And so the series continues: part 9, part 10 and part 11 were not numbered as such, but that’s what they were, so I am picking up the numbering here with #12.
If you’ve been following along, you’ll remember that Matt and I are convinced that BYU 9024, the big cervical vertebra that has been referred to Supersaurus, actually belongs to a giant Barosaurus. If we’re right about, then it means one of two things: either Supersaurus synonymous with Barosaurus, or there are two diplodocids mixed up together.

Jensen (1987:figure 8c). A rare — maybe unique? — photograph of the right side of the big “Supersaurus” cervical vertebra BYU 9024. We assume this was taken before the jacket was flipped and the presently visible side prepped out. We’d love to find a better reproduction of this image.
Which is it? Well, seventeen years ago Curtice and Stadtman (2002:39) concluded that “all exceptionally large sauropod elements from the Dry Mesa Quarry can be referred to one of two individuals, one a Supersaurus and one a Brachiosaurus […] further strengthening the suggestion that all of the large diplodocid elements belong to a single individual.” It is certainly suggestive that, of all the material that has been referred to Supersaurus, there are no duplicate elements, but there are nice left-right pairs of scapulocoracoids and ischia.
But do all those elements actually belong to the same animal? One way to address that question is to look at their relative sizes and ask whether they fit together.
Sadly, when Matt and I were at BYU we didn’t get to spend time with most of these bones, but there are published and other measurements for a few of them. Jensen (1985:701) gives the total lengths of the two scapulocoracoids BYU 9025 and BYU 12962 as 2440 and 2700 mm respectively. Curtice et al. (1996:94) give the total height of the last dorsal BYU 9044 as 1330 mm. We have measured the big cervical BYU 9024 (probably C9) ourselves and found it to measure 1370 mm in total length. Finally, while there is no published measurement for the right ischium BYU 12949 (BYU 5503 of Jensen’s usage), we can calculate it from the scalebar accompanying Jensen’s illustration (with all the usual caveats) as being 1235 mm long.

Jensen (1985:figure 7a). BYU 12946 (BYU 5503 of his usage), the right ischium assigned to Supersaurus. By measuring the bone and the scalebar, we can calculate the length as 1235 mm.
Do these measurements go together? Since we’re considering the possibility of Supersaurus being a big Barosaurus, the best way to test this is to compare the sizes of the elements with the corresponding measurements for AMNH 6341, the best known Barosaurus specimen.
For this specimen, McIntosh (2005) gives 685 mm total length for C9, 901 mm total height for D9 (the last dorsal) and 873 mm for the ischia (he only provides one measurement which I assume covers both left and right elements). The scapulocoracoids are more complex: McIntosh gives 1300 mm along the curve for the scapulae, and 297 mm for the length of the coracoids. Assuming we can add them in a straight line, that gives 1597 mm for the full scapulocoracoid.
I’ve given separate measurements, and calculated separate ratios, for the left and right Supersaurus scapulocoracoids. So here’s how it all works out:
Specimen |
Element |
Size (mm) |
Baro (mm) |
Ratio |
Relative |
9024 |
Mid-cervical vertebra |
1370 |
685 |
2.00 |
124% |
9044 |
Last dorsal vertebra |
1330 |
901 |
1.48 |
92% |
9025 |
Left scapulocoracoid |
2440 |
1597 |
1.53 |
95% |
12962 |
Right scapulocoracoid |
2700 |
1597 |
1.69 |
105% |
12946 |
Right ischium |
1235 |
873 |
1.41 |
88% |
The first five columns should be self-explanatory. The sixth, “proportion”, is a little subtler. The geometric mean of the size ratios (i.e. the fifth root of their product) is 1.6091, so in some sense the Dry Mesa diplodocid — if it’s a single animal — is 1.6 times as big in linear dimension as the AMNH 6341 Barosaurus. The last column shows each element’s size ratio divided by that average ratio, expressed as a percentage: so it shows how big each element is relative to a hypothetical isometrically upsized AMNH Barosaurus.
As you can see, the cervical is big: nearly a quarter bigger than it should be in an upscaled Barosaurus. The two scaps straddle the expected size, one 5% bigger and the other 5% smaller. And the dorsal and ischium are both about 10% smaller than we’d expect.
Can these elements belong to the same animal? Maaaybe. We would expect the neck to grow with positive allometry (Parrish 2006), so it would be proportionally longer in a large individual — but 25% is a stretch (literally!). And it also seems as though the back end of the animal (as represented by the last dorsal and ischium) is growing with negative allometry.
A nice simple explanation would be that that all the elements are Supersaurus and that’s just what Supersaurus is like: super-long neck, forequarters proportionally larger than hindquarters, perhaps in a slightly more convergent-on-brachiosaurs way. That would work just fine were it were not that we’re convinced that big cervical is Barosaurus.
Here’s how that would look, if the BYU Supersaurus is a large Barosaurus with different proportions due to allometry. First, Scott Hartman’s Barosaurus reconstruction as he created it:

