Upchurch et al. (2015: figure 1). Map showing England and Wales, with boundaries for English counties. The magnified inset shows the Isle of Wight and East and West Sussex in more detail, marking the positions of selected major towns/cities and the fossil localities mentioned in the main text. Based on “English ceremonial counties 1998” by Dr. Greg, http://en.wikipedia.org/wiki/File:English_ceremonial_counties_1998.svg. CC By-SA 3.0.

(This map is one of the two illustrations that I provided; the other is the multi-view photograph of the Pelorosaurus conbeari humerus.)

I’m grateful to Paul and Phil, both for inviting me onto this project, and for taking into account my strong preference for an open-access venue. It’s largely because of the latter that the paper now appears in PLOS ONE, where the glorious colour illustrations appear at full resolution and may be re-used for any purpose subject to attribution.

So: what actually is Haestasaurus? Is it the early titanosaur that we’ve all been assuming? The unexciting answer is: we don’t really know. Our paper contains three phylogenetic hypotheses (all of them Paul and Phil’s work, I can’t take any credit). These results are from adding Haestasaurus to the Carballido and Sander (2014) matrix, to the Mannion et al. (2013) standard discrete matrix and to the Mannion et al. (2013) continuous-and-discrete matrix. Only the last of these recovers Haestasaurus as a titanosaur — as sister to Diamantinasaurus and then Malawisaurus, making it a lithostrotian well down inside Titanosauria.

Both both of the other analyses find Haestasaurus as a very basal macronarian — outside of Titanosauriformes. Here is the result of the analysis based on Carballido and Sander’s Europasaurus matrix:

Upchurch et al. (2105: figure 15). Strict consensus tree (CSM). A strict consensus tree based on the 28 most parsimonious trees generated by analysis of the Carballido and Sander [19] data matrix with the addition of Haestasaurus and six new characters (Tendaguria excluded a priori). GC values (multiplied by 100) are shown in square brackets for all nodes where these values are greater than 0. The monophyletic Diplodocoidea has been collapsed to a single branch in order to reduce figure size. Abbreviation: Brc, Brachiosauridae.

Upchurch et al. (2105: figure 15). Strict consensus tree (CSM). A strict consensus tree based on the 28 most parsimonious trees generated by analysis of the Carballido and Sander [19] data matrix with the addition of Haestasaurus and six new characters (Tendaguria excluded a priori). GC values (multiplied by 100) are shown in square brackets for all nodes where these values are greater than 0. The monophyletic Diplodocoidea has been collapsed to a single branch in order to reduce figure size. Abbreviation: Brc, Brachiosauridae.

As you can see, Haestasaurus is here a camarasaurid, making it (along with Camarasaurus itself) the most basal of all macronarians. In the second analysis — the one using discrete characters only from Mannion et al.’s Lusotitan paper — Haestasaurus is again in the most basal macronarian clade, but this time as sister to Janenschia and then Tehuelchesaurus. (In this topology, Camarasaurus is the next most basal macronarian after that three-taxon clade.)

So it looks like Haestasaurus is either a very basal macronarian or a pretty derived titanosaur. We don’t know which.

But, hey, at least it has a proper name now!

Acknowledgements

It’s Matt’s birthday today. I’d like to dedicate a sauropod to him, but I don’t have the authority to do that. So instead, I dedicate this blog-post to him, and declare it the Mathew J. Wedel Memorial Blog Post.

References

It’s an oddity that in eight years of SV-POW!, we’ve never written about one of the best of all the Wealden-formation sauropod specimens: the forelimb and associated skin impression NHMUK R1870 that is known as “Pelorosaurusbecklesii.

Let’s fix that. Here is all the bony material (i.e. everything except the skin patch) in a photo taken in the basement of the Natural History Museum back in 2007:

Left forelimb material of

Left forelimb material of “Pelorosaurusbecklesii holotype NHMUK R1870. Left: humerus, in posterior view. Right, from top to bottom: ulna in anterior view; radius in anterior view. Yes, I should have turned the humerus over before taking this photo. What can I tell you? I was young and stupid then.

As you can see, the two lower-limb bones were broken back then (though I believe they have since been repaired), but the breaks are very clean, and it’s actually quite interesting to see inside the bones:

Breakage in bones of the lower left forelimb of

Breakage in bones of the lower left forelimb of “Pelorosaurusbecklesii holotype NHMUK R1870. Left: proximal part of radius in distal view. Right: proximal part of ulna in distal view.

I wish I knew enough about mineralisation to comment intelligently on what we can see there. If anyone has thoughts, do leave them in the comments.

We can look in more detail at those lower-limb bones in a subsequent post, but for now, here’s the humerus:

Pelorosaurusbecklesii holotype NHMUK R1870, left humerus. Top row: proximal view, with anterior to the bottom. Middle row, from left to right: medial, anterior, lateral and posterior views. Bottom row: distal view, with anterior to the top.

As you can see it’s in really nice shape, and pretty distinctive. Way back in my 2007 Progressive Palaeo talk (Taylor 2007), I coded up the humerus (alone, without the other elements) in the Harris-based phylogenetic matrix that I’ve used repeatedly in other projects. It came out as the sister taxon to the titanosaur Malawisaurus (which in that matrix comes out fairly basal within Titanosauria): in fact, it could hardly do anything else, since the coding was exactly the same as that of Malawisaurus.

And indeed it’s been pretty widely accepted that “P.” becklesii is a titanosaur — one of the earliest known, and the only name-bearing one from the Wealden Supergroup, unless you count the extremely indeterminate Iuticosaurus, which predictably enough is based on a single eroded partial mid-caudal centrum. Still, the titanosaurian identity of “P.” becklesii has never been convincingly demonstrated — only inferred by non-cladistic means.

Pelorosaurusbecklesii holotype NHMUK R1870, left humerus in anterodistal view (anterior to the left).

So why the quotes around the genus name “Pelorosaurus“? Because it’s long been recognised that, whatever this specimen might be, it ain’t Pelorosaurus, which is based on the Cetiosaurusbrevis caudals and a much more slender humerus.

Here’s that humerus, so you can see how different it is from that of “Pelorosaurusbecklesii:

Right humerus of Pelorosaurus conybeari holotype NHMUK 28626. Top row: distal view, anterior to bottom. Middle row, left to right: lateral, anterior and medial views. Bottom row: distal, anterior to top. Missed parts reconstructed from the humerus of Giraffatitan brancai (Janensch 1961: Beilage A)

Right humerus of Pelorosaurus conybeari holotype NHMUK 28626. Top row: distal view, with anterior to bottom. Middle row, left to right: lateral, anterior and medial views. Bottom row: distal view, with anterior to top. Missing parts reconstructed from the humerus of Giraffatitan brancai (Janensch 1961: Beilage A)

Paul Upchurch recognised the generic distinctness of “Pelorosaurusbecklesii way back in his (1993) dissertation. But because of Cambridge University’s policy of only making copies of dissertations available for £65, that work is effectively unknown. (Perhaps we should all chip in a fiver, buy a copy and “liberate” it. Or maybe 22 years on, Paul would rather leave it in obscurity and let his reputation continue to rest on his impressive body of later work.)

What has happened to this specimen in the last 22 years? Very little has been published about it. It got a mention in the systematic review of sauropods in Dinosauria II (Upchurch et al. 2004), but the only mention that is more than in passing, as far as I’m aware, is that of see Upchurch’s first published (1995) phylogenetic analysis. From page 380:

The only reliable Lower Cretaceous titanosaurid material, apart from Malawisaurus, comes from Europe, especially England. The earliest of these forms may be represented by the forelimb of ‘Pelorosaurus becklesii‘ (Mantell 1852) from the Valanginian of Sussex. This specimen was considered to be Sauropoda incertae sedis by McIntosh (1990b). However, a skin impression shows polygonal plates of a similar shape and size to those found in Saltasaurus (Bonaparte & Powell 1980). The ulna and radius are robust and the ulna bears the typical concavity on its anteromedial proximal process. Upchurch (1993) therefore argued that this form should be provisionally included within the Titanosauridae.