And here’s my crudely tweaked version with the neck enlarged 24% and the hindquarters (from mid-torso back) reduced 10%:

Does this look credible? Hmm. I’m not sure. Probably not.
So: what if we’re wrong?
We have to consider the possibility that Matt and I misinterpreted the serial position of BYU 9024. If instead of being C9 it were C14 (the longest cervical in Barosaurus) then the AMNH analogue would be 865 mm rather than 685 mm. That would make it “only” 1.58 times as long as the corresponding AMNH vertebra, which is only 3% longer than we’d expect based on a recalculated geometric mean scale of 1.5358 — easily within the bounds of allometry. We really really really don’t think BYU 9024 is a C14 — but it’s not impossible that its true position lies somewhere posterior of C9, which would mean that the allometric interpretation would become more tenable, and we could conclude that all these bones do belong to a single animal after all.
Of course, that would still leave the question of why the Supersaurus scapulocoracoids are 10% bigger than we’d expect relative to the last dorsal vertebra and the ischium. One possible explanation would be to do with preparation. As Dale McInnes explained, there’s some interpretation involved in preparing scaps: the thin, fragile distal ends shade into the cartilaginous suprascapula, and it’s at least possible that whoever prepped the AMNH 6341 scaps drew the line in a different place from Dale and his colleagues, so that the Barosaurus scaps as prepared are artificially short.
Putting it all together: it might easily be the case that all the elements really do belong to a single big diplodocid individual, provided that the big cervicals is more posterior than we thought and the AMNH scaps were over-enthusiastically prepped.
References
- Curtice, Brian D. and Kenneth L. Stadtman. 2001. The demise of Dystylosaurus edwini and a revision of Supersaurus vivianae. Western Association of Vertebrate Paleontologists and Mesa Southwest Museum and Southwest Paleontologists Symposium, Bulletin 8:33-40.
- Curtice, Brian D., Kenneth L. Stadtman and Linda J. Curtice. 1996. A reassessment of Ultrasauros macintoshi (Jensen, 1985). M. Morales (ed.), “The continental Jurassic”. Museum of Northern Arizona Bulletin 60:87–95.
- Jensen, James A. 1985a. Three new sauropod dinosaurs from the Upper Jurassic of Colorado. Great Basin Naturalist 45(4):697–709.
- Jensen, James A. 1985b. Uncompahgre dinosaur fauna: a preliminary report. The Great Basin Naturalist 45(4):710-720.
- Parrish, J. Michael. 2006. The origins of high browsing and the effects of phylogeny and scaling on neck length in Sauropodomorpha. pp. 201-224 in M. T. Carrano, T. J. Gaudin, R. W. Blob, and J. R. Wible (eds.), Amniote Paleobiology: Phylogenetic and Functional Perspectives on the Evolution of Mammals, Birds and Reptiles. Chicago: University of Chicago Press.