[Update: as Darren points out in the comment below, Upchurch et al. (2011) figure the specimen in colour and devote three pages to it. They leave it as Titanosauria, and “refrain from naming a new taxon until more comparative data are available” (p. 501).]

Given my interest in the Wealden, it’s surprising that we’ve never blogged about “Pelorosaurusbecklesii before, but it’s true: I’ve mentioned it three times in comments, but never in a post. It’s good to finally fix that!

Next time: the radius and ulna.

References

  • Janensch, Werner. 1961. Die Gliedmaszen und Gliedmaszengurtel der Sauropoden der Tendaguru-Schichten. Palaeontographica (Suppl. 7) 3:177-235.
  • Taylor, Michael P. 2007. Diversity of sauropod dinosaurs from the Lower Cretaceous Wealden Supergroup of southern England. p. 23 in Graeme T. Lloyd (ed.), Progressive Palaeontology 2007, Thursday 12th-Saturday 14th April, Department of Earth Sciences, University of Bristol. 38 pp.
  • Upchurch, Paul. 1993. The Anatomy, Phylogeny and Systematics of Sauropod Dinosaurs. Ph.D dissertation, University of Cambridge, UK. 489 pages.
  • Upchurch, Paul. 1995. The evolutionary history of sauropod dinosaurs. Philosophical Transactions of the Royal Society of London Series B, 349:365-390.
  • Upchurch, Paul, Paul M. Barrett and Peter Dodson. 2004. Sauropoda. pp. 259-322 in D. B. Weishampel, P. Dodson and H. Osmólska (eds.), The Dinosauria, 2nd edition. University of California Press, Berkeley and Los Angeles. 861 pages.
  • Upchurch, Paul, Philip D. Mannion and Paul M. Barrett. 2011. Sauropod dinosaurs. pp. 476-525 in: Batten, David J. (ed.), English Wealden Fossils. The Palaeontological Association (London).

Continuing with what seems to have turned out to be Brachiosaur Humerus Week here on SV-POW! (part 1, part 2, part 3), let’s consider the oft-stated idea that brachiosaurs have the most slender humeri of any sauropod. For example, Taylor (2009:796) wrote that:

Discarding a single outlier, the ratio of proximodistal length to minimum transverse width (Gracility Index or GI) in humeri of B. brancai [i.e. Giraffatitan] varies between 7.86 for the right humerus HMN F2 and 9.19 for the left humerus HMN J12, with the type specimen’s right humerus scoring 8.69, slightly more gracile than the middle of the range […] For the B. altithorax type specimen, the GI is 8.50, based on the length of 204 cm and the minimum transverse width of 24 cm reported by Riggs (1904:241). However, the B. altithorax humerus looks rather less gracile to the naked eye than that of B. brancai, and careful measurement from Riggs’s plate LXXIV yields a GI of 7.12, indicating that the true value of the minimum transverse width is closer to 28.5 cm. As noted by Riggs (1903:300-301), the surface of the distal end of this humerus has flaked away in the process of weathering. Careful comparison of the humeral proportions with those of other sauropods (Taylor and Wedel, in prep.) indicates that the missing portion of this bone would have extended approximately a further 12 cm, extending the total length to 216 cm and so increasing the GI to 7.53 – still less gracile than any B. brancai humerus except the outlier, but more gracile than any other sauropod species except Lusotitan atalaiensis (8.91), and much more gracile than the humerus of any non-brachiosaurid sauropod (e.g., Diplodocus Marsh, 1878 sp., 6.76; Malawisaurus dixeyi Jacobs, Winkler, Downs and Gomani, 1993, 6.20; Mamenchisaurus constructus Young, 1958, 5.54; Camarasaurus supremus Cope, 1877, 5.12; Opisthocoelicaudia skarzynskii Borsuk-Bialynicka, 1977, 5.00 – see Taylor and Wedel, in prep.)

Implicit in this (though not spelled out, I admit) is that the humeri of brachiosaurs are slender proportional to their femora. So let’s take a look at the humerus and femur of Giraffatitan, as illustrated in Janensch’s beautiful 1961 monograph of the limbs and girdles of Tendaguru sauropods:

Janensch1961-tendaguru-limbs--plates-AJ--giraffatitan-limb-bones

The first thing you’ll notice is that the humerus is way longer than the femur. That’s because Janensch’s Beilage A illustrates the right humerus of SII (now properly known as MB R.2181) while his Beilage J illustrates the right femur of the rather smaller referred individual St 291. He did this because the right femur of SII was never recovered and the left femur was broken, missing a section in the middle that had to be reconstructed in plaster.

(What’s a Beilage? It’s a German word that seems to literally mean something like “supplement”, but in Janensch’s paper it means a plate (full-page illustration) that occurs in the main body of the text, as opposed to the more traditional plates that come at the end, and which are numbered from XV to XXIII.)

How long would the intact SII femur have been? Janensch (1950b:99) wrote “Since the shaft of the right femur is missing for the most part, it was restored to a length of 196 cm, calculated from other finds” (translation by Gerhard Maier). Janensch confused the left and right femora here, but assuming his length estimate is good, we can upscale his illustration of St 291 so that it’s to SII scale, and matches the humerus. Here’s how that looks:

Janensch1961-tendaguru-limbs--plates-AJ--giraffatitan-limb-bones-scaled

Much more reasonable! The humerus is still a little longer, as we’d expect, but not disturbingly so.

Measuring from this image, the midshaft widths of the femur and humerus are 315 and 207 pixels respectively, corresponding to absolute transverse widths of 353 and 232 mm — so the femur is broader by a factor of 1.52. That’s why I expressed surprise on learning that Benson et al (2014) gave Giraffatitan a CF:CH ratio (circumference of femur to circumference of humerus) of only 1.12.

Anyone who would like to see every published view of the humeri and femora of these beasts is referred to Taylor (2009:fig. 5). In fact, here it is — go crazy.

Taylor (2009: figure 5). Right limb bones of Brachiosaurus altithorax and Brachiosaurus brancai, equally scaled. A-C, humerus of B. altithorax holotype FMNH P 25107; D-F, femur of same; G-K, humerus of B. brancai lectotype HMN SII; L-P, femur of B. brancai referred specimen HMN St 291, scaled to size of restored femur of HMN SII as estimated by Janensch (1950b:99). A, D, G, L, proximal; B, E, H, M, anterior; C, K, P, posterior; J, O, medial; F, I, N, distal. A, B, D, E modified from Riggs (1904:pl. LXXIV); C modified from Riggs (1904:fig. 1); F modified from Riggs (1903:fig. 7); G-K modified from Janensch (1961:Beilage A); L-P modified from Janensch (1961:Beilage J). Scale bar equals 50 cm.

Taylor (2009: figure 5). Right limb bones of Brachiosaurus altithorax and Brachiosaurus brancai, equally scaled. AC, humerus of B. altithorax holotype FMNH P 25107; DF, femur of same; GK, humerus of B. brancai paralectotype HMN SII; LP, femur of B. brancai referred specimen HMN St 291, scaled to size of restored femur of HMN SII as estimated by Janensch (1950b:99). A, D, G, L, proximal; B, E, H, M, anterior; C, K, P, posterior; J, O, medial; F, I, N, distal. A, B, D, E modified from Riggs (1904:pl. LXXIV); C modified from Riggs (1904:fig. 1); F modified from Riggs (1903:fig. 7); GK modified from Janensch (1961:Beilage A); LP modified from Janensch (1961:Beilage J). Scale bar equals 50 cm.

Notice that the femur of Giraffatitan, while transversely pretty broad, is freakishly narrow anteroposteriorly. The same is true of the femur of Brachiosaurus, although it’s never been shown in a published paper — I observed it in the mounted casts in Chicago.

Weird.

Calculations

So let’s take a wild stab at recalculating the mass of Giraffatitan using the Benson et al. formula. First, measuring the midshaft transverse:anteroposterior widths of the long bones gives eccentricity ratios of 2.39 for the femur and 1.54 for the humerus (I am not including the anterior prejection of the deltopectoral crest in the anteroposterior width of the humerus) . Dividing the absolute transverse widths above by these ratios gives us anteroposterior widths of 148 for the femur and 150 mm for the humerus. So they are almost exactly the same in this dimension.

If we simplify by treating these bones as elliptical in cross section, we can  approximate their midshaft circumference. It turns out that the formula for the circumference is incredibly complicated and involves summing an infinite series:

0a1f9b3824382486507885622ddcf283

But since we’re hand-waving so much anyway, we can use the approximation C = 2π sqrt((a²+b²)/2). where a and b are the major and minor radii (not diameters). For the femur, these measurements are 176 and 74 mm, so C = 848 mm; and for the humerus, 116 and 75 mm yields 614 mm. (This compares with FC=730 and HC=654 in the data-set of Benson et al., so we have found the femur to be bigger and the humerus smaller than they did.)

So the CF:CH ratio is 1.38 — rather a lot more than the 1.12 reported by Benson et al.  (Of course, if they measured the actual bones rather than messing about with illustrations, then their numbers are better than mine!)

And so to the mass formula, which Campione and Evans (2012) gave as their equation 2:

log BM = 2.754 log (CH+CF) − 1.097

Which I understand to use base-10 logs, circumferences measured in millimeters, and yield a mass in grams, though Campione and Evans are shockingly cavalier about this. CH+CF is 1462; log(1462) = 3.165. That gives us a log BM of 7.619, so BM = 41,616,453 g = 41,616 kg.

Comparison with Benson et al. (2014)

Midshaft measurements and estimates for SII long bones (all measurements in mm)
SV-POW! Benson et al.
Femur Humerus Femur Humerus
Transverse diameter 353 232 240
Transverse radius 176 116 120
Anteroposterior diameter 148 150 146
Anteroposterior radius 74 75 73
Circumference 848 614 730 654
Total circumference 1462 1384
Mass estimate (kg) 41,616 34,000

My new mass estimate of 41,616 kg is is a lot more than the 34,000 kg found by Benson et al. This seems to be mostly attributable to the much broader femur in my measurement: by contrast, the humerus measurements are very similar (varying by about 3% for both diameters). That leaves me wondering whether Benson et al. just looked at a different femur — or perhaps used St 291 without scaling it to SII size. Hopefully one of the authors will pass by and comment.

More to come on this mass estimate real soon!

References

 

Last time we looked at the humeri in the Field Museum’s mounted Brachiosaurus skeleton — especially the right humerus, which is a cast from the holotype, while the left is a sculpture. But Matt’s and my photos of that mount are all pretty much useless scientifically — partly because we were terrible photographers back then, but also partly because the very light background of sky tended to put the skeleton into silhouette and lose a lot of detail.

But fortunately there’s another Brachiosaurus in Chicago!

dscn1156

(We’ve featured this mount once before.)

This in fact the original Brachiosaurus mount that was erected in the Field Museum’s main hall in 1993. When a certain vulgar, over-studied theropod was installed in that hall in 2000, the surprising decision was made to remove the Brachiosaurus to “make room” for it (even though it’s objectively tiny). The mount was not built to be exposed to the elements, so it couldn’t just be moved outdoors. Instead, a new one was made from more suitable materials for the picnic area, and the original mount was moved to O’Hare Airport.

[Aside: what the heck were the museum thinking when they booted Brachiosaurus out of the main hall? However much you love T. rex, and I admit I do, Sue makes a feeble centrepiece compared with a brachiosaur. I can only assume there was some subtle political motivation for reducing their main hall’s Awesome Quotient so dramatically. The poor thing was only there seven years.]

Anyway, the original mount is now at Terminal 1 at O’Hare Airport, where it can be photographed less inadequately than outdoors. Here are those contrasting humeri again: the real cast on the right side of the animal (left side of photo) and the sculpture on the left (right side of photo):

dscn1158

And a zoom into the relevant section:

dscn1158-closeup

As it happens, I flew into a different terminal at O’Hare. But I knew that this mount was in Terminal 1, so before I get the transit to my hotel, I dragged my luggage across to Terminal 1 and begged the ticket clerk to let me through into the departure area so I could look at it. I don’t now remember exactly what the sequence of events was, but I do recall that phone-calls were made and supervisors were consulted. In the end, someone on staff gave me a platform ticket, and I was able to go and spend a quality hour with this glorious object.

It also meant I got to watch nearly every single traveller amble straight past Brachiosaurus giving it literally not even a single glance — see the first photo for an example. Truly depressing.

Anyway, I was able to get some slightly better photos of this cast humerus than I subsequently got of the outdoor mount. Though not very many, because — stop me if you’ve heard this — I was young and stupid then.

Anyway, here is the humerus in anterior view. Or as close to anterior as I could manage. By holding the camera above my head, I could get it nearly level with the distal margin of the mounted bone, so what we have here is really more like anterodistal:

dscn1161-brightened

And here is that some bone in lateral view (again, really laterodistal). From this angle, you can really see how shapeless parts of the lateral border of the cast are — which is odd, because there are sharp lips on the actual fossil.

dscn1163

In terms of general appreciation of the bone, this next one, in anterolaterodistal view,  is probably best — the light caught it in an informative way. Unfortunately, I cut off the distal margin. Sorry.

dscn1164

As you can see, the level of detail in the cast is mostly pretty good. For example, you can clearly make out the broken-off base of the deltopectoral crest (the tall light-coloured oval about a quarter of the way down and a third of the way across the bone). That makes the lumpenness of the distal part of the lateral aspect all the more mysterious.

Finally, here are both humeri, more or less from the left, so that the real cast is in something approaching medial view.

dscn1165

From this angle, you can see that the humerus is noticeably less anteroposteriorly deep than its transverse width. We’ll see this theme cropping up again with brachiosaur limb bones — stay tuned for future posts!

Also of interest: the very nice sculpted humerus on the left side has a complete deltopectoral crest — modelled, I imagine, after those of the various Giraffatitan humeri. It also has a finished distal end which is much broader than that of the cast humerus. In this, it’s probably right, as the real bone suffered from some decay.

And that, I am afraid, is all: stupidly, I neglected to photograph the humerus in posterior aspect, or any of the diagonals other than anterolateral.

Next time: exciting news about the relative breadth of humerus and femur in brachiosaurs!

As we noted yesterday, the humerus of the Brachiosaurus altithorax holotype FMNH P25107 is inconveniently embedded in a plaster jacket — but it wasn’t always. That’s very strange. I have an idea about that which I’ll come to later.

Anyway, although the humerus is now half in a jacket and fully inside a cabinet, we can see it from all angles thanks to the cast that’s part of the mounted skeleton outside the Field Museum. (I can definitively state that this is the greatest picnic area in the universe).

dscn9650

As noted in the previous post, Matt and I were idiots back when we visited Chicago, so our photos are mostly useless. We have lots that show the mounted skeleton as art, but very few that are scientifically useful. But what you can make out from the photo above (especially if you click through) is that the textures of the two humeri are very different.

You can see it more clearly from in front:

dscn9672

(There I am, microscopic and easily overlooked, on the left.)

Here’s a close-up of the humeri from that photo, sharpened and contrast/brightness-balanced so you can more easily see what’s going on:

dscn9672-close-up

Contrast the scarred, pitted surface of the right humerus (on the left of the picture) with the much cleaner and bone-like texture of the left one (on the right of the picture). What’s going on here is that the right humerus of the mounted skeleton is a cast of the original element (bad preservation and all) whereas the left humerus is a sculpture. (Or possibly a cast of one of the Giraffatitan humeri, but I doubt that — it’s a bit too clean and seems more robust than those bones.) The real humerus is very distinctive, especially in the progressive flaking away on the lateral side of the distal end.

Of course you can walk all around the cast humerus and photograph it from every angle — both the posterior that is apparent in the jacket, and the anterior that’s face down and inaccessible.

You can walk all around the cast humerus and photograph it from every angle. But we didn’t. Because, as noted here and yesterday (and previously, come to think of it) we used to be idiots back then. As Matt has pithily observed:

“About every three or four months I realize that I’ve spent my entire life up until now being a dumbass; the problem is that ‘now’ keeps moving and every time I think I’ve finally got everything figured out, I later determine that I was/am still a moron.  I distinctly remember having this feeling for the first time in third grade, age of eight, and I keep hoping it will eventually go away, but that hope seems increasingly unfounded.”

That is a hauntingly familiar feeling.

It seems that this cast-right, sculped-left humerus combo is common in Brachiosaurus mounts — I guess because they’re all cloned from the Field Museum’s original. Here, for example (from this post) is the mount at BYU the North American Museum of Ancient Life:

Utah 2008 07 Matt in lift

Once you’ve seen that humerus mismatch, you can’t miss it.

Finally, then — what about this historical oddity that the humerus was once out of its jacket but is now back in? That doesn’t make a lot of sense to me. I can’t really imagine why you’d do that.

So maybe that never happened? We’ve been taking it for granted that the humerus in the old Field-Museum photo is real, but maybe it’s not. Maybe it was a cast, and that cast is still somewhere in the museum (or indeed incorporated into the mount). Maybe when the fossil humerus was brought back from the field, the jacket was removed from the anterior face and that was cast; then this face was rejacketed, the bone was flipped, the posterior face was exposed (as it still is today) and that was cast. Then the two casts were joined together to make an apparently whole humerus.

If that speculation is right, then it should be possible to detect a join running down the lateral and medial faces of the cast humerus that’s in the mount (and apparently in all other mounts). That’s something I’ll look closely for the next time I’m lucky enough to be in Chicago.

I wish it was possible to know this kind of thing. I’d love it if every time a museum mounted a skeleton they published an account of how it was done, as Janensch (1950b) did for the original Giraffatitan mount in Berlin, and Remes (2011) did for the recent remount. Unfortunately I’ve never heard of such a paper regarding the Chicago mount, and I don’t even know how long ago it was done (or if anyone who was involved is still alive). The Wikipedia page says the mount went up in 1993, but gives no reference for that and doesn’t say who did it. Does anyone know?

Update (11:38pm)

Thanks to Ben (no surname given), whose comment below points to a useful 1993 Chicago Tribune article, “Brach To The Future“. This confirms the date of the mount as 1993, unveiled on Saturday 3rd July. The mount is the work of PAST (Prehistoric Animal Structures, Inc.), who bizarrely don’t seem to have a web-site. PAST president Gilles Danis was involved in the process, so he’d be the person to contact about how it was done.

Oh, and here’s another relevant Tribune article: “Out Of The Past“. Steven Godfrey is the key player in this account, so he’s someone else to track down.

References

  • Janensch, Werner. 1950b. Die Skelettrekonstruktion von Brachiosaurus brancai. Palaeontographica (Supplement 7) 3:97-103, and plates VI-VIII.
  • Remes, Kristian, David. M. Unwin, Nicole. Klein, Wolf-Dieter Heinrich, and Oliver Hampe. 2011. Skeletal reconstruction of Brachiosaurus brancai in the Museum für Naturkunde, Berlin: summarizing 70 years of sauropod research. pp. 305-316 in: Nicole Klein, Kristian Remes, Carole T. Gee, and P. Martin Sander (eds.), Biology of the Sauropod Dinosaurs: Understanding the Life of Giants. Indiana University Press, Bloomington and Indianapolis.